

Falls at low water on Iittle Qualieum River about three miles below Cameron lake.

DOMINION WATER POWER BRANCH DEPARTMENT OF THE INTERIOR
ottawa, canada.

WATER RESOURCES PAPER No. 14

R E P O R T

OF THE

BRITISH COLUMBIA HYDROGRAPHIC SURVEY

FOR

THE CALENDAR YEAR 1914

BY
R. G. SWAN, B.A. Sc.

Chicf Engineer
Prepared under the direction of the Superinteulent of W"ater Pouers.

[^0]$25 \mathrm{n}-1915$ 1 $1 \frac{1}{2}$

To Field Marshal His Royal Highness Prince Arthur William Patrick Albert, Duke of Connaught and of Strathearn, K.G., K.T., K.P., etc., etc., etc., Governor General and Commander in Chief of the Dominion of Canada.

May it Please Your Royal Highness:
The undersigned has the honour to lay before Your Royal Highness the British Columbia Hydrographic Survey Report for 1914.

Respectfully submitted,
W. J. ROCHE, Minister of the Interior.
Ottawa, May 1, 1915.

The Honourable W. J. Roche, M.D.
Minister of the Interior.
Sir, - I have the honour to submit the British Columbia Hydrographic Survey Report for 1914, and to recommend that it be published as Water Resources Paper No. 14 of the Dominion Water Power Branch.

I have the honour to be, sir,
Your obedient servant,
W. W. CORI,

Deputy Minister of the Interior.

Department of the Interior, Water Power Branch, Otrawa, May 1, 1915.

W. W. Cory, Esq., C.M.G.,
Deputy Minister of the Interior,

Sir,-I have the honour to submit the attached report by R. G. Swan, B. A.Sc., Chief Engineer of the British Columbia Hydrographic Survey.

In view of its important bearing on the industrial development of southern British Columbia, I would recommend that it be published as Water Resources Paper No. 14 of the Dominion Water Power Branch.

Respectfully submitted, J. B. CHALLIES, Superintendent, Dominion Water Power Branch.
J. B. Challies, Esq.,

Superintendent,
Dominion Water Power Branch, Department of the Interior, Ottawa.

Sir,-I have the honour to transmit herewith my Annual Report of the British Columbia Hydrographic Survey for the calendar year 1914, together with the reports of engineers in charge of divisions.

Your obedient servant,
R. G. Swan,

Chief Engineer.

TABLE OF CONTENTS.

I.
Page.
Report of the Chief Engineer 3
Scope of Work 3
Organization 3
Coast Division-
List of Regular Gauging Stations 4
Miscellaneous Meterings 5
Kamloops Division 6
List of Regular Gauging Stations 6
Miscellaneous Meterings 8
Nelson Division-
List of Regular Gauging Stations 9
Miscellaneous Meterings 11
Explanation of Tables 11
Definition of Terms. 12
Convenient Equivalents 12
Accuracy and Reliability of Data 13
Methods of Measuring stream flow 13
Co-operation and Acknowledgements 13
II.
Coast Division.
Report of Division Engineer 17
Territory 17
Uses of Water 17
Present Water-power Developments. 17
Possible Water-power Development: 17
Municipal Water Supply 17
Reclamation 17
Irrigation 18
Location of Stations 15
Precipitation and Temperature is
Comparison of Stream Measurements is
Districts is
Southern District 19
Lillooet District. 20
Vancouver Island District 21
Water-power Developments. 24
I'ossible Watcr-power Developments 24 24
Irrigation Sireans. 25
Municipal Water Supply 25
Reclamation and Dramage 2
Southern Distriet. 2
Total Monthly Precipitution, 1914 26
Menn Monthly Temperature, 1! 14. 24
Difference from averuge Precipitution, 191-1 27
Differenee from averuge Temperature, 1914 27
Compmrison of Monthly Disehurges, 1911 27
Lillooet District -
Total Monthly Precipitation 1914 \therefore
Menn Monthly Temperature 1914. 2s
Vincouver Ishand Distriet-Total Monthly Precipitation, 1914$\therefore 4$
Menn Monthly Temperature, 1914 \therefore
Difference from Average Precipitation, 1911 29
Difference from average Tempernture, 1914 23
Kamloops Division
Page.
Report of Division Engineer 33
Territory 33
Uses of Water 33
Irrigation 33
IV ater-power Development 33
Water-power Possibilities. 33
Municipal supply 34
Topography of Kamloops Division 34
Precipitation and Climate 34
District and Staff 35
Kamloops Distriet 35
Asheroft and Nieola Distriet 36
Okanagan District 36
Kamloops Office 36
Inspections 36
Developed Water Powers 38
Barrière River 38
Boundary Creek 39
Crazy Creek 39
Fortune or Davis Creek 39
Kettle River at Caseade 39
Kettle River at North Forks 39
Murray Creek 40
Nakalliston Creek 40
Similkameen Creek 40
Total Monthly Preeipitation, 1914 40
Mean Monthly Temperature, 1914 40
Difference from Average Precipitation, 1914 41
Difference from Average Temperature, 1914. 41
IV.
Nelson Division.
Report of Division Engincer 45
General Remarks 45
Nelson Division 45
Climatie Conditions 45
Preeinitation 47
Chinook Winds 47
Snowfall Data along the C.P.R. and Selkirk Range 47
Temperature. 48
Snowfall Table 48
Co-operation 48
Hydrographic Districts 48
Problem of Transportation 49
Winter Measurements 50
Total Monthly Precipitation 1914 51
Mean Monthly Temperature 1914 52
Difference from Average Precipitation 1914 52
Difference from Average Temperature 1914 52
Hydrographic Data-Coast Division.
Southern District 55
Belknap Creek 5.5
Boulder Creek 61
Brandt Creek 64
Capilano Creek 69
Chehalis River 72
Chilliwack River 75

Hydrographic Data-Coast Division-Concluded. Page.
Coquihalla River. .. 7s
Fraser River. 81
Hixon Creek..................... 84
Jones Creek . is
Lynn Creek. .. 91
Mesliloet River. .. 94
Nicolum River. 97
Norton Creek... 99

Silver-Pitt Creek . 105
Slollicum River.. 108
South Lillooet River.. 108
Sumallo River.. 111
Young Creek... 115
Vancouver Island District-
Big Qualicum River...................
117
Big Qualicum River..
Campbell River.......
117
Chemainus River... 123
Cowichan River.. 126
Englishtnan River... 129
Haslam Creek 131
Koksilah River............ 134
Little Qualicum River... 137
Nanaimo River. ... 140
Oyster River.............. 143
Puntledge River.... 146
Shawnigan Creek... .. 15°
Sproat River...................... 155
Stamp River.............................. 159
Tsolum River........... . 165
Lillonet District - 16
Cayuse Creek... 171
Cheakamus River......................... 174
Fountain Creek..... 177
Green River...................... 179
Laluwissin Creek.................................... 1..
Lillooet River........... 1くi
Riley Creek................. 190)
Seton Creek..... 10.2
Six Mile Creek.... 197
Soo River........ $2(k)$
Texas Creek..........................
Miscellaneous Meterings- 20.4
Hydrographic Data-Kamloops Divisions.
Kamloops District-
Bolean Creek. 217
Camplecll Creek........ 211
Canyon Croek......... 213
Clearwater River..................21i
Little Clearwater River..... .
Cherry Creek.................
Emsell Crerk, 2.26
Giuichon ('reek....
Heflley Creek (Below Iteflley lake
Heflley (reak (Lower).
Ingram Crock....
Janiemon Cruek. \quad - +1
lotis (reck. 14
Monte C'reck (Div. to Sitmonit Lake) 217

Monte (rack (Aloove Bostore I Divernion). 25.3
Myrti River.... 230
Paul (rock (Bulow l'unl Lako) -is
Ruft. River......
Niwash Creek. \quad 20,

Trumциille River.

Hydrographic Data-Kamloops Division-Concluded.

Okanagan District- Page.270
Adams River
Ashnola Creek 275
Boundary Creek 278
Celeste Creek 281
Crazy Creek 284
Eagle River 287
Granite Creek 290
Kettle River (North Fork) 292
Kettle River (W. Fork) 295
Kettle River (Nicholsons Bdg.) 298
Kettle River (Carson). 301
Niskonlith Creek 306
Okanagan River 308
Similkameen River 311
Shuswap River 314
South Similkameen River 316
Tulameen River 320
Thompson River (Chase) 324
Asheroft Distriet-
Barnes Creek. 327
Bonaparte River 330
Criss Creek 333
Coldwater River 336
Deadman River. 339
Fraser River (Lytton) 342
Hat Creek (Above Hammonds Div.) 344
Nahatlateh River (Upper) 347
Nahatlateh River (Lower) 350
Nicola River (Merritt) 352
Nicola River (Mouth) 355
Spius Creek 358
Thompson River (Spences Bdg.) 361
Miseellaneous Meterings- 363
Hydrographic Data-Nelson Division.
Nelson District-
Cariboo Creek 367
Carpenter Creek 368
Columbia River (Castlegar) 373
Columbia River (Revelstoke) 377
Four Mile Creek (Below Mill) 380
Four Mile Creek (Above Intake) 383
Goat River. 386
Kaslo Creek. 389
Kooskanax Creek 391
Kooten ay River 395
Nakusp Creek. 419
Pend d'Oreille River 422
Sawmill Creek 425
Slocan River 427
Revelstoke Distriet-
Akolkolex River. 431
Beaver River 434
Blaeberry River. 437
Bugaboo Creek. 440
Canyon Creek 442
Columbia River (Golden) 443
Columbia River (Trail) 446
Duteh Creek 449
Field Springs (No. 1). 450
Field Springs (No. 2) 450
Field Springs (No. 3) 450
Findlay Creek 454
Horsethief Creek 457
Hospital Creek (Weir) 458
SESSIONAL PAPER No. 25e
Hydrographic Data-Nelson Division-Continued. Page.
Illecillewaet River (Glacier) 460
Illecillewaet River (Revelstoke) 462
Incomappleux River 466
Kicking Horse River (Golden) 468
Kicking Horse River (Field) 472
Kicking Horse River (No. 2 Tunnel) 474
No. 2 Creek 478
Sinclair Creek 481
Spillimacheen River 482
Toby Creek 486
N. Vermilion Creek 488
S. Vermilion Creek 490
Windermere Creek 492
Cranbrook District-
Bull River. 494
Cherry Creek 497
Elk River 503
Gold Creek 506
Kootenay River 508
Linklater Creek 512
Mark Creek 513
Mud Creek 516
Phillips Creek 518
Rock Creek 521
Big Sand Creek 523
Little Sand Creek 524
St. Marys River. 526
Miscellaneous Meterings 530
Index 531

ILLUSTRATIONS.

Page.
Falls at low water on Little Qualicum river about three miles below Cameron lake. . FrontispieceImpounding dam of Puntledge river hydro-electric installation on the Puntledge river22
near outlet from Comox lake.
Diversion dam showing flume to intake of Puntledge river hydro-electric installation on Puntledge river, about two miles below impounding dam 23
Dam, Barriere River Development, City of Kamloops 37
Exterior, Barriere Hydro-Electric Power House, Municipal Plant for City of Kamloops,
Exterior, Barriere Hydro-Electric Power House, Municipal Plant for City of Kamloops, B.C 37
Interior, Barriere River Hydro-Electric Power House, Municipal plant for City of Kam- loops, B.C 38
Interior, Sub-station, City of Kamloops, B.C 38
Cranbrook District (II). Photograph showing support for cable way and platform attachment for cable car 49
Cranbrook District (III). Photograph showing cable car and method of operating 50
Installing metal faced gauge at metering section on Sumallo river, one mile from mouth 111
Installing metal faced gauge at metering section on Oyster river, Vancouver Island 144
Wooden staff gauge at Sproat lake near outlet attached to rock filled crib 156
Metering section on Sproat river near outlet from Sproat lake 157
Confluence of Myrtle and Clearwater rivers 216
Myrtle river, Dawson Falls 256
Helmeken Falls and Myrtle river canyon 257
Adans lake 270 270
Adams river, automatic stage house 271
Adams river, automatic water stage register 272 272
Nelson District (1) Highway Bridge on Columbia River near Trail, showing metering section on upstream side of bridge 446
Cranbrook District (V)-Bull river looking up from metering section 495
Cranbrook District (I)-Photograph showing Elk river cable station above canyon 503
MAP.

REPORT

OF THE

BRITISH COLUMBIA HYDROGRAPHIC SURVEY FOR 1914

CHAPTER I

REPORT OF R. G. SWAN, B.A.sic. Chief Engineer.

CHAPTER I.

REPORT OF THE CHIEF ENGINEER.

SCOPE OF WORK.

The study of water supply may be said to be carried on for three purposes, viz.: Irrigation, Domestic and Municipal Water Supply, and Water-power development. The agricultural development of the semi-arid sections of the province is dependent on the amount of water available. The rapid settlement of the province, due to new railroad lines, demands a close study of both the quality and quantity of the water supply, for the progress of any industrial centre is practically dependent on the cost of power available for its manufactures and benefits and conveniences for its residents. The variation in the run-off from year to year necessitates a close study of stream flow for a number of years before any estimate can be made of the annual discharge of any stream. In connection with many undertakings, costly mistakes have been made owing to the fact that a careful study of the stream flow was not made before commencing construction operations.

The hydrographic work in British Columbia covers fairly well the southern half of the province, the stations being established on the rivers which are considered of the most importance, and of which the flow is likely to be utilized in the near future.

In the Railway Belt we have co-operated with the Dominion Lands Branch, reporting on all engineering works in connection with irrigation and drainage projects, foreshore applications for leases in connection with quarrying, the removal of sand and gravel, marine docks, and elevators. Numerous surveys have also been made for the setting aside of Dominion lands for the protection of municipal water supply.

The Conservation Commission of Canada has been furnished with all the hydrographic data required in its forthcoming report on British Columbia water-powers. The furnishing of this data has involved a very considerable amount of extra work, not only in having additional copies of the data made available in the form desired by the Commission, but also in having the various field officers of the survey carry on work incident to the particular requirements of the Commission.

The co-operation between the Provincial Water Rights Branch and this Survey has been extensive and of mutual value. The provincial engineers have rendered every reasonable assistance to the engineers of this survey. Many valuable suggestions as to organization and scope of work have been received from the Comptroller of Water Rights, Mr. William Voung, and have been incorporated in our work.

No small amount of time has been given by the chief engineer and the various divisional engincers to free consultation in connection with hydrographic questions that have arisen throughout the province. It is felt that this work, requiring as it does the exercise of much patience and tact, has given permanent satisfaction to the interested portion of the public.

ORGANIZATION.
 DIVISION OF WOHK.

Mention was made in my report for 1913 of the establishment of divisional officers with a view to facilitating the work as much ns possible. The seetion of the province covered by the survey in 1914 was divided into three divisions,
namely, Coast, Kamloops, and Nelson. In establishing divisional officers at Vancouver, Kamloops, and Nelson, the most central points were chosen for the successful working of each division. A glance at the accompanying map will give a better idea than can be given in a general description of the areas covered by each division. In the past the most expensive feature of field work in British Columbia has been that of transportation. In an endeavour to overcome this, each division was again divided into three districts, the work in the districts being in charge of district hydrographers who remain in the field for practically the entire season, thus economizing in time and transportation expenditures.

COAST DIVISION.

C. G. Cline, Division Engineer.

The three districts comprising the Coast division are the Southern, the Vancouver Island, and the Lillooet. A general description of each district will be found on pages 19 to 23 of the division engineer's report.

The Southern district has been in charge of C. G. Cline, B.A.Sc.
The Vancouver Island district has been in charge of C. E. Webb, B.A.Sc. The Lillooet district has been in charge of H. C. Hughes, B.Sc.
Practically all the stations in the Southern district were established under the organization of the Railway Belt Hydrographic Survey, and are consequently fairly well rated. For this reason, Mr. Cline has had sufficient time to generally supervise the work of the other two districts.

Owing to the fact that the Vancouver Island and Lillooet districts comprise. new territory, a great deal of work in the establishment of gauging stations has been necessitated. To relieve this pressing work, Mr. Cotton has assisted Mr. Webb and Mr. Hughes until the latter part of August. By this time the work was well established, and Mr. Cotton having volunteered for active service it was not necessary to fill the vacancy so caused.

The computations for the stations of each district have been made by the engineer in charge of the field work of that district and checked by the division engineer.

Coast Division.-List of Regular Gauging Stations.

SOUTHERN DISTRICT.

Station Number.	Name.	Location.	
${ }^{*} 1060$	Black creek	Near Howe sound	
1063.	Belknap creek	Tp. 7, R. 7, W. 7 M	
1001.	Boulder creek	Tp. 3, R. 27, W. 6 M	
1002	Brandt creek.	Tp. 7, R. 7, W. 7 M	
1021	Brandt creek	Tp. 7, R. 7, W. 7 M	
1023	Capilano creek	Near North Vancouver	
1003	Chehalis river	$\text { Tp. } 4, \mathrm{R} .30, \mathrm{~W}, 6 \mathrm{M}$	
1004	Chilliwack river	Tp. 23, E. C. M	
1005	Coquihalla river	Tp. 5, R. 26, W. 6 M	
1007	Fraser river. .	Tp. 5, R. 26, W. 6 M	"
1009	Hixon creek	Tp. 6, R. 7, W. 7 M	
1064	Hixon creek	Tp. 6, R. 7, W, 7 M	
$1010 .$	Jones creek.	Tp. 3, R. 27, W. 6 M	
$1046 .$		Near North Vancouver	"
$1011 \ldots$	Mesliloet river...	Tp. 7, R. 7, W. 7 M	"
1058	Nicolum river.	Tp. 4, R. 5, W. 6 M	
1013	Norton creek	Tp. 7, R. 7, W. 7 M	
1022	Seymour creek	Near North Vancouver.	
$1017 .$		Tp. 4, R. 5, W. 7 M	
1033	Slollicum river	Tp. 5, R. 28, W. 6 M	
1018			
-1085.	skagit river	4 miles from international boundy	
1056	Sumallo river Sumallo river	Near Railway Belt boundary	
$\begin{aligned} & 1057 . \\ & 1020 . \end{aligned}$	Sumallo river Young creek.		

[^1]
SESSIONAL PAPER No. 25e

Coast Division.-List of Regular Gauging Stations.
VANCOUVER ISLAND DISTRICT.

Nore.-Stations marked with an asterisk (*) have been only recently established and sufficient measurements of discharge have not been taken to deduce a curve and daily discharges. Gauge readings are being systematically recorded and run-off data will be returned in the report for 1915.

Coast Division.--List of Regular Gauging Stations.

LILLOOET DISTRICT.

Station Number.	Stream.	Location	
1045	Bridge river	Thirty milcs from mouth	Prov. Water Dist. 1
1648	Cayuse creek	Above Seton creek.	
1034	Cheakamus river.	Onc mile above mouth	" ${ }^{*}$
1047.	Fountain creck	Above irrigation ditches	".
1035.	Green river	Above Nairn falls	..
1041	Green river	Below Green lake	".
1050.	Laluwissin creek	Above irrigation ditches	" ${ }^{-}$
1038	Lillooet river	Six miles above Lillooet	**
1043	Riley ereck	Above irrigation ditches	".
1049.	Seton creek	Below Seton lake.	" ${ }^{\circ}$
1061	Six Mile creek	Near Mouth	".
1037.	Soo river.....	One mile from mouth	$\stackrel{*}{*}$
1044	Texas creek.	One mile from mouth	." "

Coast Division.-List of Miscellaneous Gauging sitations. SOUTHERN DINTRICT.

Nume.	laxation.			
			Nater Dint	
'Trout-Wunt	Hantagn townsite			
Windermere.	Bidwell buy, Burrurd inlet			
Cupilano lay nory	Intake from Capshno eriwh		\%	

VANCOUVER INI.AND

Ash thooke	Montli Soshe inler	"	$\stackrel{\square}{4}$

KAMLOOPS DIVISION.

E. M. Dann, Divisional Engineer.

The three districts comprising the Kamloops division are the Kamloops, the Okanagan, and the Ashcroft. A general description of each district will be found on pages 35 and 36 of the division engineer's report.

Kamloops district has been in charge of E. H. Tredcroft, C.E.
Okanagan district has been in charge of K. G. Chisholm, B.Sc.
Asheroft district has been in charge of C. B. Corbould, B.A.Sc.
The transportation facilities in this division are much better than in the Coast and Nelson divisions, and Mr. Dann has availed himself of these facilities to assist and supervise the establishment of new stations in the extension of this work.

The computations for the stations of each district have been made by the engineer in charge of the field work of that district, and checked by the division engineer.

Kamloops Division.-List of Regular Gauging Stations.
KAMLOOPS DISTRICT.

[^2]SESSIONAL PAPER No．25e
Kamloops Division．－List of Regular Gauging Stations－Con．
OKANAGAN DISTRICT．

Ncte．－Stations marked with an asterisk（＊）have been only recently established，and－sufficient measurements of discharge have not been taken to deduce a curve and daily discharges．Gauge readings are being systematicallyrecorded． and run－off data will be returned in the report for 1915.

Kamloops Division．－List of Regular Gauging Stations．

ASHCROFT DISTRICT．

Station Number．	Name．	Location．			
2001	Barnes creek	Tp．20，R．24，W． 6 M		Prov．Wuter Dist．	2.
2003	Bonaparte river	Tp．21，R．24，W． 6 M	－ 61	＂	2.
2007	Criss creek．	Tp．22，R．22，W． 6 M．		＂＊	
2006	Coldwater river	At Merritt		＂̈＂＊	3.
2008	Deadman river	Tp．22，R．22，W． 6 M	ロットニッ！	＂${ }^{\prime \prime}$	2.
2012	Fraser river（Lytton）．．．．．．．．	Tp．15，R．27，W． 6 M		－＂ 1	1.
2016	Hat creck（above Hammond＇s diversion）．	Tp．19，R．26，W． 6 M		．．	9
2028.	Nahatlatch river（Upper）．．．．．	Tp．12，R．27，W． 6 M．		．	1
2027.	Nahatlatch river（Lower）．．．．．．	Tp．12，12．27，W． 6 M	－6iber	．．	1
2029.	Nicola river（Merritt）．．．．．．．	At Merritt．．．．iv 6 M			$3 .$
2030.	Nicola river（Mouth）．．	Tp．17，R． $25, ~ W . ~$ Tp． $13, \mathrm{M}$ R． $23, ~ W . ~$ M	111	＂．	3 3 3
2039	Thompson river（Spences Bridge）	Tp．17，12．25，W． 6 M	111	＇	8.

Kamloops Division.-List of Miscellaneous Gauging Stations.

KAMLOOPS DISTRICT

Kamloops Division.-List of Miscellaneous Gauging Stations. OKANAGAN DISTRICT

ASHCROFT DISTRICT.

NELSON DIVISION.

C. E. Richardson, Division Engineer.

The three districts comprising the Nelson division are the Nelson, the Revelstoke, and the Cranbrook. A general description of each district will be found on pages 48 and 49 of the division engineer's report.

Nelson district has been in charge of C. E. Richardson, B.A.Sc.
Revelstoke district has been in charge of J. A, Elliot, B.A.Sc.
Cranbrook district has been in charge of D. O'B. Gill, B.Sc.
A considerable number of gauging stations were established throughout this division by the Provincial Water Rights Branch, and on some of the small overrecorded irrigation streams the hydrographic work is still continued by that branch.

SESSIONAL PAPER No. 25e

Toward the end of October, Mr. Gill left the staff for active service with the Royal Engineers.

Computations for the Nelson and Revelstoke districts have been made by Mr. Richardson and Mr. Elliott, while the computations for the Cranbrook district have been made by Mr. Beeston, office engineer. All work was checked by the division engineer.

Nelson Division-List of Regular Gauging Stations.

NELSON DISTRICT.

Station Number.	Name.	Location.	
3057.	Cariboo creek	Near Burton City	Prov. Water Dist. No. 6
3024	Carpenter creek	Near New Denver	.. ${ }^{\text {Prer }}$.. ${ }^{\text {No. } 6}$
3025.	Carpenter creek.	Near Sandon.....	". .6
3004	Columbia river (Castlegar).	Near Castlegar	$\cdots \quad \cdots 6$
3007.	Columbia river (Trail).	Near Trail.....	$\because .$.
*3066	Duncan creek	Near Howser.	$\because \quad 06$
3027	Four Mile creek (below mill).	Near Silverton.....	5
3028.	Four Mile creek (above intake)	Near Silverton.	6
*3070.	Fry creek.	Near Johnstones Landing 12 miles from Kaslo).	6
*3071.	Glacier creek	Near Howser.	6
3031.	Goat river	Near Erickson8
3029	Kaslo creek	Near Kaslo..	6
3022.	Kooskanax creek	\ear Nakusp.	6
3075 1 vi प	Kootenay river.	Near Bonnington falls	$\cdots{ }^{*}$.. 6
3076.	Kootenay river.	Xear Bonnington pool6
3077.	Kootenay river.	Near Nelson.	.. .6
3014.	Kootenay river.	Near Glade.	$\stackrel{.}{.}{ }^{*}$
*3068	Lardeau river.	Near Howser.	6
3021.	Nakusp creek	Near Nakusp. . .	
3017.	Pend d'Oreille river	Near Waneta.	". ${ }^{-1} 6$
3026	Sawmill creek	Near Vew Denver	6
3018....	Stocan river.	Near Crescent Val	6
*3023.... - ...	Wilson creek	Near Roseberry	6

[^3]Nelson Division.-List of Regular Gauging Stations.
REVELSTOKE DISTRICT.

Note.-Stations marked with an asterisk (*) have been only recently established, and sufficient measurements of discharge have not been taken to deduce a curve and daily discharges. Gauge readings are being systematically recorded, and run-off data will be returned in the report for 1915 .

Nelson Division.-List of Regular Gauging Stations.
CRANBROOK DISTRICT.

Station Number.	Name.	Location.		
3039	Bull river	Near Bull river	Prov. W	No. 7
3038	Cherry creek	Near Wasa.....		
3048	Elk river.	Near Elko.	"	" 7
3047	Gold creek	Near Newgate.	"	
3041	Kootenay river	Near Wardner	. "	
3045	Linklater creek	Near Newgate.	"	
3037.	Mark creek.	Near Marysville	"	" 7
*3056.	Moyie creek	Near Kingsgate.	"	" 7
3044.	Mud creek	Near Elko....	"	" 7
3046	Phillips creek	Near Roosville	"	" 7
3049	Rock creek.	Near Baynes..	"	" 7
3042	Big Sand creek	Near Jaffray.	"	" 7
3043.	Little Sand creek	Near Jaffray	"	" 7
3050....	St. Marys river.	Near Wycliffe	"	7

Nelson Division-List of Miscellaneous Gauging Stations. NELSON DISTRICT

Name.	Location.
Kootenay river..	Near Taghun.................... Prov. Water Dist. No. 6

REVELSTOKE DISTRICT.

Boulder creek.	Tp. 3, R. 27, W. 6 M Near Athalmer$\qquad$$\qquad$ Prov. Water Dist. No. 8 "			
Columbia river				
Field river	Tp 28, R. 18, W. 5 M	"	4	
Horse.	Tp. 26, R. 21, W. 5 M	"	"	8
Hospital.	Tp. 27, R. 22, W. 5 M	"	'	8

CRANBROOK DISTRICT.

EXPLANATION OF TABLES.

For each regular gauging station the following data are given so far as available:-

1. Description of station.
2. Table of discharge measurements.
3. Daily gauge-height discharge table.
4. Tables of monthly discharges and run-off.

Under the description of stations is given the location, general information regarding the equipment, and the time the station has been maintained. Regarding stations established this year, is given briefly, the source, description of drainage area, and present uses of the river. In addition, the description covers ice conditions and their effect on the relation of gauge height to discharge.

The table of discharge measurements gives the number of measurements made during the year, the date measurement was made, name of hydrographer, the width and area of the cross section and the discharge in cubic feet per second. The zero of the gauge is placed in an arbitrary datum, and has no relation to the zero flow or bed of the river. In general, the zero is located below the lowest known flow.

The daily gauge-height discharge table gives the daily elevation of the surface of the river above the zero of the gauge, and the daily diseharge in cubie feet per second for the observed gauge height.

In the table of monthly discharge the column headed "Maximmm" gives the mean flow for the day when the mean gauge height was highest. Is the gange height is the mean for the day, there may have been short periods when the gauge height and corresponding discharges were higher than given in this cohmm. Likewise in the column of "Minimmm" the quantity given is the mean flow for the day when the mean gange height was lowest. The eolumn heated "Mean" is the average flow for each seeond during the month. On this the computations for the remaining cohmms are based.

DEFINITIONS OF TERMS.

The volume of water flowing in a stream called the run-off or "discharge" is expressed in various terms, each of which has become associated with a certain class of work. These terms may be divided into two groups: (1) Those which represent a rate of flow, as second feet, gallons per minute, and run-off in second feet per square mile; and (2) those which represent the actual quantity of water, as run-off in depth in inches and acre feet.

The units used in this report are second-feet, second-feet per square mile, run-off in inches, and acre-feet.
"Second-foot" is an abbreviation for a cubic foot per second (c.f.s.) and is the rate of discharge of water flowing in a stream 1 foot wide, 1 foot deep, at a rate of 1 foot per second. It is generally used as a fundamental unit from which others are computed by the use of the factors given in the following table of equivalents.
"Second-feet per square mile" is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the run-off is distributed uniformly both as regards time and area.
"Run-off in inches" is the depth to which the drainage area would be covered if all the water flowing from it in a given period were conserved and uniformly distributed on the surface. It is used for comparing run-off with rainfall, which is usually expressed in depth in inches.
"Acre-foot" is equivalent to 43,560 cubic feet, and is the quantity required to cover an acre to the depth of 1 foot. It is a common unit of measurement of quantity, and is generally used in connection with storage.

CONVENIENT EQUIVALENTS.

The following is a list of convenient equivalents for use in hydraulic com-putations:-

1 second-foot equals $35 \cdot 71$ British Columbia miner's inches.
1 second-foot equals $6 \cdot 23$ British imperial gallons per second; equals 538,472 gallons for one day.

1 second-foot equals 7.48 United States gallons per second; equals 646,272 gallons for one day.

1 second-foot for one year covers 1 square mile $1 \cdot 131$ feet or $13 \cdot 572$ inches deep.

1 second-foot for one year equals $31,536,000$ cubic feet; equals 724 acrefeet.

1 sccond-foot equals about 1 acre-inch per hour.
1 second-foot for one day equals 86,400 cubic feet; equals 1.983 acre-feet.
1 second-foot for one 28 -day month equals $55 \cdot 52$ acre-feet.
1 second-foot for one 29-day month equals 57.50 acre-feet.
1 second-fout for one 30-day month equals $59 \cdot 48$ acre-feet.
1 second-foot for one 31-day month equals 61.46 acre-feet.
1 second-foot for one 28 -day month covers 1 square mile $1 \cdot 041$ inches deep.
1 second-foot for one 29 -day month covers 1 square mile $1 \cdot 079$ inches deep.
1 sceond foot for one 30-day month covers 1 square mile $1 \cdot 116$ inches deep.
1 second-foot for one 31-day month covers 1 square mile $1 \cdot 153$ inches deep.
100 British imperial gallons per minute equals 0.268 second-feet.
100 United sitates gallons per minute equals $0 \cdot 223$ second-feet.
$1,000,000$ British imperial gallons per day equals 1.86 second-feet.
$1,000,000$ United States gallons per day equals $1 \cdot 55$ second-feet.
$1,000,000$ British imperial gallons equals $3 \cdot 68$ acre-feet.

SESSIONAL PAPER No. 25e
$1,000,000$ United States gallons equals $3 \cdot 07$ acre-feet.
$1,000,000$ cubic feet equals $22 \cdot 95$ acre-feet.
1 acre-foot equals 43,560 cubic feet.
1 acre-foot equals 271,472 British imperial gallons.
1 acre-foot equals 325,850 United States gallons.
1 inch deep on 1 square mile equals $2,323,200$ cubic feet.
1 inch deep on 1 square mile equals 0.0737 second-foot per year.
1 acre equals 43,560 square feet.
1 cubic foot equals $6 \cdot 23$ British imperial gallons.
1 cubic foot equals $7 \cdot 48$ United States gallons.
1 cubic foot of water weighs $62 \cdot 4$ pounds.
1 horse-power equals 550 foot-pounds per second.
1 horse-power equals 746 watts.
1 hores-power equals 1 second-foot falling $8 \cdot 80$ feet.
To calculate water power quickly:
sec. $-\mathrm{ft} . \times$ fall in feet
11
of theoretical power.

ACCURACY AND RELIABILITY OF DATA.

Practically all discharge measurements made under fair conditions are well within 5 per cent of the true discharge of the time of observation. Inasmuch as the errors of meter measurements are largely compensating, the mean rating curve, when well defined, is much more accurate than the individual measurements.

In order to give information regarding the probable accuracy of the computed results, an accuracy column is inserted in the monthly discharge table. Accuracy "A" indicates that the mean accuracy is probably accurate within 5 per cent; " B " within 10 per cent; " C " within 15 per cent; " 1 " within 15 to 25 per cent. Special conditions are covered by foot notes.

The accuracy in many cases is not as great as we would wish, the area covered is very large, and a large number of the stations have been maintained for less than a year. Future observations may render necessary a cortain amount of revision of the data here supplied.

The topographic surveys of the province are very incomplete, and the drainage areas are, in many cases, only approximate; consequently the figures showing discharge per square mile, and run-off depth in inches may he somswhat in error.

METHODS OF MEASURING STREAM FLOW.

It is not intended to enter into a discussion of these metheds in the report. The methods used are practieally identical with those used by the II ater Resourees Branch of the United states Geological survey, recognzed the most up-to-date method of stream flow measurement. The text of "River Diselarge" by Holt and (irover amply illustrates the methods employed.

Thanks are due to Mr. (i. R. (i. Comway, of the British Columbat Elowtrie Raikay Company; Mr. R. F. Hayward, of the Westorn Camada Power Company, Vancouver; and Mr. Win. Voung, Comptrollor of Water lights, Department of Lamds, Victoria, B.C.. for stream flow and other data suhmated with this report. Thanksure also due Mr. F. II. Peters, Commosoner of lomastion, Department of the Interior, Calgary, by whose eourtesy our cerrentmeters have been rated each year.

REPORT

 OF THE
BRITISH COLUMBIA HYDROGRAPHIC SURVEY FOR 1914

CHAPTER 2

- Coast Division

REPORT OF C. G. CLINE, B.A.Sc., D.L.S.
Division Engineer.

CHAPTER II.

COAST DIVISION.

TERRITORY.

The boundaries of the Coast division follow the lines of the watersheds as much as possible in order to facilitate the work of stream measurement. The districts into which the Coast division has been divided follow the same plan. For this reason it is rather difficult to exactly outline the boundaries of the division and districts.

The Coast division includes the southwestern portion of British Columbia as far as North Bend on the Canadian Pacific railway, and Lillooet on the Pacific Great Eastern Railway; It also includes the whole of Vancouver island. All stations numbered between 1,000 and 1,065 are in the Coast division. Reference to the key map will show the general extent of the territory covered.

USES OF WATER.

In this division the chief use to which water may be put is for power, and a large number of streams are commercially valuable for this purpose only.

PRESENT WATER-POWER DEVELOPMENTS.

A small portion only of the power available is at present developed, and a list of the streams on which water power is being developed is included in this report. Some of these plants are described herein, but most of the descriptions were given in the report for 1913. In such cases the description is not repeated, but proper references are given.

POSSIBLE WATER-POWER DEVELOPMENTS.

In last year's report a list was given of a number of streams with water-power possibilities, supplemented in most cases by a general description of a practicable scheme of development. In this report, this list is reprinted and amplified, but descriptions are not reprinted; proper references are, however, inserted. Streams not included in last year's list are described in detail herein. This list is being made as complete as possible as new ground is covered from year to year.

MUNICIPAL SLPPLI.

Every city and mumicipality of any size requires a good supply of clear, uncontaminated water for domestic purposers. At presint regular measurements are being made on a number of streams used in this way, and a list of these is included herein. As the country develops the mumber of streams required for such a purpose will maturally incrase.
REOLAMATION.

In certain parts of the division there are tracts of lamd, whels, though they are at present of comparatively little value for ugricultural purposes could be rechamed at a reasonable expense. In eonstructing a system of dyhes and

25e- $3 \frac{1}{2}$
making channel improvements to reclaim such land, there is generally some stream which must be controlled. Accurate records of the run-off of such rivers is of prime importance. A number of these streams are being gauged at present a list of which is appended.

IRRIGATION.

In the vicinity of Lillooet it is necessary to irrigate the farms, and water from a number of streams is used for this purpose. A list is here given of the irrigation streams on which regular measurements are being made during the irrigation season, and includes a number of streams which are not used for irrigation at present, but which may be used at some time in the future, when the necessary engineering works have been constructed.

LOCATION OF STATIONS.

Gauging stations are generally established close to possible future points of diversion for water supply, irrigation or power. On some streams, however, the desired location is so difficult of access that the cost of maintaining a gauging station would be prohibitive; in such cases, stations are established at more convenient places and from the records so obtained the stream flow at the desired site is estimated.

PRECIPITATION AND TEMPERATURE.

Records have been prepared showing the monthly precipitation and the mean monthly temperatures for 1914 at the various stations, and the variation from the average where the records have been kept for a sufficient number of years to render these figures of any value is also given. A study of these tables will show the general effect of these important factors on the flow of the streams, and the figures for the variation from the average for a number of years will indicate to some extent, the general characteristics of the stream flow for 1914 as compared with other years.

COMPARISON OF STREAMI MEASUREMENTS.

A table is also included, giving the monthly discharges of a number of gauging stations for the past two or three years, thus providing a ready means for the comparison of yearly run-off. The continuance of the stream measurement work will make comparisons of this nature increasingly valuable from year to year.

One of the outstanding features in 1914 was the very heavy freshet which, with the exception of the Fraser river, occured early in January on nearly all the streams in the Coast division. A winter flood of this nature is not an uncommon occurrence in this part of the country, although it is not usually so great as during this past year.

DISTRICTS.

The territory comprising the Coast division has been divided into three districts. The Southern district includes that portion of the Railway Belt which lies in the Coast division, and some contiguous watersheds not included in either of the other districts. The Lillooet district includes the streams along the route of the Pacific Great Eastern railway from the head of Howe sound to the vicinity of Lillooet. Beyond Lillooet the territory is included in the Kamloops division. Vancouver island constitutes a district by itself.

SESSIONAL PAPER No. 25e

Work was started in the Southern district in the Railway Belt late in the fall of 1911, so that on some of the streams there are now three years' complete measurements-1912, 1913, and 1914. The monthly and yearly discharges at these stations are tabulated in this report for the purpose of comparing the flow for 1914 with that of the previous two years. Such comparisons should be of considerable value in considering streams on which there are measurements for one year only. The work in the Southern district was extended during 1913 and 1914 to include a number of streams outside the Railway Belt.

Work was started in the Lillooet district in the fall of 1913, so that on some of the streams there is one year's complete records. A number of other stations were established in 1914, and the list will probably be somewhat increased in 1915. Transportation conditions in this district have until recently been very poor, and on that account the work has been delayed. The completion of the Pacific Great Eastern railway from Squamish to Lillooet will greatly better conditions during 1915, and will ensure a much greater number of measurements in a shorter time.

On Vancouver island, work was started by the engineers of this survey in the spring and summer of 1914. On some of the streams the stations had already been established by the engineers of the Provincial Water Rights Branch, and in such cases records are available for a whole year. Some of the stations were not established until after the spring freshet, so that the rating curves are not well defined for the higher stages; this will be remedied during 1915.

General descriptions have been prepared by the engineers in charge of each district, covering more especially the local conditions and particulars of the work peculiar to each district.

SOUTHERN DISTRICT.

The general characteristics of the Southern district are determined mainly by the mountainous nature of the country and its proximity to the Pacific ocean.

The commercial and industrial activities of the cities and harbours of the Burrard peninsula have been developed within a few miles of large areas of virgin forests and snow-capped mountains. The settlement is confined mainly to the Fraser valley, and the valleys of the tributary streams are ahmost entirely unoccupied. The transportation facilities in the valleys are very poor, and it is hard to find any one to read the ganges, and it is both difficult and expensive to maintain gauging stations except near the mouths of these streams.

The influence of the mountains is shown in the local variations in the precipitation. In the lower Fraser valley the average rainfall is about 60 inches. At Ladner and Stevestem, which are not near the liills, it is only 40 inchess or less. It increases rapidly as the hills are approached, sometimes doubling in amount within a few miles. At Coquitlam junction the average is ahout 70 inches, while at lake Coquitam, some 10 miles farther north, the a verage is about one humdred and fifty. This is the largest aserage precipitation recorded at any of the stations, though even this amount is probably exceeded on some of the mountains.

The effeet of the orean is seen in the milaness of the climate in the lower Fraser valley. Near seatevel there is very hotle iee and suow is winter, abd the summer is not exeedingly hot, the seasomal variation at any one phace bemg comparatively smath. There is, however, a considerable difference of tempersture at different attitudes, with the result that thomgh there is hotle or no stow at sea-level, there is a very hezry fall of smow mong the hills. Wh the momentan peaks snow remains nestly all smmer.

A reference to the tables of precipitation and temperature for the Southern district will show more definitely the special characteristics of the weather for 1914. The stations near the top of the tables are the ones nearest the coast, while those near the bottom are the ones farther east. The first four stations, Britannia Beach, Vancouver, Steveston, and Ladner are all on the coast, with Britannia Beach farthest north and Ladner farthest south. One set of tables gives the total monthly and annual precipitation and the mean monthly and annual variation from the corresponding averages for the last ten years or more.

This second set of tables shows how the precipitation and temperature for 1914 compared with the average. On the whole, the year was somewhat drier and considerably warmer than usual. The most unusual occurrence was the extra heavy precipitation in January, accompanied by warm weather. This caused a very large run-off during the month, and as a result the amount of snow on the hills was considerably reduced. The warmer weather during the spring and summer resulted in an earlier melting of the snow than usual, with a consequent earlier low-water period toward the end of the summer, while on the other hand the heavier precipitation of September and October ended the lowwater stage at an earlier date than usual. The warm weather of November was followed by a cold snap in the latter part of December.

The effect of these variations in the weather is seen in the flow of the streams, the table of comparison of monthly discharges gives the average monthly discharges for certain streams for the last three years. It shows a larger discharge for 1914 during January and also in March and April. The flow fell off for July, and the summer low-water came in August and early in September. There were freshets in September and October and high water in November. Towards the end of December the streams were low. For the whole year, the warmer weather caused a larger run-off than usual on the streams which have very extensive snowfields; on the others, the lighter precipitation was reflected in the somewhat smaller discharge. The Fraser river, having such an extensive drainage area, responds only to variations common to the greater part of the country through which it flows.

LILLOOET DISTRICT.

This district includes the country along the Pacific Great Eastern railway from Squamish to Lillooet. Squamish is situated on tidewater at the head of Howe Sound. Lillooet is on the Fraser river, 120 miles inland, and at an elevation of 850 feet. Midway between the two is the Lillooet river, with a broad valley known as Pemberton Meadows.

From Squamish, the railroad climbs up through the canyon of the Cheakamus river to the lakes at the summit, rising 2,000 feet in 38 miles. There are four lakes at practically the same elevation, and they extend about S miles. Green lake is the largest and discharges through Green river into the Lillooet river, falling 1,400 feet in 14 miles. Nairn falls is located about 8 miles from the mouth, and has a drop of some two hundred feet in a quarter of a mile. Soo river and Sixmile creek empty into Green river above the falls.

The Lillooet river flows for a considerable distance through the Pemberton Meadows, and enters Lillooet lake just below the mouth of Green river. During this part of its course the Lillooet river has very little fall, it consequently overflows its banks, flooding most of the bottom land in the meadows. There is a large area of very fertile land in the Lillooet valley, and when some system of controlling the river is put in operation it should develop into a very important agricultural district.

SESSIONAL PAPER No. 25e

The town of Lillooet is on the west side of the Fraser river, 3 miles east of Seton lake. It has a population of about 600 and is situated in quite an extensive farming district. The climate is very dry, so that irrigation is absolutely necessary for the production of crops. The large amount of bright sunshine and warm weather during the summer, combined with the general fertility of the soil, produces very rapid growth when the necessary moisture is supplied by irrigation. Measurements are being made on a number of irrigation streams in this vicinity:

VANCOUVER ISLAND DISTRICT.

The Vancouver Island district comprises the whole of Vancouver island. The island has an area of approximately 12,900 square miles, being some 260 miles in length, with an average width of 50 miles. Vancouver island lies off the southern coast of British Columbia, and trends N. $50^{\circ} \mathrm{W}$. along the coast.

Vancouver island is divided into two principal drainages, those of the east and west coast, by the Beaufort range of mountains. This range extends from a group in the south of which mount Arrowsmith at an altitude of $\overline{5}, 900$ feet predominates to a much larger group in the north, several of whose peaks rise over 7,000 feet. Glaciers are to be found on several of the higher peaks. With the mountainous interior and a comparatively narrow coastal plane, the rivers, for the most part, are short and have considerable fall. This is most adrantageous for hydro-electric developments. The streams which do not rise from lakes are mostly flashy.

The climate is moderate, the mean temperatures of each month varying from a minimum of about 30 degrees to a maximum of 65 degrees, except in the higher altitudes. The precipitation is least on the southeast coast, averaging some 30 inches. It increases rapidly especially up to the west coast, to a precipitation of about 130 inches at the north end of the island. The rainfall is usually least in the months of July and August and greatest in the month of November in all parts of Vancouver island.

The accompanying tables show the temperatures and precipitation at five different localities for the year 1914. Tables giving the monthly variation, for 1914, from the monthly average temperature and precipitation for the past ten years or more, are also shown. From these tables it is seen that the temperature on the whole island was above the average, while the precipitation was also higher.

The means of transportation are improving rapidly. The Esquimalt and Nanaimo Railway, which has been operating between Vietoria, Namamo, and Port Alberni, opened its extension from Parksville to Courtenay in August. 1914. The Canatian Northern Pacific railway lime from Victoria to Aberni is nearing completion and a line is located as far as C'ampbell river. The Cireat Northern operates a line on the saanich peninsula from sidney to Victoria. The Canadian Northem also has a line under construction from Vietoria to Patricia bay on the Saanch peninsula. There is a good coastal sorvice mamtained by several navigation companies. These, with the excellent government highways, will greatly assist in the further development of Vancouver island.

The excetlent agrieultural possibilitios on the ishand, whe to the richaes of the soil and the abumdant ranfall, is well exemplified by the fine farms in the ohder settlements of the samich, Cowiehan, and Comox distriets.

Vancouver ishand is rich in mineral weath. The large coal depuats in the vieinity of Nanamo and Cumberland are all being extensively mand. Wh the west conast, valuable deposits of gold and eopper have been formal. C'ement is manufactured extensively in the Samaidy district. Cood pottery day is foumd near Vietoria; pottery to the vahe of $\$ 90,000$. and bricks to $\$ 110,000$ were manufactured in 1913. Two powder factories have plants on the nsland.

The timber wealth of the island is its greatest asset. Considerable timber has already been cut, but the lumber industry may still be considered in its infancy.

The British Columbia Electric Railway Company installed the first hydroelectric plant on Vancouver Island on the Goldstream river in 1898, about 15 miles from Victoria. This plant at present develops 3,000 horse-power. There are four units: two $350 \mathrm{k} . \mathrm{w} .$, one $500 \mathrm{k} . \mathrm{w}$., and one $1,000 \mathrm{k} . \mathrm{w}$. Current is generated at 700 volts, and is stepped up to 17,500 volts. The development consists of one pipeline of 33 inch pipe, 4,000 feet long, branching into 30 inch pipes at the back of power-house. The head is 680 feet.

Another more recent development of the British Columbia Electric Company is at the mouth of Jordan river, where 25,000 horse-power is developed from three units: two 6,000 horse-power and one 13,000 horse-power. The plant works under a high pressure head of 1,145 feet. The pipeline for the first two units ($4,000 \mathrm{k.v}$. a. generator, and Doble wheel) is 2,600 feet in length. It is 50 inches in diameter at intake, and Ys to 36 -inch pipes, which are reduced to 30 inches at the power-house. The third unit ($8,000 \mathrm{k} . \mathrm{v} . \mathrm{a}$. generator, and Pelton Doble wheel) uses a 54 -inch pipe at the intake, reduced to 44 inches at the power-house. Current is generated at 2,200 volts and is stepped up to 60,000 volts.

Both these plants are used to supply light and power in the city of Victoria and surrounding district.

Impounding dam of Puntledge River Hydro-Electric Installation on Puntledge river near outlet rom Comox lake.

The Puntledge River Hydro-Electric Installation, owned by the Canadian Colleries (Dunsmuir) Limited, is located on the Puntledge river about 6 miles above Courtenay. The plant is operated under a static head of 350 feet. The pipeline is 10,500 feet in length. The line consists of a single 8 foot wooden stave pipe from forebay, to a Y for two 6 foot pipes; only one is used at present and leads to a Y from which two 50 inch pipes carry water to the power-house.

Diversion dam showing flume to intake, of Puntledge River Hydro-Electric Installation on Puntledge river about two miles below impounding dam.

Present installation developing 12,500 horse-power, consists of one-half of ultimate plant. The generators are $4,400 \mathrm{k}$. v. a., 13,200 volt machines. The turbines are of Francis reaction type with single rumner on horizontal axis.

This plant supplies light and power for the mines and the several towns of Cumberland, Bevan, Union Bay, and Courtenay.

The Campbell River Power Company have made extensive surveys in view of a large development at the falls on Campbell river, about 7 miles from the mouth.

The Ritchie Agnew Power Company contemplates the installation of a plant to develop about 35,000 horse-power on the stamp river at stamp falls, about 8 miles from Alberni.

There are many other streams on which surveys have heen made, and which offer good possibilities for hydro-electric development, notably, Little ()ualiexm river, Nanaimo river, and Sproat river.

Owing to the abundant ramfall, practically no water is required for imgation. The uses of water on Vanconver island are principally contined, therefore, to municipal water smpply and power development.

The numerous large lakes which are located thronghout the island afford a cheap means of assembling the timber ent from their shores, as well as groul storage for large developmonts. Many ranchers have small hydrendectrie plants to supply light and power for their own use. This sa made practionble ly the many small streams coming from the halls and cheap developments are possible. For the mamfacture of electric chemieals, Vancomer island oftions several exechent developments. On Cowiehan river, the (iowermment hase a large fish hatchery, and the Cowichan river has leeen reserved for lishing.

Stream mensurements were started in May, 1911, on I:meone iskmel, by the British Cohmbia Itydrographie survey. Previons to that time, work hat been done by the Provincial Water Rights Branch, Sisteen regalar metermg
stations were maintained and rated during the year. The Provincial Water Rights Branch gave every assistance possible and supplied much valuable data on many of the streams on which they had already done work.

During 1915 it is hoped to extend the work to the west coast and north end of the island, besides maintaining the stations already established.

DEVELOPED WATER-POWERS.

These plants are described either in this report or in the report for 1913, i.e., Water Resources Paper No. 8. This list will show where these descriptions can be found. The measurements taken in 1914 are given in the 1914 report.

SOUTHERN DISTRICT.

Coquitlam	1913 report (Water Resources Paper No 8).		
Gilley creek.	1913	،	
Power river	1913	"	"
Stave river	1913	"	

LILLOOET DISTRICT.
McGillivray creek.................. 1914 report (Water Resources Paper No. 14) Seton creek.

VANCOUVER ISLAND.

Pun	1914 report (Water Resources Paper No. 14).		
Jordan river	1914		
Goldstream river	1914	"	

POSSIBLE WATER-POWER DEVELOPMENTS.

A general description of each possible development has been given either in this report or in the report for 1913. This list will show where these descriptions may be found. The stream-flow data are included in the 1914 report.

SOUTHERN DISTRICT.

Chehalis river	1913		${ }_{6}$ Paper No. 8).	
Chilliwack river	1913	'6		
Coquihalla river	1913	/6	6	
Jones Creek	1913	*	6	
Mesliloet (Indian river)	1913	6 6	6	
Mesliloet river tributaries	1913	6	6	
Nicolum river	1914	6	6	
North Lillooet river	1913	6	6 6	
Rainbow creek	1913	"	6 6	
Raven creek.	1913	6	6	
Samallow river	1914	6	"	
Silver-Hope creek	1913	"	6	
Silver-Pitt creek	1913	"	'6	
Slollicum creek	1913	"	6	
South Lillooet river.	1913	/6	6	

LILLOOET DISTRICT.

Bridge rive	. 1913 report (Water Resourses Paper No. 8).				
Cheakamus river	. 1913				
Cayuse creek	1914	"		"	14
Green river	. 1913	"		'6	
Little Blackwater river	1914	"	(Seton)	"	
	1914	"			

VANCOUVER ISLAND.
Campbell river. 1914 report (Water Resources Paper No. 14).
Stamp river at falls. 1914
Little Qualicum river............... 1914
Nanaimo river. 1914
Sproat river. 1914
Stamp river at Great Central lake 1914

66	66
66	66
66	66
66	66
66	66

IRRIGATION STREAMS.

A general description of each stream has been given either in this report or in the report for 1913. This list will show where the description may be found. The measurements made in 1914 are given in the 1914 report.

SOUTHERN DISTRICT.
Silver-Hope creek, 1913 report. (Water Resources Paper No. 8).

LILLOOET DISTRICT.

Cayuse creek	1914 report (Water Resources Paper No. 14)		
Fountain creek	1914	"	"
Laluwissin creek	1914	"	"
Riley creek	1914	"	"
Texas creek.	1914	"	"

VANCOUVER ISLAND

No irrigation.

MUNICIPAL WATER SUPPLY.

A general description of each stream has been given either in this report or in the report for 1913. This list will show where these descriptions may be found. The measurements for 1914 are given in the 1914 report.

```
AOUTHERN DISTRRICT
```

Capilano ereek	1913 report (Water Resom	Paper No
Lymm ereek.	1913	
Seymour creek	1913	.
Silver-Pitt creek	1913	"
Trout Creek	Miseellaneous measurements report.	only-1914
Windermere creek	Miseellancous measurement report.	only-1914

VANCOUVER ISLAND.

Shawnigan creek.
1914 report.
Soo river........................ Miscellaneous measurements only.

RECLAMATION AND DRAINAGE

The data for 1914 of the streams which are of interest in connection with reclamation and drainage projects is given in this report and the description in the 1913 report.

SOUTHERN DISTRICT.

Chilliwack river.
Silver-Pitt creek.

LILLOOET DISTRICT.

Lillooet river.
Total Monthly Precipitation, Southern District, 1914.

Locality.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
Britannia Beach	16.85	3.80	5-86	5-32	1.48	2.08	0.48	0.77	8.25	14.42	14-94	$2 \cdot 45$	76.70
Vancouver.	$10 \cdot 56$	4.87	$3 \cdot 33$	3.28	0.74	3.58	0.42	0.75	$6 \cdot 86$	$6 \cdot 37$	$10 \cdot 18$	$2 \cdot 84$	53.78
Steveston	8.41	$2 \cdot 10$	1.44	2.46	0.53	$2 \cdot 44$	$0 \cdot 13$	$0 \cdot 37$	$3 \cdot 60$	$4 \cdot 41$	$6 \cdot 17$	$2 \cdot 59$	$34 \cdot 65$
Ladner.	$5 \cdot 45$	$2 \cdot 60$	1.90	1.65	$0 \cdot 45$	1.90	$0 \cdot 35$	$0 \cdot 20$	$2 \cdot 65$	$2 \cdot 60$	$6 \cdot 35$	0.95	$27 \cdot 05$
Buntzen lake	$19 \cdot 29$	$7 \cdot 82$	8.04	$5 \cdot 08$	$3 \cdot 38$	$4 \cdot 69$	0.80	1.13	10.99	$15 \cdot 25$	$18 \cdot 90$	$3 \cdot 59$	98.96
Coquitlam lake	$26 \cdot 51$	$9 \cdot 54$	$10 \cdot 00$	6.92	$4 \cdot 71$	$5 \cdot 26$	0.57	$1 \cdot 30$	13.85	$20 \cdot 27$	$25 \cdot 37$	$5 \cdot 28$	$129 \cdot 58$
Coquitlam junction.	$13 \cdot 21$	$5 \cdot 69$	$4 \cdot 09$	$4 \cdot 70$	$1 \cdot 36$	$4 \cdot 19$	0.77	$0 \cdot 88$	$7 \cdot 98$		12.09	$3 \cdot 23$	
New Westminster.	9.95	4.78	$3 \cdot 27$	3.95	1.04	$4 \cdot 11$	0.56	$0 \cdot 68$	$5 \cdot 57$	$5 \cdot 62$	10.95	2.44	52.92
Stave Falls.	12.22	4.72	$5 \cdot 60$	7.49	$2 \cdot 65$	$4 \cdot 18$	0.87	$0 \cdot 54$	$9 \cdot 86$	$7 \cdot 63$	$15 \cdot 20$	$3 \cdot 13$	74.09
North Nicome	17.01	4.44	$5 \cdot 09$	$5 \cdot 00$	$2 \cdot 61$	3.08	$0 \cdot 08$	$0 \cdot 51$	$8 \cdot 15$	6.45	$12 \cdot 64$	$2 \cdot 70$	67.76
Agassiz..	13.96	4.06	$3 \cdot 12$	$2 \cdot 94$	$3 \cdot 55$	$5 \cdot 18$	$0 \cdot 15$	$0 \cdot 60$	6. 29	$7 \cdot 53$	14.72	0.53	$62 \cdot 63$
Jones creek	$15 \cdot 19$	$4 \cdot 46$	$8 \cdot 87$	6.22	$7 \cdot 15$	$5 \cdot 21$	1.06	0.89	$7 \cdot 01$	$5 \cdot 50$	14.75	$2 \cdot 31$	78.62
Chilliwack	14.68 10.94	$3 \cdot 27$ $4 \cdot 31$	$4 \cdot 49$ $5 \cdot 01$	$3 \cdot 94$ $3 \cdot 62$	1.97 3.10	3.14 1.96	0.17 0.11	0.45 0.79	$6 \cdot 35$	4.71 3.83	9.87 10.25	2.08 1.70	$55 \cdot 12$
Hope			$5 \cdot 01$	$3 \cdot 62$	$3 \cdot 10$	1.96	$0 \cdot 11$	$0 \cdot 79$			10.25	1.70	

Mean Monthly Temperature, Southern District, 1914.

Locality.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
Britannia Beach	38.8	38.9	$46 \cdot 3$	49.2	55-8	$55 \cdot 0$	59.8	$59 \cdot 6$	53.9	53.5	$42 \cdot 2$	$37 \cdot 0$	$49 \cdot 2$
Vancouver..	40.5	38.7	$44 \cdot 9$	$50 \cdot 6$	$56 \cdot 4$	58.7	63.5	61.8	54.8	52.5	44.5	36.4	$50 \cdot 3$
Steveston	40.6	$38 \cdot 0$	$42 \cdot 6$	47.8	$53 \cdot 1$	57.1	61.6	58.8	53.8	$50 \cdot 6$	$43 \cdot 8$	$34 \cdot 2$	$48 \cdot 5$
Ladner.	43.4	38.8	$45 \cdot 1$	$50 \cdot 4$	$55 \cdot 0$	56.8	62.5	$60 \cdot 4$	55.9	$54 \cdot 2$	$45 \cdot 1$	$34 \cdot 5$	$50 \cdot 2$
New Westminster	38.8	$37 \cdot 7$	$44 \cdot 7$	$50 \cdot 6$	$57 \cdot 4$	$59 \cdot 3$	64.1	63.5	$55 \cdot 0$	53.1	$43 \cdot 2$	$35 \cdot 1$	$50 \cdot 2$
Stave Falls.	38.2	$36 \cdot 1$	$43 \cdot 4$	49.7	$58 \cdot 1$	60.5	$65 \cdot 9$	$64+3$	55.4	53.0	43.6	33.7	$50 \cdot 2$
North Nicomen	$38 \cdot 6$	$38 \cdot 1$	46.0	52.0	$58 \cdot 8$	59.9	$64 \cdot 7$	$64 \cdot 4$	$55 \cdot 2$	53.5	$44 \cdot 1$	$34 \cdot 6$	$50 \cdot 8$
Agassiz.	38.0	$39 \cdot 6$	$45 \cdot 0$	51.6	$56 \cdot 3$	$57 \cdot 2$	$62 \cdot 1$	63.0	$54 \cdot 2$	50.4	$42 \cdot 6$	35.2	$49 \cdot 6$
Jones lake.	30.0	29.0	34.0	$40 \cdot 0$	$50 \cdot 0$	51.0	$60 \cdot 0$	61.0	$50 \cdot 0$	$45 \cdot 0$	$35 \cdot 7$	$25 \cdot 5$	$42 \cdot 6$
Chilliwack	36.9	$37 \cdot 3$	$45 \cdot 1$	51.2	$54 \cdot 8$	58.3	63.2	61.7	54.7	52.0	$43 \cdot 3$	$34 \cdot 1$	$49 \cdot 4$
Hope.	33.6	$34 \cdot 2$	$42 \cdot 4$	$51 \cdot 2$	$56 \cdot 5$	$58 \cdot 6$	$65 \cdot 3$	$64 \cdot 7$		$50 \cdot 4$	40.1	29.8	

SESSIONAL PAPER No. 25e

Difference from Average Precipitation, Southern District, 1914.

(Difference of Total for month from monthly average for previous ten years or more.)

Locality.	No. Records	Jan.	Feb.	Mar.	Apr.	Мау.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year
Vancouve	14	2.38	-1.91	-1.15	$1 \cdot 14$	2.74	0.77	-1.20	-1.04	2.54	0.63	-1.27	-4.72	-6.57
Stevestor	14	2.92 0.66	-1.79 -0.60	-1.00 -1.11	1.58 0.16	-1.73 -1.87	0.55 0.24	-0.81 -0.78	-0.77 -0.95	1.12 -0.11	-1.06	-0.87 -0.19 0	- 2.72	-3.46
		0.66		-1.11	$0 \cdot 16$	-1.87	$0 \cdot 24$	-0.78	-0.95	-0.11	-1.51	$0 \cdot 19$	-3.95	- 9.95
Coquitlam lake														4.1
Coquitlam Junctio														
New Westminster.	${ }_{2}^{27}$	1.38	-0.32	-1.26	$0 \cdot 63$	-1.18	0.98	-0.75	-1.28	1.94	0.22	1.82	-5.57	-3.39
North Nicom	${ }_{24}^{21}$	8.25		-0.95			-0.99	-1.86	-1.75	3.52	-1.02	$0 \cdot 42$	-6.97	-6.95
Agassiz...	${ }_{11}^{24}$	7.16 6.16		-1.89 0.06	-1.23 0.23		0.36 0.00	-2.15 -1.56	-2.15	1.63	1.73	5.81	-6.84	-0.09
Chilliwac	11	6.16	-3.10	0.06		-1.72	$0 \cdot 00$	-1.56	-1.65	$2 \cdot 25$	-1.22	0.53	-6.63	-6.95

N.B.-All quantities are plus unless otherwise designated.

Difference from Average Temperature, Southern District, 1914.
(Difference of A verage for month from monthly average for previous ten years or more.)

Locality.	$\left\|\begin{array}{c} \text { No. } \\ \text { Years } \\ \text { Records } \end{array}\right\|$	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
Vancouver	14	$3 \cdot 0$	$0 \cdot 3$	$2 \cdot 8$	$1 \cdot 6$	$2 \cdot 8$	$1 \cdot 0$	$0 \cdot 4$	$0 \cdot 3$	-0.9	$3 \cdot 1$	$2 \cdot 2$	-2.5	14
Stevesto	19	$4 \cdot 8$ 9.6	-0.3 1.3	1.9 3.5	1.3 3.5	0.8 2.5	-0.5	-3.3	-0.4	0.1	$2 \cdot 6$	1.6	-4.8	-11.4
New Westmins	14 27	$9 \cdot 6$ $2 \cdot 2$	1.3 -0.4	3.5 1.8	3.5	$2-5$ 3.2	-0.4	1.0	1.3	$1 \cdot 3$	${ }_{5}^{5} \cdot 0$	1.4	-4.0	-23.4
North Nicomen	${ }_{21}^{27}$	${ }_{3}^{2.2}$	-0.4	1.8	2.2 3.2	3.2 3.8	0.1 0.9	1.6 0.1	1.0	-1.7	3.7 3.2	1.6		-12.8 -14.6
Agassiz.	24	$3 \cdot 6$	1.8	1.0	$5 \cdot 1$	$2 \cdot 1$	-1.8	-1.9	-0.3	-2.6	-0.4	1.5	-2.0	
Chilliwac	11	6.7	-0.2	$2 \cdot 6$	$1 \cdot 4$	-0.4	-1.1	-0.9	-1.5	-2.2	$1 \cdot 5$	2.0	-3-2	-4.7

N.B.-All quantities are plus unless otherwise designated.

Covparison of Monthly Discharges, Southern District, 1914.

Total Monthly Precipitation, Lillooet District, 1914.

Locality.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
Pemberton hatch	5.85	1.51	2.81	2.34	1.58	1.57	0.34	0.41	$5 \cdot 41$	$4 \cdot 35$	8.44	0.98	35.32
Pemberton Meadows	10.73	2.28	3.03	$2 \cdot 46$	0.76	$1 \cdot 35$	0.28	0.08	4.63	$5 \cdot 46$	9. 23	$1 \cdot 65$	41.99
15 -mile ranch (Pavilion)	$1 \cdot 40$	$0 \cdot 46$	0-39	0.24	0.89	1.18	$0 \cdot 44$	$0 \cdot 10$	1.92	$0 \cdot 37$	$2 \cdot 50$	$0 \cdot 45$	$10 \cdot 54$

Mean Monthly Temperature, Lillooet District, 1914.

Locality.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
Pemberton hatchery	$30 \cdot 4$	$30 \cdot 4$	39.4	48.5	54.7	58.7	64.9	$64 \cdot 8$	53.4	48.4	37.0	$27 \cdot 3$	46.5
Pemberton Meadows	27.9	$27 \cdot 2$	$37 \cdot 5$	$47 \cdot 6$	$56 \cdot 2$	59.9	$64 \cdot 4$	$62 \cdot 3$	$53 \cdot 6$	$49 \cdot 1$	$36 \cdot 3$	$20 \cdot 8$	45.2
15 -mile ranch (Pavilion)	$24 \cdot 6$	$24 \cdot 2$	$39 \cdot 3$	$50 \cdot 3$	$57 \cdot 1$	60.9	69.7	$69 \cdot 3$	$55 \cdot 2$	$48 \cdot 6$	34.8	18.8	46.0

Total Monthly Precipitation, Vancouver Island District, 1914.

Locality.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
Victoria	8.47	$1 \cdot 56$	$2 \cdot 05$	1.04	$0 \cdot 18$	$1 \cdot 67$		$0 \cdot 18$	1.98	$2 \cdot 58$	$5 \cdot 83$	$0 \cdot 59$	
Sooke.	$14 \cdot 22$	$3 \cdot 60$		$2 \cdot 65$	$0 \cdot 58$	2.93	0.06	$0 \cdot 36$	3.42	$6 \cdot 22$	9.48	1.42	
Shawnigan lak	$13 \cdot 29$	2.42	2.99	$2 \cdot 31$	0.88	$2 \cdot 61$	$0 \cdot 11$	$0 \cdot 10$	$3 \cdot 16$	$5 \cdot 18$	8.22	1.75	$43 \cdot 02$
Cobble Hill	11.32	1.99	1.93	$2 \cdot 33$	$0 \cdot 36$	$2 \cdot 08$	$0 \cdot 11$	$0 \cdot 15$	$2 \cdot 72$	$4 \cdot 40$	8.73	$1 \cdot 02$	37-14
Cowichan (Tzouhalem)	13.04	$2 \cdot 35$	2.08	2.78	$0 \cdot 31$	$2 \cdot 29$	$0 \cdot 15$	0.26	$3 \cdot 40$	5.15	9.40	1. 53	42.74
Ladysmith	$17 \cdot 34$	$4 \cdot 40$	$2 \cdot 55$	3.85	$0 \cdot 31$	$2 \cdot 11$	0.38	$0 \cdot 07$	$4 \cdot 48$	$10 \cdot 26$	$10 \cdot 71$	$1 \cdot 69$	58.15
Nanaimo.	$10 \cdot 89$	$2 \cdot 60$	$2 \cdot 54$	$2 \cdot 60$	0.16	1.70	$0 \cdot 10$	0.33	4.03	$6 \cdot 13$	$7 \cdot 62$	$2 \cdot 16$	40.86
Nanoose bay	$9 \cdot 17$	$2 \cdot 26$	$2 \cdot 60$	${ }^{2} \cdot 60$	$0 \cdot 14$	$3 \cdot 15$	0.16	0.25	$4 \cdot 61$	$6 \cdot 12$	$7 \cdot 36$	1.44	39.86
Qualicum Beach	$7 \cdot 75$	$2 \cdot 38$	$2 \cdot 34$	2.88	$0 \cdot 39$	2.41	$0 \cdot 28$	$0 \cdot 34$	4.77	$8 \cdot 01$	$7 \cdot 15$	$1 \cdot 07$	$39 \cdot 77$
Campbell lake.									3.90 7.08	8.42 16.08	$13 \cdot 29$ 14.18		
Alberni...	16.29	5.72	8.14	7.07	1.07	3.64	0.31 1.25	0.17 1.00	7.08 4.00	16.08 6.88	$14 \cdot 18$ 9.42	$2 \cdot 51$ 2.74	82.26 45.76
Alert bay	$6 \cdot 13$ 21.55	$3 \cdot 84$ 11.59	$5 \cdot 00$ 13.72	$3 \cdot 60$ 14.08	1.04 $2 \cdot 65$	0.86 3.08	1.25 1.05	$1 \cdot 00$ $1 \cdot 66$	$4 \cdot 00$ $9 \cdot 11$	6.88 19.44	9.42 24.35	$2 \cdot 74$ 7.44	$45 \cdot 76$ 129.72
Clayoquot	21.55 18.46	11.59 5.76	13.72 12.42	14.08 9.36	$2 \cdot 65$ $3 \cdot 83$	3.08 1.34	1.05 0.74	1.66 1.05	$9 \cdot 11$	$19 \cdot 44$ 14.51	$24 \cdot 35$ 17	$7 \cdot 44$	129.72
Quatsino Holberg.	18.46 23	$5 \cdot 76$ $9 \cdot 57$	$12 \cdot 42$ 17	$9 \cdot 36$ 11.80	$3 \cdot 83$ $7 \cdot 15$	$1 \cdot 34$ $2 \cdot 06$	0.74 3.50	1.05 2.66	6.97	$14 \cdot 51$ $19 \cdot 56$	$17 \cdot 35$ $26 \cdot 47$	$5 \cdot 57$	$137 \cdot 14$

Mean Monthly Temperature, Vancouver Island District, 1914.

Locality.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
Victoria	$42 \cdot 1$	42.0	46.9	50.5	$55 \cdot 9$	55.9	59.7	59.5	$53 \cdot 6$	52.7	$45 \cdot 0$	$39 \cdot 6$	$50 \cdot 2$
Sooke.	39.7	41.0		$48 \cdot 6$	$53 \cdot 4$	$55 \cdot 2$	$59 \cdot 6$	59.5	58.9	$52 \cdot 2$	$44 \cdot 2$	38.3	
Shawnigan la	$37 \cdot 0$	37.8	$43 \cdot 6$	48.7	$55 \cdot 5$	$57 \cdot 8$	$69 \cdot 2$	$64 \cdot 1$	54.1	50.6	40.9	33.9	$49 \cdot 4$
Cobble Hill.	38.8	$38 \cdot 1$	$43 \cdot 5$	47.9	$54 \cdot 4$	$56 \cdot 5$	$60 \cdot 5$	59.0	$53 \cdot 2$	55.4	$42 \cdot 6$	$36 \cdot 2$	$48 \cdot 8$
Cowichan (Tzouhalem)	$40 \cdot 2$	$39 \cdot 8$	$45 \cdot 4$	$50 \cdot 0$	$55 \cdot 5$	58.7	63.9	$62 \cdot 4$	55.4	$50 \cdot 1$	43.8	$36 \cdot 0$	$50 \cdot 1$
Ladysmith.	37.7	$37 \cdot 6$	44.4	$49 \cdot 6$	$56 \cdot 0$	57.8	$62 \cdot 6$	$62 \cdot 7$	$54 \cdot 1$	51.7	41.8	$35 \cdot 3$	$49 \cdot 3$
Nanaimo.	39.8	$39 \cdot 6$	$44 \cdot 7$	$49 \cdot 6$	$57 \cdot 0$	58.8	$64 \cdot 4$	63.7	$54 \cdot 7$	51.8	$43 \cdot 6$	36.9	$50 \cdot 3$
Nanoose bay	38.0	$38 \cdot 1$	$43 \cdot 4$	$48 \cdot 3$	$54 \cdot 4$	56.9	$62 \cdot 5$	61.7	50.7	$50 \cdot 8$	$42 \cdot 1$	$35 \cdot 2$	48.5
Qualicum Beach	$37 \cdot 1$	$36 \cdot 4$	$42 \cdot 1$	$46 \cdot 8$	$53 \cdot 5$	$56 \cdot 6$	$62 \cdot 4$	$61 \cdot 3$	$52 \cdot 9$	$50 \cdot 3$	$40 \cdot 5$	$32 \cdot 1$	$47 \cdot 7$
Campbell lake..									53.1	50.6	40.8		
Alberni.	36.1	$37 \cdot 1$	$44 \cdot 2$	49.4 50.4	$54 \cdot 3$ 53.0	$57 \cdot 7$ 54.6	63.6 57.2	66.9 57.9	55.5	53.0 53.8	$42 \cdot 6$ 45	34.4 38.1	49.5 49.1
Alert bay.	38.4 41.1	$42 \cdot 3$ 42.3	$45 \cdot 1$ 4.2	50.4 48.9	$53 \cdot 0$ 54.8	$54 \cdot 6$ 55	57.2 58.8	57.9 59.1	$53 \cdot 4$ $54 \cdot 2$	53.8 53.1	$45 \cdot 3$ $45 \cdot 5$	38.1 41.2	$49 \cdot 1$ $50 \cdot 0$
Quatsino..	$37 \cdot 6$	39.8	42.9	$47 \cdot 6$	51.7	$54 \cdot 5$	58.9	$59 \cdot 2$		$51 \cdot 6$	$43 \cdot 4$	35.8	
Holberg.	37.8	39.7	$43 \cdot 6$	$47 \cdot 7$	52.8	$54 \cdot 1$	$58 \cdot 5$	$61 \cdot 4$	54.8	54.2	$44 \cdot 7$	36.2	48.8

SESSIONAL PAPER No. 25e
Difference from Average Precipitation, Vancouver Island District, 1914.
(Difference of Total for month from monthly average for previous ten years or more.)

Locality.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
Victoria	3.93	-2.01	-0.14	-0.76	-1.17	-0.71	-0.35	-0.41	-0.12	0.32	-0.24	-5.68	-7.34
Nanaimo	6.24	-1.54	-0.53	0.92	-1.94	-0.74	-0.65	-0.43	1.96	3.04	-1.15	-5.01	$0 \cdot 17$
Alberni...													14.50
Clayoquot	6.96 5.59	-1.06 -7.09	2.89 3.01	5.13	-3.74 -1.99	-1.12 -3.29	-0.96 -2.32	-1.88 -3.00	$2 \cdot 05$	6.65 2.91	4.77 0.10		10.74
										2.91	$0 \cdot 10$	$-12 \cdot 16$	

N.B.-All quantities are plus unless otherwise designated.

Difference from Average Temperature, Vancouver Island District, 1914.

(Difference of Average for month from monthly average for previous ten years or more.)

Locality.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
Victoria.	$2 \cdot 0$	1.9	$2 \cdot 9$	$1 \cdot 6$	$2 \cdot 4$	-0.2	$-1 \cdot 2$	-0.8	-3.0	$1 \cdot 2$	-0.9	-3-2	$2 \cdot 7$
Nanaimo.	$4 \cdot 0$	$2 \cdot 0$	$2 \cdot 8$	$3 \cdot 1$	$3 \cdot 9$	1.1	$1 \cdot 3$	$0 \cdot 3$	-2.4	$2 \cdot 3$	$0 \cdot 4$	-2.3	$16 \cdot 5$
Alberni.	$2 \cdot 4$	-0.6	$2 \cdot 0$	$2 \cdot 2$	-0.4	-1.1	-1.6	1.9	$-2 \cdot 3$	$2 \cdot 2$	1.8	-2.8	3.7
Clayoquot	$1 \cdot 6$	1.5	$2 \cdot 7$	$3 \cdot 3$	$4 \cdot 0$	$1 \cdot 1$	$0 \cdot 6$	-0.6	1.4	$2 \cdot 3$	$0 \cdot 4$	-1.0	15.7
Quatsino.	-2.3	1.8	$1 \cdot 1$		0.3	$1 \cdot 1$	$1 \cdot 4$			$3 \cdot 2$	$1 \cdot 2$	-4.5	

[^4]
REPORT

OF THE

BRITISH COLUMBIA HYDROGRAPHIC SURVEY FOR 1914

CHAPTER 3
Kamloops Division
REPORT OF E. M. DANN, B.A.Sc., D.L.S.
Division Engineer.

CHAPTER III.

THE KAMLOOPS DIVISION.

TERRITORY.

The Kamloops division covers practically the whole of the great interior plateau lying between the Hope range of mountains in the vicinity of Lytton, and the Gold range near Revelstoke on the main line of the Canadian Pacific railway. Speaking broadly, the territory is drained by the Thompson river with its north and south branches; the former heading in the vicinity of the Yellowhead pass, the latter in Shuswap lake and its surrounding hills.

In addition to the vast catchment area of the Thompson, in whose valley flow some of the most important and contentious sources of water supply throughout the whole of British Columbia, the Kamloops division also covers a small portion of the Columbia River basin lying north of the international boundary, and drained by the Kettle, Similkameen, and Okanagan rivers.

The total area of the Kamloops division is 33,000 square miles.
USES OF WATER.

IRRIGATION.

The principal industry carried on throughout this division is agriculture in all its varied forms. Owing to the semi-arid nature of most of the country the principal need of water is for irrigation, and any other use to which it may be put is directly or indirectly, connected with that science. The community which uses hydro-electric power, for example, depends for its existence upon agriculture, and this could not be carried on without irrigation. Further, without irrigation there would be little demand for water for domestic and municipal supply.

Thus it will be seen that in the Kamloops division the great natural resource, water, is used pre-eminently for irrigation.

WATER-POWER DEVELOPMENT.

Most of the power derived from falling water is developed outside the most arid section of the division, although, notably in the instance of the Kamboops municipal plant on the Barrier river, power is sometimes transmitted through irrigation areas. A discussion of the hydro-electric plants in the Kamloops division has been made in other reports, although a short description of each is appended hereto.

WATEIR-POWER POSSIBILITIES,

The latest possibilities of water-power development within the division are many times more important than the development powers. It is doubtful if any strean in the province has as many splendid sites for future development as the Clearwater river and its principal tributary the Myrtle, a full deseription of which may be found in this report. (See "Hydrographic Data of stremm Flow," Clearwater and Myrtle rivers.) The power capacities of many other large streams are shown clsewhere in this report and in Water Resourees Papers. Nos. 1 and s published by the Dominion Water Power Branch.
$25 \mathrm{e}-1 \frac{1}{2}$

There is, however, in the development by farmers and others, of power upon the smaller streams, a very great immediate future. The rational handling of irrigation water may enable a rancher to operate a small plant, producing sufficient power at a very low cost for his farm needs. Power to light house and barns, power for cooking purposes, power for wood-sawing and for a hundred and one necessities, lies at many a door, and is capable of very cheap and efficient development.

MUNICIPAL SUPPLY.

In every large centre of the province the intelligent selection of a source of municipal water supply is of vast importance. The supply must be pure, in the broad sense of that word, and regular. In this particular area, as in fact throughout the whole of British Columbia, little trouble arises from impurity of supply, and our mountain streams carry, generally speaking, a quality of water ideal for domestic use. The quantity therefore is that which is of particucular interest to the public at large, and throughout the division studies are being commenced of streams where a knowledge of the amount of water is of much importance in this relation.

TOPOGRAPHY OF THE KAMLOOPS DIVISION.

The wide valley of the Thompson is bordered on either side by bench lands and table-like plateaus at the lower elevations, through which the erosive effect of surface run-off has literally cut hundreds of deep gulches. The appearance of the surface soil in midsummer is barren and uninviting save where irrigation water has painted an oasis of verdant green. To get the best idea of the topography of the area of which Kamloops is the centre, and to realize to what extent it is in fact a plateau, one must view it from a mountain top. Mount Tod (7,000 feet) is the highest peak in this part of the division. From it one may see gentle sloping and park-like tablelands cut by small streams whose waters, shaded from the sun by a covering of willows, seek their way to the larger arteries of flow in the bottom valleys. To the west the mountains of the Hope range; to the east the Gold range-the wardens of the Selkirks-reach out to the sky, snow-capped; while between, stretches this splendid plateau like the deck of a vast suspension bridge hanging between mighty towers.

Of similar topography are the Okanagan and Kettle River valleys.
The Similkameen valley presents a marked contrast to the country just described. Here the hills rise steeply on either side of the river to a height of 5,000 and 6,000 feet above the sea. They are well covered with timber, particularly on their northern slopes and, except in the bottom lands where some irrigation is required, there is very little agriculture carried on.

PRECIPITATION AND CLIMATE.

Precipitation and climate are very closely related, and both are to a large extent dependent on topography. With increasing altitude we have lower temperature and higher precipitation. The remarkably small precipitation in the Kamloops division is due to the fact that there are no high mountains to cause condensation of the moisture laden winds from the Pacific.

Tables are to be seen elsewhere in this report showing the precipitation and temperatures for certain meteorological stations in the province for each month; the variation from the average is also tabulated for those stations where records are available for a sufficiently long period to render these average figures of some value.

SESSIONAL PAPER No. 25e

It is well to bear in mind while scanning these records, that in general these stations are located in centres of population which are as a rule at low altitudes. This means that for any considerable area the mean monthly precipitation is greater, and the mean monthly temperature less, than the figures given for the centre of population for that area.

The greater part of the Kamloops division lies within the dry belt, where the mean annual precipitation varies from a minimum of 5 inches per annum near Ashcroft to a maximum of probably 35 or 40 inches at the highest altitude in the section. Outside the dry belt, however, on some of the higher elevations of the clearwater drainage basin in the north, and the peaks of the Hope and Hagameen ranges which feed the Tulameen and South Similkameen rivers, the precipitation is thought to be over 50 inches, although no accurate records have been taken at these high points.

DISTRICTS AND STAFF.

For the purpose of organizing stream measurement work in a simple and systematic manner, the division has been split up into three arbitrary districts, the boundaries of which are largely determined by transportation routes. An assistant engineer is directly responsible for the maintenance of station equipment and of the acquirement of data on all streams of importance throughout the district.

KAMLOOPS DISTRICT.

The Kamloops district is such a large and important area, that in view of the establishment of many new stations on streams tributary to the North Thompson river it was found advisable to divide it into two sections with an assistant engineer in charge of each.

The section immediately around Kamloops was supervised by Mr. C. B. Corbould, B.A.Sc., Assistant Engineer, and included the many contentious irrigation streams in the vicinity of Kamloops, Grand Prairie and Mamit lake. The vast importance of irrigation interests in this country, and the thorough knowledge of stream flow necessary to intelligent development, warrants a much more complete investigation than, with the present assistance and funds available, it has been possible to give.

The suddenness of the freshet and its short duration, coupled with the fact that the peak occurs simultaneously on widely separated streams, renders the work exceedingly difficult in this section.

Work in the North Thompson section was supervised by Mr. E. H. Tredcroft, C.E., Assistant Engineer, and a desultory train service on the newly built Canadian Northern Pacific railway, rendered the streams more aecessible than hitherto. Stations were established on the North Thompson river (above its confluence with the Clearwater), on Raft river, on Myrtle river and on Boulder, Whitewood, Fishtrap, and Little Clearwater crecks. In the carly spring a cable station was built on the Clearwater river at Brookfield's ranch and hydrographic work was contimued with good results.

Owing to its inaccessibility and the limited funds available, it was impracticable to rate the Myrtle river during 1914. Gauge readings were however commenced and a record of the flow during the latter part of 1914 will be developed when a rating curve is defined.

The importance of this district for the future production of water-power is very great, the wonderfnl Helmeken falls on the Myrtle river being the most important of many power sites in the Clearwater country. At this point the Myrtle river plumges headlong over a sheer cliff, 450 feet in height, to a roeky
canyon below, presenting a sight which will classify the Helmeken falls among the scenic beauties of the world. Its distance from the Canadian Northern Pacific main line at Mile 71, north of Kamloops, is about 40 miles. At present the only means of access is by pack trail (see photographs, and description of Myrtle river under "hydrographic data of stream flow").

THE ASHCROFT AND NICOLA DISTRICT.

The streams in the vicinity of Asheroft are of inestimable importance, owing to the extreme aridity of the climate and the consequent higher "duty" of irrigation water. Hydrographic work was carried on throughout this section with Mr. Corbould as assistant engineer.

In the Nicola valley, Mr. K. G. Chisholm, B.Sc., Assistant Engineer, was in charge of field work. New stations were established on Spius creek and the Coldwater river, both of which are capable of power development.

THE OKANAGAN DISTRICT.

Acquisition of field data on streams of the southern Okanagan, of the Kettle valley, and of the Similkameen country was in the hands of Mr. Chisholm, and field work was vigorously carried on. Stations were established on the more important streams and in nearly all cases first-class rating curves were defined during the season. This section is of particular interest on account of the fact that its larger waterways are of an international character, the Kettle river, for example, crossing the United States boundary line three times.

In the Shuswap lake section, the tributary streams are only accessible by motor boat. It was possible to make but two trips around this section, so that very limited information is available about the outlying streams; gauge readings are being taken regularly, however, and records of flow will be published at a later date on such streams as Seymour river, which has latent power possibilities.

On the Adams river, another power stream of importance, an automatic, self-recording gauge was installed in October, 1914, by Mr. Trederoft, and has given good service, no trouble from ice conditions having been encountered. Owing to the artificial regulation of the flow of this stream at Adams lake, by the Adams River Lumber Co., and the sluicing operations which the company has carried on, the fluctuation in stage was erratic, and it was found impracticable to secure precise results through the services of a gauge reader.

KAMLOOPS OFFICE.

Suitable office accommodation was procured in the Acadia block, Kamloops, where compilation, checking and plotting of field work is carried on. Unpublished data for the year are gladly compiled and made available for the public at any time. The division engineer visited and inspected most of the field stations in each district throughout the year, and kept constantly in touch with all gauge readers, supervising office work and assisting in the checking of field data. Miss B. B. Allan, as stenographer and office clerk, had charge of all filing, indexing, and gauge readers' returns.

INSPECTIONS.

In addition to actual stream flow work, all irrigation projects, involving Dominion Lands, within the Railway Belt of British Columbia, were inspected in co-operation with the Dominion Lands agent, by the division engineer at Kamloops. The construction of irrigation works in connection with such applications was supervised, and several surveys carried out in the field for the purpose of defining land covered by storage works and served by irrigation ditches.

Dam, Barriere River Development, City of Kamloops,

Exterior Burriew Hydro-Electric Power Honse Monicipal phat for ('ity of Kambops, British Colmoblit
 A timber flume ($8^{\prime} \times \mathbf{I}^{\prime}$) some three and in tulf milen long gives a coneentrated heod of that fevt on

6 GEORGE V, A. 1916

DEVELOPED WATER-POWERS.

BARRIERE RIVER.

A 2,200 horse-power development has just been completed on the Barriere river, some 40 miles north of that city, by the municipality of Kamloops, with

Interior Barriere River Hydro-Electric Power House, Municipal plant for City of Kamloops. Photograph by courtesy of Messrs. Ducane, Dutcher \& Co., Consulting Engineers, Vancouver.
The present development has two $1,100 \mathrm{H}$. P. Platt Iron Works Victor-Francis turbines operating under 190^{\prime} head, with $750 \mathrm{~K} . \mathrm{V} . \mathrm{A}$. Canadian Westinghouse Co. 2,200 volts, 3 phase 60 cycle gencrators (600 R.P.M.) with direct connected 40 K. W. Exciter.

Interior Sub-Station, City of Kamloops.

Messrs. Ducane, Dutcher \& Co., of Vancouver as engineers. A timber flume $3 \frac{1}{2}$ miles long gives a concentrated head of 190 feet on the turbine, of which there are two of the Victor-Francis type. The penstocks are of wood stave, and are buried. The power-house is of concrete, and the plant itself is of exceptionally compact design.

An unfortunate landslide, such as British Columbian engineers are often called upon to deal with, has, at the time of writing, caused the plant to be temporarily shut down, a portion of the flume having settled with the slide. This matter is being adjusted and it is hoped the development will shortly be in operation again.

An auxiliary steam plant at Kamloops looks after the demand for power, during the winter period, when it is expected that the hydro-electric plant will be shut down for a period of six weeks to two months.

BOUNDARY CREEK.

There is a small hydro-electric development at Boundary falls, by which the city of Greenwood derives light and power. The plant operates under a head of 130 feet and has a capacity of 250 horse-power.

CRAZY CREEK.

At Taft, B.C., the Forest Mills of British Columbia, Ltd., has a small Pelton wheel development of 150 horse-power. Water is diverted through a 7 -inch wood stave pipeline and operates under a head of about 150 feet. The power is used in connection with the sawmill as well as for fire protection, lighting, and domestic purposes.

FORTUNE OR DAVIS CREEK.

Near the city of Armstrong, B.C., on Fortune (or Davis) creek there is a small Pelton wheel development of about 200 horse-power, municipally orwned, and used for lighting and power purposes. It operates under a head of 500 feet, water being carried from the storage reservoir by a pipeline, a distance of threequarters of a mile to the power house. A transmission line carries power at 2,200 volts to the city of Armstrong.

KETTLE RIVER AT CASCADE.

The West Kootenay Power and Light Co., operates a plant on the Kettle river with a capacity of 3,900 horse-power under a head of 155 feet which is maintained in conjunction with the plants at Bomington falls on the Lootenay river. Power is used at Grand Forks, Phoenix, and Nelson for lighting, and for the mines and smelters.

KHTTLE HVER (NOHTH FORK).
A 700 horse-power plant operating under a 30 -foot head is maintained and used by the Gramby smelter near Grand Forks.

MURRAY CREEK.

A Pelton wheel development of 100 horse-power operating under a 220 -foot head delivers light and power to the town of Spences Bridge. Water is taken to wheel direct from Murray creek in a 16 -inch riveted steel pipe, the upper 175 feet of pipe being laid through a rock tunnel.

NAKALLISTON CREEK.

The Mount Olie Light and Power Plant develops some 30 horse-power from Nakalliston creek for the use of that settlement, which is about 50 miles north of Kamloops, B.C. Six hundred feet of 16 -inch wood stave pipeline carries water to a small turbine acting under a 50 -foot head.

SIMILKAMEEN RIVER.

The Daly Reduction Co:, which owns and operates the well-known Nickel Plate Gold Mine at Hedley, B.C., has during 1914, completed the construction of a hydro-electric plant with a capacity of 1,800 horse-power. By means of a dam and a 3-mile wooden flume, a head of 67 feet is obtained. This installation superseded a plant on Twenty-mile creek, which proved of little service during low-water periods, and in conjunction with which an auxiliary steam plant had to be used

Total Monthly Precipitation, 1914.

Locality.	Jan.	Feb.	Mar.	Apr.	May.	June.	July:	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
Kamloops	1.68	$2 \cdot 18$	$0 \cdot 26$. $0 \cdot 38$	1.31	$0 \cdot 54$	$0 \cdot 53$	0.38	1.09	$0 \cdot 79$	1.01	$0 \cdot 58$	$10 \cdot 73$
Monte creek	0.84	2.08		0.15	0.60	1.09	0.98	$0 \cdot 38$	1.20	0.76	1.00	0.78	
Salmon Arm	3.08	$1 \cdot 36$	0.87	$1 \cdot 27$	1.36	$1 \cdot 34$	0.73	$0 \cdot 19$	$2 \cdot 17$	$1 \cdot 54$	3.02	1.55	18.48
Vernon.	1.25	1.22	$0 \cdot 51$	$0 \cdot 42$	1.07	1.05	$0 \cdot 62$	0.53	1.96	1.18	1.46	1.15	12.42
Keremeos	$2 \cdot 20$	0.66	0.72	$1 \cdot 05$	$0 \cdot 50$	1.31	$0 \cdot 49$	$0 \cdot 20$	1.31	$0 \cdot 73$	1.21	$0 \cdot 65$	$11 \cdot 03$
Kelowna	$2 \cdot 34$	2.98	$0 \cdot 30$	$0 \cdot 20$	0.87	1.07	$0 \cdot 20$	$0 \cdot 26$	$2 \cdot 65$	0.70	$1 \cdot 43$	0.48	13.48
Penticton	${ }_{2}^{2} \cdot 13$	0.49	0.46	1.26.	1.22	$1 \cdot 24$	$0 \cdot 35$	$0 \cdot 31$	$2 \cdot 16$	0.81	$1 \cdot 25$	0.76	$12 \cdot 44$
Princeton	$2 \cdot 36$	$1 \cdot 16$	0.73	$0 \cdot 65$	$1 \cdot 32$	0.88	0.21	$0 \cdot 12$	1-39	1.00	$2 \cdot 04$	0.96	$12 \cdot 82$

Mean Monthly Temperature, 1914.

Locality,	Jan	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dcc.	Year.
Kamloops	29.8	25-2	39.9	$51 \cdot 6$	58.0	63.9	$70 \cdot 9$	68.7	$56 \cdot 5$	49.9	37.7	21.5	
Monte creek	$32 \cdot 1$	23.8		$49 \cdot 0$	51.9	$62 \cdot 2$	$69 \cdot 0$	$60 \cdot 0$	52.8	$47 \cdot 1$	35.8	18.8	
Salmon Arm.	$30 \cdot 2$	26.2	37.9	48.7	$55 \cdot 1$	61.4	$67 \cdot 0$	64.8	$54 \cdot 0$	$47 \cdot 5$	$37 \cdot 2$	$23 \cdot 2$	
Vernon.	29.4	$25 \cdot 0$	$38 \cdot 3$	$49 \cdot 1$	$55 \cdot 5$	61.2	$68 \cdot 6$	$67 \cdot 1$	$55 \cdot 1$	$46 \cdot 8$	36.5	$21 \cdot 3$	
Keremeos	31.8	28.3	41.7	$52 \cdot 1$	59.0	61.5	$71 \cdot 3$	70.0	$56 \cdot 5$	49.4	$38 \cdot 1$	$20 \cdot 2$	
Kielowna	30.8	27.2	$39 \cdot 4$	48.8	$55 \cdot 1$	$62 \cdot 6$	68.6	63.7	$54 \cdot 1$	48.2	39.5	26.0	
Penticton.	$34 \cdot 3$	$30 \cdot 4$	41.0	$50 \cdot 3$	$56 \cdot 4$	$62 \cdot 2$	$69 \cdot 6$	67.8	$56 \cdot 2$	$49 \cdot 8$	$40 \cdot 3$	$26 \cdot 1$	
Princeton	$24 \cdot 5$	23.9	$35 \cdot 5$	$46 \cdot 8$	$52 \cdot 6$	56.9	$64 \cdot 6$	$62 \cdot 1$	$51 \cdot 4$	$45 \cdot 5$	$33 \cdot 6$	$15 \cdot 6$	

SESSIONAL PAPER No. 25e
Difference from Average Precipitation, 1914.
(Difference of Total for month from Monthly Average for previous ten years or more.)

Locality:	Jan.	Feb.	Mar.	Apr.	May.	June.	July:	Aug.	Sept.	Oet.	Nov.	Dec.	Year.
Kamloops	0.73	1.37	-0.06	0.00	0.28	-0.74	-0.73	-0.65	$0 \cdot 10$	0.26	-0.11		-0.58
Salmon Arm	$0 \cdot 44$	0.02	$0 \cdot 25$	0.43	0.03	-0.52		-0.79	0.46	0.07		-0.56	
Vernon.	0.09	1.10	-0.15	-0.05	-0.21	-0.60						-0.12	-0.54
Kelowna.	0.88 1.05	1.76 0.16	-0.29 0.13	-0.98 0.11	-0.21 -0.02	-0.33 -0.17	-0.86 -0.89	-0.77 -0.52	1.48 0.34	-0.15 0.17	0.56	-0.90 -0.38	-0.93 -0.15
	1.05	$0 \cdot 16$				-0.17			$0 \cdot 34$	$0 \cdot 17$		-0.38	-0.15

N.B.-All quantities are plus unless otherwise designated.

Difference from Average Temperature, 1914.
(Difference of A verage for month from Monthly Average for previous ten years or more.)

Locality.	Jan.	Feb.	Mar.	Apr.	May.	June	July:	Aug.	Sept.	Oct.	Sov.	Dec.	Year.
Kamloops	$5 \cdot 1$	$-2 \cdot 6$	$2 \cdot 2$	1.7	-0.4	$0 \cdot 1$	$1 \cdot 2$	0.6	1.9	$1 \cdot 4$	$2 \cdot 7$	-7-3	$6 \cdot 6$
Salmon Arm	11.4	$0 \cdot 4$	$2 \cdot 9$	$3 \cdot 0$	$-2 \cdot 3$	1.7		$1 \cdot 3$	-1.9	$4 \cdot 2$		-5.9	
Vernon...	7.8	-0.8	$2 \cdot 9$	$2 \cdot 5$	1.0	0.8	2-3	$2 \cdot 0$	0.1	$1 \cdot 5$	$2 \cdot 5$	-6.5	16.1
Kelowna.	$5 \cdot 2$	$1 \cdot 5$	$2 \cdot 7$	$2 \cdot 1$	-0.3	$3 \cdot 1$	$2 \cdot 1$	$0 \cdot 0$	-0.7	$3 \cdot 4$	$3 \cdot 1$	$-4 \cdot 3$	$17 \cdot 9$
Princeton	$7 \cdot 7$	$0 \cdot 7$	$2 \cdot 9$	$2 \cdot 6$	$0 \cdot 7$	$0 \cdot 3$	1.7		$-1 \cdot 7$	$2 \cdot 1$	$2 \cdot 6$	$-6 \cdot 7$	13.7

N.B.-All quantities are plus unless otherwise designated.

REPORT

 OF THE
BRITISH COLUMBIA HYDROGRAPHIC SURVEY FOR 1914

CHAPTER 4
Nelson Division
REPORT OF C. E. RICHARDSON, B.A.Sc., D.L.S.
Division Engineer.

CHAPTER IV.

NELSON DIVISION.

GENERAL REMARKS.

Mr. J. C. Hoyt, M. Am. Soc., C.E., Hydraulic Engineer in charge Division of Surface Waters, United States Geological Survey, and Mr. N. C. Grover, Chief Engineer United States Geological Survey, in their book on "River Discharge", makes the following statement:-

The hydraulic engineer is interested in water from the time it reaches the earth in the form of rain or snow until it returns again to the atmosphere in the form of an invisible vapour.
The magnitude of this statement reveals the immense amount of data that the hydraulic engineer must collect in an endeavour to determine the most economical method of procedure with his work. The statement that each stream is a law unto itself is particularly true in the Nelson Division.

NELSON DIVISION.

The Nelson division comprises that part of British Columbia known as East and West Kootenay districts. The whole division is drained by Columbia river, and with the exception of Okanagan and Kettle rivers, comprises the total drainage of the Columbia in Canada. The East and West Kootenays are divided by Selkirk range of the Rockies, and the Selkirks are encompassed on the north, south, east, and west by Columbia river and one of its tributaries, the Kootenay: The Columbia rises in Columbia and Windermere lakes, 90 miles south of the C.P.R. main line at Golden, and flows in a northwesterly directiou for about 200 miles to the mouth of Canoe river at Big Bend. From Canoe river the Columbia flows practically south for about 250 miles, past Revelstoke, through Arrow lakes, crossing the international boundary near Waneta, B.C. Kootenay river rises in Beaverfoot range of the Rockies, about 20 miles south of the C.P.R. main line at Patliser, B.C., and flows practically south for 175 miles, passing within 1 mile of Columbia lake, and crossing the international boundary near Newgate, B.C. It flows through Montana into Idaho, C.s.A., reentering British Columbia (West Kootenay district), 60 miles west of Newgate and 20 miles south of Kootenay Landing, at which point it loses itself in Kootenay lake. From the west arm of Kootenay lake the river flows in a southwesterly direction, discharging in Columbia river near (astlegar, ahout 20 mites north of the international boundary.

The total area of the Nelson Division (East and West Kootenay), is approximately 29,000 square miles. Of this some 15,000 square miles are drained by the Columbia river above the mouth of the Kootenay. The kootenay river drains approximately 13,000 square miles in British Columbia. The remainimg 1,000 square miles are drained by Pend d'Oreille river, of which Flathead river in southeast Kootenay is a tributary; the Pendd'()reille diseharges into Columbia river near Waneta, 200 yards above the International boundary:

CLIMATIC CONDITIONS.
Run-off is relative directly to topography and elimatie conditions. Climatic conditions are themselves partially dependent on topography. In the study of strean flow it is essential to be familiar with these two factors. The topegra-
phy, however, remains a constant factor, and the variation in the flow of streams is due directly to climatic conditions. In the opening paragraphs of the report the following remark was made:-"The statement that each stream is a law unto itself is particularly true in the Kootenays." This statement is based on the fact that in the Kootenays there is a greater variation in climatic conditions, even within a radius of a very few miles. It is impossible, therefore, to describe the climatic conditions in a general way and consider them for any one locality. Although there is no direct relation between the various localities, there are marked variations between some of the districts. The following tables and remarks are intended to show these striking variations, and in comparison with them a general resemblance may be seen between other districts.

The attached tables of precipitation for various points in the Kootenays are compiled from the monthly reports for 1914 of the Meteorological Survey, Mr. R. F. Stupart director. One table shows the monthly precipitation, while the other shows the difference from the average for the past ten years or more.

In these tables a comparison is shown between ten points, five in East Kootenay and five in West Kootenay, for 1914. Of these ten points, eight are in the valleys of the Columbia and Kootenay rivers. Glacier in West Kootenay and Fernie in East Kootenay are near the summits of the Selkirks and Rockies, respectively. Although marked variations may be noted in this table, it also shows conclusively that the precipitation in West Kootenay is much greater than in East Kootenay.

The cause of the variation in precipitation at these points may be partially explained as follows:-

Practically all the precipitation which falls in the Kootenays comes from the west. The moisture laden clouds coming from the Pacific first hit the heavilytimbered Coast range. The result is that on the west slope of the Coast range the precipitation is very heavy. These clouds then pass over the rolling hills in the central division of Yale district. The precipitation there is so light that the country is semi-arid. Gold range is only high enough to reach the lower clouds, and the precipitation on the west slope of Gold range is not very heavy though considerably greater than around Kamloops. After the Gold range comes the Selkirks. The Selkirks, particularly in the north half of the Kootenays, are high and heavily timbered. They reach well into the moisture laden clouds and the result is a heavy precipitat on on the west slope or in West Kootenay. The lower clouds have been precipitated by the Selkirks, and hence when the Rockies are reached by the remaining clouds a smaller per cent will be affected. Thus the precipitation in East Kootenay will be less. This is correct for the northern part of the Kootenays. In the south, however, the Rockies are higher than the Selkirks, and around Fernie the precipitation is very heavy. To offset this, the Valley of the Kootenay in this vicinity is wide, and around Cranbrook the precipitation is very light.

A comparison of East and West Kootenay has just been made. It might be interesting to compare the precipitation in the Kootenays along the Columbia and Kootenay valleys from south to north. In East Kootenay from Elko to the Windermere country, the precipitation is about the same. Proceeding north from Windermere (Wilmer on table), the precipitation in the Columbia valley increases slightly to Spillimacheen. From there to Golden it is fairly constant. From Golden north the precipitation gradually increases till within a few miles of the Big Bend. Captain Armstrong, a member of the Public Works Department (Canada) at Nelson, and a man well informed on the Kootenays, made the following statement:-

PRECIPITATION.

It was early in May, 1894. Proceeding north from Golden the snow became gradually deeper. At Kimbasket lake it was about 4 feet deep and well packed. Past Kimbasket lake the depth of snow still increased, till we came to a point immediately below the mouth of Wood river. Within a distance of a quarter of a mile there was a pronounced change, from 8 feet of snow to green grass. The lower valley of Canoe river appeared very dry. Jack pine was present.
Captain Armstrong accounted for this change by the fact that the Selkirks had practically disappeared, and the mountains to the east, west, and north were not high, and the moisture-laden clouds were not penetrated until about Wood river. It is possible, however, that this sudden change might have been produced by Chinook winds.

CHINOOK WINDS.

Captain Armstrong also gave a very interesting description of the Chinook winds in East Kootenay. They come from the south, up Kootenay valley, and touch Tobacco plains near Newgate at the international boundary. From Tobacco plains they appear to rise and are not apparent again till in the vicinity of Columbia lake, the source of Columbia river. Their effect is noticed very much around Windermere lake and at the mouth of Toby creek. In January, 1901, in the valley around Windermere lake the thermometer reached 65° F., and the snow all disappeared. Toby creek valley was affected till an altitude of about 5,000 feet was reached, the height of the Chinook clouds. Above 5,000 feet there was not any effect from the Chinook. When the temperature in the valley was as high as $65^{\circ} \mathrm{F}$. at the Paradise mine on Toby creek, 8,000 feet altitude, the thermometer ranged from $-20^{\circ} \mathrm{F}$. to $-26^{\circ} \mathrm{F}$. day and night. North of Toby creek the Chinook appears to lift or die out, and is not again very evident.

In West Kootenay the precipitation seems rather similar in the valley at most points as far north as Nakusp. Farther north, however, it increases considerably.

SNOWFALL DATA ALONG THE C.P.R. IN SELKIRK RANGE.

The C.P.R. have kept snowfall records each year since 1857 at various points along the main line in the Selkirks. The following table is taken from these records. and shows the annual snowfall in feet and inches. The location of the points at which records were taken is denoted by the number of miles and direction from Roger pass, the summit of the Selkirks

SNOWFALL TABLE.

TEMPERATURE.

The attached tables show the average monthly temperature for the same localities for which the precipitation tables were compiled. The variation from the average for the past ten years for each month is also shown.

It may be seen from this table, that in the valleys, the temperature in East Kootenay is lower than in West Kootenay. There is no doubt that variation in elevation has a great deal to do with variation in temperature. It has been stated on good authority that at high elevations, such as 7,000 or 8,000 feet in the Rockies near Golden, there is much less variation in temperature than there is at Golden $(2,500)$. During cold spells at Golden the temperature will be lower than at a point 4,500 or 5,500 feet above. At other times the temperature is lower for the higher elevation. Insufficient study has been carried on to go more deeply into this interesting problem.

CO-OPERATION.

Before the advent of the British Columbia Hydrographic Survey in the Kootenays considerable amount of work had been done by the Railway Belt Hydrographic Survey in the Railway Belt; and by the Provincial Water Rights Branch in other parts of the division.

The Provincial Water Rights Branch has three district engineers in the Nelson division. Mr. H. B. Hicks in Cranbrook district, Mr. W. J. E. Biker in Nelson district, and Mr. O. J. Bergoust in Revelstoke district. These engineers have given their earnest co-operation in obtaining data on many streams in this division.

HYDROGRAPIIIC DISTRICTS.

At the opening of the 1914 season (April) the staff of the Nelson division consisted of a division engineer, two assistant engineers, and an office assistant. The division was divided into three districts, Mr. Gill was put in charge of the

SESSIONAL PAPER No. 25e

Cranbrook district, Mr. Elliott in charge of the Revelstoke district, while Mr. Beeston and the division engineer both attended to the Nelson district. Many new stations were established during the spring and early summer. Owing to the loss of one of the staff in August the work was considerably curtailed for the rest of the year, with the result that it was impossible to obtain discharge curves for all the streams in the division. Another year's work, however, will make it possible to rate all these stations.

PROBLEM OF TRANSPORTATION.

Owing to the size of the Nelson division and the varying nature of the country, the problem of transportation is of vital importance. The streams in

('ranbrook I)istrict (11)-Photograph showing support for cable way and platiorm uttachment for cable car.
the vicinity of Netsom are reached, for the most part, by hoat. In the Upper Columbia valley and Cranbrook districts, many of the streams are remote from the railroads; to cover these distriets horses are of little use on aceount of the great distance to be covered in a trip, but by using an antomolite of its own, this survey could greatly reduee the cost of the work in these two distriets.

$$
25 \mathrm{e}-5 \frac{1}{2}
$$

Cranbrook District (III).-Photograph showing cable car and method of operating.

WINTER MEASUREMENTS.

Winter measurements are absolutely essential on the majority of streams in the Nelson division. In East and North-west Kootenay* the streams are frozen or affected by ice from November or December to March or April. In Southwest Kootenay the streams seldom freeze over for more than a week or so at a time, and in the larger rivers ice conditions do not exist except during extremely cold spells.

There are two periods of low water in this division in the late summer or early fall, and during the winter. On all glacial fed streams and.on a great many others low water occurs during the winter and renders winter_measurements necessary.

It is not intended here to enter into a discussion on stream gauging under ice conditions, but, should any one be interested in this work, reference is made to United States Water Supply Paper No. 337, by Mr. W. G._Hoyt. In this paper the most advanced methods and theories are discussed.

It is a much more difficult matter to obtain reliable measurements under ice conditions than during the open season, for the following reasons:-
(1.) The Personal Equation.-Particularly during very cold weather it is a most uncomfortable undertaking. The engineer should be supplied with the warmest clothing outfit, such as shoepacks, etc., and several pairs of gloves.
(2) Frazil Ice.-In the Kootenays when ice conditions exist, frazil ice is generally present. The best metering sections are always above a riffle, and these sections or parts of them are always packed with frazil ice. It is a hard proposition to determine if there is any water flowing through the ice and also the width of the channel free from this packed frazil ice. Again, when this ice is flowing downstream it is liable to affect the action of the meter.
(3) Meter.-During cold weather the meter is very liable to freeze when it is out of the water.

Needless to say, the cost of winter measurements is much in excess of the open season work. Transportation is more difficult, ice has to be chopped and the measurement takes much longer.

Not many winter measurements were made in 1914. Mr. Webb covered the streams in Revelstoke district in February. In Nelson district streams on which regular gauging stations were established were all metered at various times throughout the winter. The larger of these streams, such as the Kootenay Pend d'Oreille, Columbia, and Slocan, did not freeze, so the open season curve was applicable for the whole year. In December, Messrs. Elliott and Corbould metered the power streams in Cranbrook district during a cold spell. All measurements were made in cold weather from $0^{\circ} \mathrm{F}$ to $-20^{\circ} \mathrm{F}$. Frazil ice was flowing in practically all the streams they metered and caused much trouble. The results, however, should be fairly reliable and are of value. It is an established fact that the run-off during the winter months varies with the temperature. In most years the low flow in the Kootenays occurs in February or March and, it is believed, takes place shortly after the last cold spell of the season. Particular attention will be paid to winter measurements during the latter part of February and early March in 1915.

Total Monthly Precipitation, 1914.

Locality.	Jan.	Feb.	Mar.	Apr.	May.	June.	July .	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
Golden.	$3 \cdot 65$	0.20	$1 \cdot 37$	0.75	$1 \cdot 10$	1.09	0.42	0.45	1.73	$1 \cdot 35$	1.67	0.75	14.53
Wilmer.	2.18	0.45	0.44	$1 \cdot 30$	1.32	1.51	1.96	0.82	2-54	0.85	1.23	0.53	15.69
Glacier	10.45	4.95	9.00	$4 \cdot 25$	2.93	$3 \cdot 37$	1.56	0.85	$3 \cdot 33$	$2 \cdot 55$	$9 \cdot 10$	3.53	56.22
Revelstok	9.89	$2 \cdot 06$	$3 \cdot 23$	$2 \cdot 42$	1.25	2.53	0.97	1.19	3.87	$2 \cdot 23$	7.09	1.65	38.38
Nakusp.	5.24	1. 54	0.96	3.07	1.65	$2 \cdot 43$	1.57	0.93	$2 \cdot 90$	1.93	8.31	1.58	$27 \cdot 16$
Nelson.	$6 \cdot 10$	1.00	1.58	3.07	1.95	$2 \cdot 56$	1.05	0.24	3.44	1.85	4.03	0.70	27-57
Wuneta.	5.01	1.20	$2 \cdot 36$	2.33	$2 \cdot 87$	$3 \cdot 36$	1.38	0.00	3.03	1.33	2.99	1.43	$2 \mathrm{~s} \cdot 17$
Cranbrook	$3 \cdot 63$	$0 \cdot 15$		0.79	1.08	2.02	0.97	0.44	1.27	1.57	2.47	$0 \cdot \mathrm{sel}$	
Elko.....	1.91	0.501	1.06	1.48	$2 \cdot 01$	$2 \cdot 74$	$0.90)$	1.62	1.39	$2 \cdot 45$	2 -08	$0 \cdot \mathrm{cic}$	18.94
Fernie	10.94	1-23	2.93	2-66	1.64	1.38	1.45	$2 \cdot 15$	$4 \cdot 77$	$4 \cdot 47$	7.09	0.81	42.52

6 GEORGE V, A. 1916
Mean Monthly Temperature, 1914.

Locality.	Jan.	Feb.	Mar.	Apr.	May.	Junc.	July.	Aug..	Sept.	Oct.	Nov.	Dec.	Year.
Golden.	20.5	$20 \cdot 1$	30.8	44.4	50.5	56.7	$63 \cdot 4$	59.5	50.5	$43 \cdot 4$	$30 \cdot 3$	$8 \cdot 4$	39.9
Wilmer	$22 \cdot 6$	$20 \cdot 4$	$32 \cdot 0$	$43 \cdot 6$	$50 \cdot 9$	$56 \cdot 6$	$64 \cdot 4$	61.1	$50 \cdot 8$	41.4	$30 \cdot 9$	$11 \cdot 4$	$40 \cdot 5$
Glacier	$20 \cdot 5$	$18 \cdot 6$	$26 \cdot 3$	$36 \cdot 4$	$43 \cdot 8$	51.1	57.5	$55 \cdot 7$	$45 \cdot 0$	$40 \cdot 0$	$27 \cdot 5$	11.0	$36 \cdot 1$
Revelstoke	$27 \cdot 8$	24.8	$33 \cdot 9$	$44 \cdot 9$	53.5	$58 \cdot 6$	$65 \cdot 1$	$62 \cdot 4$	$52 \cdot 7$	$45 \cdot 2$	$35 \cdot 4$	18.8	$43 \cdot 5$
Nakusp.	33.9	26.7	$35 \cdot 0$	$45 \cdot 3$	$52 \cdot 5$	$36 \cdot 1$	$64 \cdot 0$	$61 \cdot 2$	$50 \cdot 5$	$44 \cdot 5$	$36 \cdot 3$	$22 \cdot 3$	$44 \cdot 0$
Nelson.	$30 \cdot 0$	$28 \cdot 3$	$39 \cdot 1$	$48 \cdot 5$	55.0	58.5	68.8	$68 \cdot 6$	$53 \cdot 1$	$46 \cdot 1$	$37 \cdot 5$	$23 \cdot 6$	$46 \cdot 4$
Waneta.	$29 \cdot 0$	$25 \cdot 1$	$37 \cdot 3$	$47 \cdot 1$	$53 \cdot 5$	58.0	67.8	$66 \cdot 6$	$52 \cdot 1$	45.4	$35 \cdot 4$	$18 \cdot 5$	$44 \cdot 7$
Cranbrook	$25 \cdot 9$	$19 \cdot 6$		46.0	$52 \cdot 4$	$57 \cdot 5$	$64 \cdot 5$	$61 \cdot 5$	$51 \cdot 9$	$43 \cdot 4$	$34 \cdot 8$	10.4	
Elko.	$30 \cdot 7$	$24 \cdot 3$	37.4	50.4	53.8	$59 \cdot 3$	$69 \cdot 1$	$67 \cdot 3$	54.8	$45 \cdot 8$	37.1	$14 \cdot 9$	$45 \cdot 4$
Fernie.	$25 \cdot 7$	$18 \cdot 6$	31.4	$42 \cdot 7$	$49 \cdot 6$	55:3	$62 \cdot 9$	59.7	$49 \cdot 1$	$42 \cdot 1$	$53 \cdot 4$	11.8	$40 \cdot 2$

Difference from Average Precipitation, 1914
(Difference of Total for month from monthly Aversge for previous ten years or more.)

Locality.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug	Sept.	Oct.	Nov.	Dec.	Year.
Golden	-2.36	$-0 \cdot 68$	0.48	$0 \cdot 19$	0.21	-0.55	-0.95	$-1 \cdot 18$	0.08	-1.12	-1.00	-0.78	-7-14
Glacier	1.80	-2.76	1.30	1.31	1.15	$0 \cdot 58$	-0.53	-1.49	-0.81	-1.37	0.00	-4.52	-5.34
Revelstoke	$4 \cdot 35$	$-2 \cdot 62$	0.50	$0 \cdot 47$	-0.97	-0.55 6	-1.62	$-1 \cdot 21$	$0 \cdot 51$	-1.88	1.40	-2.91	-6.54
Nelson.	$3 \cdot 48$	6.86	-0.05	$1 \cdot 65$	-0.21	-0.23	-1.87	-1.70	$1 \cdot 62$	-0.45	0.52	-1.84	$0 \cdot 06$
Elko..	1.31	$-0 \cdot 65$	-0.02	$0 \cdot 52$	-0.25	$0 \cdot 15$	-0.65	$0 \cdot 28$	0.05	1.46	0.11	-0.45	$0 \cdot 86$

N.B.-All quantities are plus unless otherwise designated.

Difference from Average Temperature, 1914.

(Difference of Average for month from Monthly Average for previous ten years or more.)

Locality.	Jan.	Feb.	Mar.	Apr.	May.	June.	July:	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
Golden	11.8	$1 \cdot 2$	$1 \cdot 3$	$2 \cdot 8$	-0.8	-0.3	$2 \cdot 1$	$1 \cdot 3$	$0 \cdot 8$	$3 \cdot 0$	1.9	-10.5	$14 \cdot 6$
Glacier	$2 \cdot 0$	$0 \cdot 6$	0.8	0.9	-0.9	-0.1	$0 \cdot 5$	$1 \cdot 2$	-1.1	$4 \cdot 8$	$1 \cdot 8$	$-7 \cdot 5$	3.0
Revelstoke	$7 \cdot 3$	$2 \cdot 1$	$1 \cdot 0$	1.7	$1 \cdot 5$	$0 \cdot 2$	$2 \cdot 1$	$1 \cdot 1$	$0 \cdot 2$	$2 \cdot 2$		-8.1	$12 \cdot 0$
Nelson.	$-5 \cdot 7$	-0.4	$2 \cdot 1$	1.5	$1 \cdot 3$	-2.2	$2 \cdot 2$	$5 \cdot 7$	$-2 \cdot 9$	$1 \cdot 1$		-6.9	$-3 \cdot 3$
Elko.		-1.8	$3 \cdot 0$		$0 \cdot 9$	-0.7	$2 \cdot 6$	$4 \cdot 0$	$4 \cdot 6$	$2 \cdot 8$		$-13 \cdot 6$	$16 \cdot 2$

N.B.-All quantities are plus unless otherwise designated.

REPORT

OF THE

BRITISH COLUMBIA HYDROGRAPHIC SURVEY FOR 1914

CHAPTER 5
Coast Division-Hydrographic Data

.

CHAPTER V.

COAST DIVISION-HYDROGRAPHIC DATA.

REGULAR METERING STATION.

Belknap Creek at Belknap Lake (1000).
Location.-Just at lower end of Belknap lake in section 36, township 6, range 7, west of 7th meridian.

Records Available.-Measurements were started in October, 1912, and have been more or less continuous ever since.

Drainage Area.-Not known.
Gauge.-Vertical staff gauge.
Channel.-Bed of stream strewn with rocks and boulders, giving uneven bottom, but permanent control.

Discharge Measurements.-Nine meter measurements made during 1912, 1913, and 1914 define the rating curve very well except for extreme low and extreme high water.

Winter Flow.-Very heavy snowfall but very little ice, so that open-water conditions obtain practically all winter.

Accuracy.-D. Poor because the gauge readings were not taken very frequently.

Co-operation.-Gauge readings are made by employees of the Westminster Power Company.

Discharge Measurements of Belknap Creek, Belknap Lake, 1912-1913-1914.

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
			Feet.	Sq. ft	Ft. persec.	Feet.	Sec.-ft
Oct. 21.	C. G. Cline.	1,046	33	51	0.7	1.60	34
June 4	H. C. Hughes	1,673	35	101	$2 \cdot 7$	$3 \cdot 20$	257
4 11. 4	do	1,673	34	85	1.8	2.70 2.65	148
July 22.	do	1,673 1,673	36	88	$2 \cdot 0$	2.95 2.92	202
- 31	do	1,673	35	74	1.0	$2 \cdot 02$	75
Sept. 22.	F. MueLachlan.	1,673	35	50	0.8	$1 \cdot 55$	41
Aug.	C. C. Cline	1,933	33	66	0.8	1.72	30
Nov 15.	11. C. Hughes	1,933	35	71	0.5	1.50	34

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Belknap Creek at Belknap Lake for 1914.

Dax.	February.		March.		April.		May.		June.		July.	
	Gauge Height.	Discharge.	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge. } \end{aligned}$	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge } \end{aligned}$	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge } \end{aligned}$	Gauge Height	Discharge	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge. } \end{gathered}$
	Feet.	Sec.ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.fit.	Feet.	Sec.fit.	Feet.	Sec.-ft.
$1 .$				$\begin{aligned} & 23 \\ & 26 \end{aligned}$		$\begin{aligned} & 20 \\ & 27 \\ & 20 \end{aligned}$		81 84		109	2.85	170 183
3.		9		28		33		86		116		165
4		9	$1 \cdot 45$	30		42		89 91	$2 \cdot 45$	120		147
6.				36	1.8	57	$2 \cdot 2$	93	$2 \cdot 1$	83		111
		10		39		58		101		83	$2 \cdot 2$	93
8.		10		40		59		109		83		93
9.		10		42		60		117		83	$2 \cdot 2$	93
0		10		44		61		125		83		102
1.		10		45		62		133	$2 \cdot 1$	83		111
12		10		47		63		141		93		119
3.		11		49		64		149		105		127
4.		11		51		65		157		117		116
		11		53		66		165		129		105
6.		11		55		67		173	$2 \cdot 6$	141	$2 \cdot 2$	93
17.		11		57 59		68		181	2.5	${ }_{127}^{134}$		99 105
18	$1 \cdot 0$	11	1.85	59 61		79		197		126	$2 \cdot 32$	${ }_{97}^{105}$
20.		12		56		71		205		125		89
21.		13		51		73		213		124		
22.		14		46	$2 \cdot 0$	74	3.05	222		123		73
24.		15		40		75		192		121	2.8	57
25.		16		37		75		177		120	1.83	60
26.		17		33				162		119		
27.		19		29		77		147		117	1.86	61
28.		20		22		77		132		115		55
29.				18		78		117	$2 \cdot 4$	114		52
30.				15	2.05	79	$2 \cdot 3$	103	$2 \cdot 7$	156	1.7	49
31.			1.05	12				106			1.7	49

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Belknap Creek at Belknap Lake for 1914.

Monthly Discharge of Belknap Creek at Belknap Lake for 1914.

	Month.	Discharge in Second-Feet.			Accuracy
		Maximum.	Minimum.	Mean.	
February				12	$1)$
March...				39	1)
April.....				${ }^{63}$	$1)$
May..		222 156	81 83 8	143 113	${ }^{1}$
Junly.		153	49	97	C
August		53	21	38	C
Soptember		630	20	159	$1)$
October...		580	${ }_{3}^{22}$	136 130 1	1)
November		410 50	33 9	130 16	1)

Belknap Creek below Ann Lake (1063).

Location.-About half way between Ann lake and Belknap lake, near the proposed site for the diversion dam, and in section 36, township 6, range 7, west of 7 th meridian.

Records Available.-June to December, 1914.
Drainage Area.-Not known.
Gauge.-Vertical staff gauge.
Channel.-Boulders and gravel.
Discharge Measurements.-Five meter measurements made during 1913 and 1914 define the rating curve accurately except for very high stages.

Winter Flow.-Stream freezes at gauging section for a week or two in very cold weather.

Accuracy.-D. Poor on account of the infrequency of the gauge readings.
Co-operation.-Gauge readings are made by employees of the Westminster Power Company.

Discharge Measurements of Belknap Creek below Ann Lake, 1913-14.

Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
1913.			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
June 24	H. C. Hughes	1,673	27	76	1.8	2. 52	135
Aug. 1.	F do	1,673	32	91	0.9	$2 \cdot 08$	82
Sept. 19.	F. MacLachlan	1,673	30	60	$0 \cdot 5$	1.20	30
Aug.	C. G. Cline	1,933	31	83	$0 \cdot 6$	1.55	50
Nov. 10.	H. C. Hughes	1,933	31	59	0.5	$1 \cdot 12$	28

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Belknap Creek below Ann Lake, 1914.

Day.	June.		July.		August.		September.		October.		November.	
	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge	Gauge Height.	Discharge	Gauge Height	Discharge.
	Feet.	Sec.-ft.										
1.			2.75	170	$1 \cdot 55$	48	$1 \cdot 05$	24		60		200 250
3.				130		48		28	1.45	43	3.0	200
4				130		50		30		40		150
5				120		50		32		40		140
6.				100		50		34		35		130
7.			$2 \cdot 15$	90		50		36		30		120
8.				95	1.58	50	$1 \cdot 35$	38		25	$2 \cdot 40$	117
9				100	1.45	43		40	1.05	24		100
10.				110	1.42	42		50		30		80
11.	1.9	70		115		44		60		50		70
12.				120	$1 \cdot 50$	46		70		60		50
13.			$2 \cdot 45$	125	1.35	48		80		70	$1 \cdot 50$	46
14				110	1.50	46		100		80		40
15.				100	1.50	46		200		100		30
16.	$2 \cdot 5$	130	$2 \cdot 15$	90		40		400		200	1-10	26
17				100		35		500		400		30
18	$2 \cdot 4$	117	$2 \cdot 25$	160	$1 \cdot 23$	32	5-10	600	$4 \cdot 55$	500		35
19			$2 \cdot 28$	100	1.23	32		400		300		40
20.				90	1.23	32	$3 \cdot 05$	220		200		45
21.				80	1.23	$3{ }^{7}$		200		100	$1 \cdot 55$	48
22				70	$1 \cdot 23$	32		150		80		70
23.				60		30		100		50	$2 \cdot 15$	90
24.			1.76	60		30		100	$1 \cdot 55$	45		100)
25.				60	$1 \cdot 13$	27		90		45		110
26.				60		27		90		45		120
27.			1.76	60		26		90		45	$2 \cdot 45$	125
28				55		26	$2 \cdot 10$	85	$1 \cdot 45$	43		100
29	$2 \cdot 3$	105		50	$1 \cdot 10$	26		80		50		81
30.	$2 \cdot 6$	145	1-55	48		25		70		100		60
$31 .$.			48		25				200		- 1 +

Daily Gatge Height and Discharge of Belknap Creek below Ann Lake, for 1914.-Concluded.

Monthly Discharge of Belknap Creek below Ann Lake, for 1914.

Month.	Discharge in Second-Feet.			Accuracy.
	Maximum.	Minimum.	Mean.	
July .	170	48	89	C
August	50	25	38	C
September...	600 500	24	134	D
October	500 250	24	101	D
November	250 50	26	$\begin{array}{r}93 \\ 24 \\ \hline\end{array}$	D
December.....	50	18	24	D

Boulder Creek (1001).
Location.-Near mouth of creek and near Jones lake in section 28, township 3 , range 27, west of 6 th meridian.

Records available.-Daily discharges from January, 1913, to December, 1914.
Drainage Area.-Not known.
Gauge.-A fine wire is stretched tightly across the stream, and the distance to the water surface is measured with a graduated rod. These figures are subtracted from 15.00 to give the direct readings.

Channel.-Bed of stream covered with large rocks, giving an uneven bottom but good control.

Winter Flow.-The stream freezes over for a month or two each winter.
Accuracy. -Below 100 cubic feet per second, "B". Above 100 cubic feet per second, "C".

Co-operation.-The records on this stream are kept by Messrs. Anderson and Warden, Civil Engineers, Vancouver, for the Vancouver Power Company.

Discharge Measurements of Boulder Creek near mouth, 1911-12-13-14.

Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
1911.			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
Nov. 3.	K. N. Smith	1,057	28	24	0.5	$4 \cdot 20$	$12 \cdot 6$
Sept. 8.	C. G. Cline.	1,046	30	24	$0 \cdot 5$	$4 \cdot 25$	$13 \cdot 1$
$\begin{array}{ll}\text { July } \\ \text { Sept. } \\ & 24 \\ 11\end{array}$	K. G. Chisholm. ${ }_{\text {K }}$ K. Chisholm and F M	1,055	27	52	$1 \cdot 6$	4.90	84.6
	Lachlan.	1,055	32	34	1.0	$4 \cdot 60$	$34 \cdot 6$
July 24	C. G. Cline.	1,933	30	34	0.7	$4 \cdot 40$	22.7

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Boulder Creek near mouth, for 1914.

Day.	January.		February.		March.		April.		May.		June.	
	Gauge Height.	Discharge	Gauge Height.	Discharge.								
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	See.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-it.
1	$4 \cdot 25$	15	$4 \cdot 3$	16	$4 \cdot 8$	65	$4 \cdot 45$	25	$5 \cdot 1$	120	$5 \cdot 25$	150
2	$4 \cdot 25$	15	$4 \cdot 3$	16	$4 \cdot 65$	44	4.45	25	$5 \cdot 4$	180	$5 \cdot 25$	150
3.	$4 \cdot 25$	15	$4 \cdot 4$	22	$4 \cdot 55$	33	4.8	65	$5 \cdot 45$	190	$5 \cdot 15$	130
4.	$5 \cdot 3$	160	$4 \cdot 4$	22	$4 \cdot 5$	28	$5 \cdot 0$	105	$5 \cdot 15$	130	$4 \cdot 9$	85
5.	$5 \cdot 6$	220	$4 \cdot 4$	22	$4 \cdot 45$	25	$5 \cdot 25$	150	$5 \cdot 05$	115	$4 \cdot 8$	75
6	$6 \cdot 0$	300	$4 \cdot 95$	95	$4 \cdot 4$	22	$5 \cdot 05$	110	$5 \cdot 0$	105	$4 \cdot 75$	58
7	$5 \cdot 35$	170	$4 \cdot 7$	50	$4 \cdot 4$	22	$5 \cdot 05$	110	$5 \cdot 05$	115	4.7	50
8	4.95	95	$4 \cdot 55$	33	$4 \cdot 6$	37	$5 \cdot 1$	120.	$5 \cdot 1$	120	$4 \cdot 7$	50
9	$4 \cdot 75$	57	$4 \cdot 5$	28	- $4 \cdot 6$	37	$5 \cdot 1$	120	$5 \cdot 2$	140	$4 \cdot 8$	65
$10 \ldots$.	$4 \cdot 7$	50	$4 \cdot 4$	22	$4 \cdot 5$	28	$5 \cdot 1$	120	$5 \cdot 3$	160	$4 \cdot 75$	58
11.	$4 \cdot 65$	43	$4 \cdot 25$	15	$4 \cdot 5$	28	$5 \cdot 05$	110	$5 \cdot 25$	150	$4 \cdot 9$	85
12.	$4 \cdot 6$	37	$4 \cdot 25$	15	$4 \cdot 5$	28	$5 \cdot 0$	105	$5 \cdot 25$	150	$5 \cdot 05$	115
13.	$4 \cdot 55$	33	$4 \cdot 2$	13	$4 \cdot 8$	65	$5 \cdot 05$	110	$5 \cdot 3$	160	$5 \cdot 05$	115
14	$4 \cdot 55$	33	$4 \cdot 2$	13	$5 \cdot 3$	160	$5 \cdot 1$	120	$5 \cdot 5$	200	$5 \cdot 05$	115
15	$4 \cdot 5$	28	$4 \cdot 25$	15	$4 \cdot 8$	65	$5 \cdot 3$	160	$5 \cdot 3$	160	$5 \cdot 1$	120
16.	$4 \cdot 5$	28	$4 \cdot 3$	16	$5 \cdot 0$	105	$5 \cdot 0$	105	$5 \cdot 2$	140	$5 \cdot 15$	130
17.	$4 \cdot 4$	22	$4 \cdot 3$	16	$5 \cdot 1$	120	$4 \cdot 85$	75	$5 \cdot 2$	140	$5 \cdot 05$	115
18.	$4 \cdot 4$	22	$4 \cdot 3$	16	$5 \cdot 0$	105	4.85	75	$5 \cdot 2$	140	$5 \cdot 0$	105
19.	$4 \cdot 4$	22	$4 \cdot 3$	16	4.95	95	$5 \cdot 4$	180	$5 \cdot 15$	130	$4 \cdot 9$	85
20.	$4 \cdot 35$	19	$4 \cdot 35$	19	$5 \cdot 1$	120	$5 \cdot 1$	120	$5 \cdot 2$	140	$4 \cdot 9$	85
21.	$4 \cdot 35$	19	$4 \cdot 4$	22	$5 \cdot 1$	120	$4 \cdot 9$	85	$5 \cdot 2$	140	$4 \cdot 8$	65
22.	$4 \cdot 35$	19	$4 \cdot 5$	28	$5 \cdot 0$	105	$4 \cdot 85$	75	$5 \cdot 25$	150	$4 \cdot 8$	65
23.	$4 \cdot 35$	19	$4 \cdot 45$	25	$4 \cdot 9$	85	$4 \cdot 85$	75	$5 \cdot 3$	160	4.75	58
24.	$4 \cdot 35$	19	$4 \cdot 45$	25	$4 \cdot 85$	75	$4 \cdot 8$	65	$5 \cdot 25$	150	$4 \cdot 8$	65
$25 . .$.	$4 \cdot 40$	22	$4 \cdot 45$	25	$4 \cdot 7$	50	$4 \cdot 75$	58	$5 \cdot 15$	130	$4 \cdot 85$	75
26.	$4 \cdot 4$	22	$4 \cdot 4$	22	$4 \cdot 8$	65	$4 \cdot 75$	58	$5 \cdot 0$	105	4.85	75
27.	$4 \cdot 4$	22	$4 \cdot 6$	37	$4 \cdot 6$	37	$4 \cdot 75$	58	$5 \cdot 0$	105	$5 \cdot 1$	120
28.	$4+4$	22	$4 \cdot 5$	28	$4 \cdot 55$	33	$4 \cdot 75$	58	$4 \cdot 9$	85	$4 \cdot 9$	85
29.	$4 \cdot 4$	22			$4 \cdot 55$	33	$4 \cdot 7$	50	$4 \cdot 8$	65	4.95	95
30.	$4 \cdot 4$	22			$4 \cdot 5$	28	$4 \cdot 85$	75	$4 \cdot 9$	85	$4 \cdot 95$	95
31.	$4 \cdot 35$	19			$4 \cdot 5$	28			$5 \cdot 1$	120		

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Boulder Creek near mouth for 1914.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge.	Gauge Height.	Discharge	Gauge Height.	Discharge	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.
	Feet.	Sec.-ft.										
1.	4.95	95	$4 \cdot 3$	16	4.05	9	$4 \cdot 35$ 4.35	19	5.3	160	$4 \cdot 6$	37
2	4.95 4.95	95 95	$4 \cdot 25$ $4 \cdot 25$	15	4.05 4.05	9 9	$4 \cdot 35$ $4 \cdot 3$	19 16	$5 \cdot 1$ $5 \cdot 1$	120 120	$4 \cdot 5$ $4 \cdot 5$	28 28
4	4.9	85	$4 \cdot 25$	15	4.05	9	$4 \cdot 3$	16	$5 \cdot 25$	150	$4 \cdot 4$	22
5	$4 \cdot 8$	65	$4 \cdot 25$	15	4.05	9	$4 \cdot 25$	15	$5 \cdot 0$	105	$4 \cdot 4$	22
6	$4 \cdot 7$	50	$4 \cdot 25$	15	4.05	9	$4 \cdot 25$	15	4.8	65	$4 \cdot 4$	22
7	$4 \cdot 7$	50	$4 \cdot 3$	16	4.05	9	$4 \cdot 2$	13	$4 \cdot 7$	50	$4 \cdot 35$	19
8	$4 \cdot 7$	50	$4 \cdot 45$	25	$4 \cdot 4$	22	$4 \cdot 2$	13	$4 \cdot 8$	65	$4 \cdot 35$	19
9	$4 \cdot 7$	50	$4 \cdot 3$	16	$4 \cdot 45$	25	$4 \cdot 2$	13	$4 \cdot 9$	85	$4 \cdot 3$	16
10.	$4 \cdot 7$	50	$4 \cdot 25$	15	$4 \cdot 35$	19	$4 \cdot 2$	13	$4 \cdot 8$	65	$4 \cdot 3$	16
11.	$4 \cdot 7$	50	$4 \cdot 25$	15	$4 \cdot 5$	28	$4 \cdot 4$	22	$5 \cdot 15$	130	Frozen..	15
12	$4 \cdot 7$	50	$4 \cdot 2$	13	$4 \cdot 35$	19	$4 \cdot 35$	19	$4 \cdot 9$	85		15
13.	$4 \cdot 7$	50	$4 \cdot 2$	13	$4 \cdot 3$	16	$4 \cdot 4$	22	$4 \cdot 6$	37		15
14.	$4 \cdot 7$	50	$4 \cdot 2$	13	$4 \cdot 35$	19	$4 \cdot 3$	16	$4 \cdot 6$	37	.	15
15.	$4 \cdot 7$	50	$4 \cdot 15$	12	$4 \cdot 6$	37	$4 \cdot 25$	15	$4 \cdot 6$	37	\ldots	15
16	$4 \cdot 6$	37	4-15	12	$4 \cdot 5$	28	$4 \cdot 2$	13	$4 \cdot 5$	28		15
17.	$4 \cdot 6$	37	$4 \cdot 15$	12	$4 \cdot 5$	28	$4 \cdot 8$	65	$4 \cdot 5$	28		15
18.	$4 \cdot 6$	37	$4 \cdot 15$	12	$5 \cdot 0$	105	$4 \cdot 7$	50	4.45	25	-1.	15
19.	$4 \cdot 6$	37	$4 \cdot 15$	12	$4 \cdot 85$	75	$4 \cdot 85$	75	$4 \cdot 6$	37		15
20.	$4 \cdot 6$	37	$4 \cdot 15$	12	$4 \cdot 7$	50	$4 \cdot 65$	44	$4 \cdot 7$	50	\cdots	15
21	$4 \cdot 55$	33	$4 \cdot 15$	12	$4 \cdot 65$	44	$4 \cdot 5$	28	$4 \cdot 8$	65		10
22	$4 \cdot 5$	28	$4 \cdot 15$	12	$4 \cdot 5$	28	$4 \cdot 45$	25	$4 \cdot 8$	65		10
23.	$4 \cdot 45$	25	$4 \cdot 1$	10	4.45	25	$4 \cdot 4$	22	$4 \cdot 8$	65		10
24	$4 \cdot 4$	22	$4 \cdot 1$	10	$4 \cdot 35$	19	$4 \cdot 4$	22	4.85	75		10
25.	$4 \cdot 4$	22	$4 \cdot 1$	10	$4 \cdot 3$	16	$4 \cdot 4$	22	$4 \cdot 95$	93	- .	10
26.	$4 \cdot 4$	22	$4 \cdot 1$	10	$4 \cdot 25$	15	$4 \cdot 35$	19	5-10	120		10
27.	$4 \cdot 4$	22	$4 \cdot 1$	10	$4 \cdot 6$	37	$4 \cdot 3$	16	$5 \cdot 05$	115		15
28	$4 \cdot 35$	19	4.05	9	$4 \cdot 45$	25	$4 \cdot 25$	15	4.90	85		15
29	$4 \cdot 3$	16	4.05	9	$4 \cdot 4$	22	$4 \cdot 25$	15	4.75	60		15
30.	$4 \cdot 3$	16	4.05	9	$4 \cdot 35$	19	$4 \cdot 5$	28	$4 \cdot 65$	44		15
31.	$4 \cdot 3$	16	$4 \cdot 05$	9			$4 \cdot 9$	85		- . . .	Frozen..	15

Monthly Discharge of Boulder Creek near mouth for 1914.

Month.	Discearge in Second-Feet.			Rus-Ofr.	
	Maximum.	Minimum.	Mean.	Total in acre-feet.	Aceuracy
January.	300	15	52	3,200	C
February	95	13	25	1,390	B
March........	160	22	61	3,750	R
April...	180	25	92	5,470	C
	200	65	135	8.300	C
	150	50	91	5,410	(1)
July +	95	15	44	2, $7(0)$	H
August	25	9	13	S(3)	13
September	105	9	26	1.551	18
October	85	13	25	1, $5+0$	$\stackrel{1}{8}$
	160 37	25	75 17	4,520 1,1150	C
	37	10	17	1,130)	C
The year....	300	9	55	30.650	C

Brandt Creek at Mouth (1002)

Location.-Section 4, township 7, range 7, west of the 7th meridian.
Records Available.-October 19 to December 31, 1912; January 1 to December 31, 1913; January 1, to September 11, 1914, station abandoned, and new station above Young creek used.

Drainage Area.-Not known.
Gauge.-Vertical staff gauge, nailed to tree. Generally five or six readings a week.

Channel.-Rocky bed, giving a rough bottom but permanent control.
Discharge measurements.-Rating curve well defined by nine meter measurements made during 1912 and 1913.

Winter Flow.-Open all year.
Accuracy.-B, when gauge readings were taken frequently enough.
Co-operation. - Gauge readers maintained by Westminster Power Company.
Discharge Measurements of Brandt Creek at mouth, 1912-13-14.

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
1912.			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec-fit.
Oct. 19.	C. G. Cline	1046	30	25	1.5	$2 \cdot 02$	37
May 29	H. C. Hughes	1673	40	53	$2 \cdot 3$	${ }^{2} \cdot 63$	122
June $\begin{array}{r}9 \\ \text { June } \\ \hline\end{array}$		${ }_{1673}^{1673}$	36 36	49	1.9	${ }_{2}^{2 \cdot 35}$	${ }_{75}^{94}$
June 27	do	1673	36	53	2.2	2.57	115
July 3.	do	1673 1673	36 19	${ }_{20}^{42}$	1.4 0.6	2.26 1.62	59 13
July 29	F. do	1673	19	${ }_{19}^{20}$	0.6	1.62 1.48 1	13
Sept ${ }^{24}$	F. MacLachlan	1673	${ }_{41}^{21}$	${ }_{27}^{19}$	$0 \cdot 5$ 1.3	1.48 2.08	9 36
Nov. 12	do	1521	40	23	$1 \cdot 1$	1.91	25
Nov. 13.	do	1521	40	21	$1 \cdot 1$	1.84	24
1914.							
May 15.	do	1521	41	46	$2 \cdot 3$	$2 \cdot 56$	102

[^5]SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Brandt Creek at mouth for 1914.

Day.	January.		February.		March.		April.		May.		June.	
	Gauge Height	Discharge.	Gauge Height.	Discharge	Gauge Height.	Discharge	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.
	Feet.	Sec.-ft.										
1	2.00	33	1.8	21	$3 \cdot 0$	190	1.9	26	$2 \cdot 5$	100	$2 \cdot 5$	100
2	$2 \cdot 55$	110	1.7	16	$2 \cdot 5$	100	1.92	28	$2 \cdot 65$	130	$2 \cdot 4$	83
3	$2 \cdot 45$	90	1.7	16	$2 \cdot 5$	100	$2 \cdot 6$	120	$2 \cdot 6$	120	$2 \cdot 2$	53
4	5.20	610	1.7	16	$2 \cdot 25$	60	$2 \cdot 7$	140	$2 \cdot 3$	67	$2 \cdot 08$	40
5.	$3 \cdot 20$	230	1.65	14	$2 \cdot 05$	37	$2 \cdot 8$	155	$2 \cdot 25$	60	1.95	30
6	$3 \cdot 30$	245		15	$2 \cdot 0$	33	$2 \cdot 55$	110	$2 \cdot 3$	67	1.9	26
7	$2 \cdot 90$	175		15		40	$2 \cdot 5$	100	$2 \cdot 3$	67		30 35
8		150	1.7	16		50	$2 \cdot 45$	90	$2 \cdot 5$	100		35
9		100		16		60	$2 \cdot 50$	100	$2 \cdot 45$	90		40
10.		80	1.7	16		70	$2 \cdot 5$	100	$2 \cdot 35$	75	$2 \cdot 1$	42
11		60	1.7	16		80	$2 \cdot 5$	100		100	$2 \cdot 2$	53
12		50	1.75	18		90	$2 \cdot 3$	67		120	$2 \cdot 2$	53
13		40	$2 \cdot 05$	37		100	$3 \cdot 5$	280	$2 \cdot 7$	140	$2 \cdot 3$	67
14	$2 \cdot 0$	33	1.9	26		110	$3 \cdot 0$	190	$2 \cdot 6$	120	$2 \cdot 5$	100
15.		35	1.9	26		120	$3 \cdot 4$	265	$2 \cdot 4$	83	$2 \cdot 6$	120
16.		40	1.92	27	$2 \cdot 65$	130	2.9	175	$2 \cdot 5$	100	$2 \cdot 2$	53
17	$2 \cdot 1$	42	1.97	31	$2 \cdot 60$	120		160	$2 \cdot 25$	60	$2 \cdot 1$	42
18	$2 \cdot 1$	42	1.95	30	$2 \cdot 50$	160	$2 \cdot 7$	140	$2 \cdot 25$	60		40
19.	$2 \cdot 1$	42	$2 \cdot 0$	33	$2 \cdot 65$	130	$3 \cdot 4$	265	$2 \cdot 25$	60	$2 \cdot 05$	38
20.	1.95	30	$2 \cdot 0$	33	$2 \cdot 70$	140	$2 \cdot 5$	100	$2 \cdot 4$	83	$2 \cdot 05$	38
21	1.9	26	$2 \cdot 3$	67	$2 \cdot 65$	130	$2 \cdot 3$	67	2.45	90	$2 \cdot 00$	33
22		20	$2 \cdot 4$	83	$2 \cdot 50$	100	$2 \cdot 25$	60	2.7	140	2.00	33
23.	1.75	18	2.7	140	$2 \cdot 30$	67	$2 \cdot 3$	67	$2 \cdot 5$	100	2.00	33
24	1.7	16	$2 \cdot 5$	100	$2 \cdot 20$	53	$2 \cdot 25$	60	$2 \cdot 3$	67	2-10	42
25.	1.7	16	$2 \cdot 2$	53	$2 \cdot 10$	42	$2 \cdot 1$	42	$2 \cdot 7$	140	$2 \cdot 68$	135
26	$2 \cdot 15$	48	$2 \cdot 1$	42	$2 \cdot 0$	33		45	$3 \cdot 3$	245	$2 \cdot 40$	83
27.	1.9	26	$2 \cdot 3$	67	1.9	26		45	$2 \cdot 7$	140	$2 \cdot 70$	140
28.	1.8	21	$2 \cdot 2$	53	1.9	26	$2 \cdot 15$	48	$2 \cdot 3$	67		130
29	1.8	21			$2 \cdot 3$	67	$2 \cdot 15$	48	$2 \cdot 1$	43		120
30.	1.95	30			$2 \cdot 1$	42	$2 \cdot 3$	67	$2 \cdot 3$	67		110
31....	1.9	26			$2 \cdot 0$	33			$2 \cdot 6$	120		. .

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Brandt Creek at mouth for 1914.

Monthly Discharge of Brandt Creek at mouth for 1914.

Monte.		Discharge in Second-Feet.			Accuracy
		Maximum.	Minimum.	Mean.	
January.		610	16	81	D
February		140	14	37 80	$\stackrel{\text { B }}{\text { B }}$
March April.		190	${ }_{26}^{26}$	80 109	B
May..		245	42	97	B
June.		140	26	65	C
July ...		42	7	18	D
August.		8	5	6	D

Brandt Creek above Young Creek (1021).
Location.-A few hundred feet above the mouth of Young creek, in section 10 , township 7 , range 7 , west of 7 th meridian.

Records Available.-Part of 1914, with interruptions.
Drainage Area.-Not known.
Gauge.- The original staff gauge has been replaced by a chain gauge mounted on a pole which is fastened to trees and projects over the stream.

SESSIONAL PAPER No. 25e

Channel.-Solid rock at control.
Discharge measurements.-Nine meter measurements were made during 1913 and 1914, but most of them were referred to the old gauge which was washed out.

Winter Flow.-Very heavy snowfall but practically no ice, so that open water conditions obtain all winter.

Accuracy.-D.
Co-operation.-Gauge readers are maintained by Westminster Power Company.

Discharge Measurements of Brandt Creek above Young Creek, 1913-1914.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Date. \& Hydrographer. \& Meter No. \& Width. \& Area of Section. \& \[
\begin{aligned}
\& \text { Mean } \\
\& \text { Velocity. }
\end{aligned}
\] \& \begin{tabular}{l}
Gauge \\
Height.
\end{tabular} \& Discharge. \\
\hline 1913. \& \multirow{7}{*}{\[
\begin{aligned}
\& \text { H. C. Hughes.. } \\
\& \text { do } \\
\& \text { F. MacLachlan. }
\end{aligned}
\]} \& \multirow{7}{*}{\[
\begin{aligned}
\& 1673 \\
\& 1673 \\
\& 1673 \\
\& 1673 \\
\& 1673 \\
\& 1673
\end{aligned}
\]} \& Feet. \& Sq. ft. \& Ft. per sec. \& Feet. \& Sec.-ft. \\
\hline June 3 . \& \& \& 11 \& 21.5 \& \(3 \cdot 3\) \& 1.70 \& 73.5 \\
\hline " 10 \& \& \& 11 \& 16.5 \& \(2 \cdot 2\) \& 1.50 \& 37.0 \\
\hline \& \& \& 11 \& 18.0 \& 3.1 \& \(1 \cdot 60\) \& 54.2 \\
\hline July \({ }^{\text {a }}\) \& \& \& 10 \& 12.9
8.4 \& 1.6
0.6 \& 1.30
0.70 \& 21.0
4.7 \\
\hline Sept. 30 \& \& \& 9 \& 8.4 \& \(0 \cdot 3\) \& 0.51 \& \(2 \cdot 4^{1}\) \\
\hline 1914. \& \& \& \& \& \& \& \\
\hline May 18 \& F. MacLachlan \& 1521 \& 12 \& 15.7 \& 1.5 \& 1.88 \& \\
\hline July
Nov.

14 \& C. G. Cline.... \& ${ }_{193}^{1933}$ \& 888 \& 1.1
10.4 \& 0.7
0.6 \& 0.70 \& 0.8

\hline Nov. 14 \& H. C. Hughes.. \& 1933 \& \& \& 0.6 \& $1 \cdot 64$ \& $6.0{ }^{2}$

\hline
\end{tabular}

[^6]6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Brandt Creek above Young for 1914.

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Brandt Creek above Young Creek, 1914.

Day.	August.		September.		October.		November.		December	
	Gauge Height.	Discharge.	Gauge Height	Discharge.						
	Feet.	Sec.-ft.								
1		0.8	0.57	$0 \cdot 4$					$1 \cdot 70$	
3.	0.7	0.8 0.8		0.6 0.8	0.90	$2 \cdot 00$				
4.		0.8		1.0						
5.		$0 \cdot 7$		$1 \cdot 2$					1.60	6
6.		$0 \cdot 7$		$1 \cdot 4$..					
7.		0.6 0.6	0.85	1.6 1.8						
8.		0. 5	0.98	1.8 2.8					1.50	
10.	$0 \cdot 6$	0.5		4	0.90	2.00			1.50	
11.		$0 \cdot 5$		6			$2 \cdot 40$			
12.		0.5 0.5		10						
14.	0.6	$0 \cdot 5$ 0.5		50			1. 60	6	$1 \cdot 55$	
15.	0.6	$0 \cdot 5$		100						
16.		$0 \cdot 5$		150			$1 \cdot 50$			
17.		0.5		200						
18.	$0 \cdot 6$	$0 \cdot 5$	3.20	250 100	$3 \cdot 20$	$2 \cdot 50$			1.45	..
19.		0.5 0.5		100 20 ${ }^{\text {a }}$				
20.	0.6	$0 \cdot 5$	1.80	20						
21.		$0 \cdot 3$		15			$2 \cdot 50$		1.45	
22.	$0 \cdot 6$	$0 \cdot 5$		10						
23.		$0 \cdot 5$ 0.5		10 10	-		$2 \cdot 70$		$1+35$
25.	$0 \cdot 6$	$0 \cdot 5$		8						
26.		$0 \cdot 5$		6			$2 \cdot 00$			
27.	$0 \cdot 6$	$0 \cdot 5$		4						
28.		$0 \cdot 5$	1.05	$3 \cdot 5$			$2 \cdot 15$		1.40	
29.	$0 \cdot 6$	$0 \cdot 5$		3						
$30 \ldots .$.		0.5		3					$2 \cdot 35$	- . .
31.		0.4								

Monthly Discharge of Brandt Creek above Young Creek, for 1914.

	Month.	Discharge in Second-Feet.			Accuracy.
		Maximum.	Minimum.	Mean.	
May		42	15	24	$1)$
June.	10	20	6	12	1)
July	+1 $=$	52	0.8	9.1	C
August.		0.8	0.4	0.6	C
September		250	0.4	33	1)

('abilano Creek (1023).
Location.-Just above the Vimeouver intake about 6 miles from the mouth of the creek.

Records Available.-Daily discharges from November, 1913, to date.
Drainage Area. Fifty-five square miles, estimated by the engineers of the Provincial Water Rights Brameh.

Gauge. - Vertical staff, realings twiee a day.

Channel.-Rocky bed, water swift at high stages. At low water a small temporary dam is sometimes placed in the channel below the gauge. The gauge readings have been corrected to allow for the backwater caused by it.

Discharge Measurements.-Eight meter measurements during 1914.
Winter Flow.- Open water all year.
Accuracy.-C.
Co-operation.-Gauge readings taken by employees of the Vancouver Waterworks Department.

Discharge Measurements of Capilano Creek above city intake, 1914.

${ }^{1}$ Affected by backwater from dam.
Daily Gauge Height and Discharge of Capilano Creek at Intake for 1914.

SESSIONAL PAPER No. 25e
Daily Gatge Height and Discharge of Capilano Creek at Intake for 1914 -Con.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height	Discharge.	Gzuge Height.	Dis charge.
	Feet.	Sec.-ft.										
,	$5 \cdot 67$	1,220	3.46	80	$3 \cdot 17$	80	$4 \cdot 9$	600	$9 \cdot 0$	6,400	$5 \cdot 1$	725
2.	$5 \cdot 75$	1,300	$3 \cdot 46$	80	$3 \cdot 07$	55	$5 \cdot 5$	1,050	8.7	5,900	$4 \cdot 8$	550
3	5.46	1,000	$3 \cdot 42$	80	$3 \cdot 12$	55	$4 \cdot 8$	550	6.2	1,825	4.8	550
4	5.04	680	$3 \cdot 33$	70	$3 \cdot 07$	55	$4 \cdot 2$	275	$7 \cdot 0$	2,950	$4 \cdot 6$	450
5.	4.79	550	$3 \cdot 37$	70	$2 \cdot 82$	40	$4 \cdot 1$	240	$5 \cdot 6$	1,150	$4 \cdot 3$	315
6	$4 \cdot 75$	520	3.76	140	$2 \cdot 95$	45	$4 \cdot 0$	205	$5 \cdot 2$	800	$4 \cdot 2$	275
7.	$4 \cdot 67$	490	3. 80	150	$2 \cdot 95$	45	$4 \cdot 0$	205	$5 \cdot 3$	875	$4 \cdot 1$	240
8.	$4 \cdot 62$	460	$3 \cdot 88$	170	$3 \cdot 95$	190	$3 \cdot 9$	175	$7 \cdot 4$	3,600	4.0	205
9	4.46	380	$3 \cdot 67$	120	$3 \cdot 45$	80	$3 \cdot 9$	175	6.2	1,800	$4 \cdot 0$	205
10.	$4 \cdot 47$	370	$3 \cdot 56$	100	$3 \cdot 74$	135	$4 \cdot 1$	240	$5 \cdot 9$	1,500	$3 \cdot 9$	175
11.	$4 \cdot 47$	370	$3 \cdot 60$	105	$3 \cdot 70$	125	$4 \cdot 3$, 315	$6 \cdot 0$	1,600	3.8	150
12	$4 \cdot 47$	370	$3 \cdot 60$	105	$3 \cdot 37$	70	$8 \cdot 0$	4,700	$5 \cdot 2$	800	$3 \cdot 3$	150
13.	$4 \cdot 34$	330	$3 \cdot 60$	105	$3 \cdot 16$	60	8.5	5,600	$5 \cdot 0$	660	$3 \cdot 6$	105
14	$4 \cdot 42$	360	$3 \cdot 6 \mathrm{C}$	105	$3 \cdot 45$	80	$5 \cdot 8$	1,350	$4 \cdot 6$	430	3.6	105
15.	$4 \cdot 30$	315	$3 \cdot 60$	105	$3 \cdot 95$	190	$5 \cdot 1$	725	$4 \cdot 2$	275	3-6	105
16	$4 \cdot 13$	250	3.60	105	$3 \cdot 53$	90	$9 \cdot 0$	6,400	$4 \cdot 2$	275	$3 \cdot 7$	125
17.	$4 \cdot 30$	315	$3 \cdot 52$	90	$4 \cdot 12$	250	$8 \cdot 1$	4,900	$4 \cdot 1$	240	$3 \cdot 5$	85
18.	$4 \cdot 38$	350	$3 \cdot 32$	70	$7 \cdot 65$	4,060	$10 \cdot 2$	8,500	$4 \cdot 0$	205	$3 \cdot 5$	85
19.	$4 \cdot 34$	330	$3 \cdot 40$	75	8.52	5,620	8.3	5,200	$5 \cdot 4$	950	3-3	65
20.	3.92	180	3.40	75	6.32	1,970	$6 \cdot 7$	2,500	$5 \cdot 2$	800	$3 \cdot 3$	65
21.	$3 \cdot 76$	140	$3 \cdot 40$	75	$5 \cdot 19$	790	5.8	1.350	5.4		$3 \cdot 3$	65
22	3.72	130	3.40	75	$4 \cdot 52$	410	5.1	- 725	5.8	1,350	$3 \cdot 2$	60
23.	3.84	160	3.40	75	$4 \cdot 19$	270	$4 \cdot 8$	550	$6 \cdot 5$	2,225	$3 \cdot 2$	60
24.	$3 \cdot 88$	170	$3 \cdot 32$	70	4.07	235	$4 \cdot 2$	275	$6 \cdot 5$	2,223	$3 \cdot 1$	55
25.	3.88	170	$3 \cdot 32$	70	$3 \cdot 90$	175	$4 \cdot 2$	275	6.8	2,650	$3 \cdot 1$	35
26.	3.97	200	$3 \cdot 32$	70	$4 \cdot 82$	560	$4 \cdot 2$	275	6.0	1,575	$3 \cdot 2$	60
27.	$3 \cdot 76$	140	$3 \cdot 26$	65	$5 \cdot 57$	1,120	$4 \cdot 2$	275	$6 \cdot 0$	1,575	$3 \cdot 4$	75
28.	$3 \cdot 67$	120	$3 \cdot 30$	65	$5 \cdot 40$	950	$4 \cdot 1$	240	$6 \cdot 4$	2,075	$3 \cdot 4$	75
29	$3 \cdot 46$	80	$3 \cdot 30$	65	$4 \cdot 82$	560	$4 \cdot 0$	205	$5 \cdot 4$	950	$4 \cdot 3$	315
30.	$3 \cdot 50$	85	$3 \cdot 30$	65	$4 \cdot 98$	650	$5 \cdot 4$	950	$5 \cdot 0$	660	$4 \cdot 5$	400
31	$3 \cdot 50$	85	$3 \cdot 30$	65			6.5	2,225	\ldots	. .	$4 \cdot 5$	400

Monthly Discharge of Capilano Creek at Intake for 1914.
(Drainage area, 55 square miles).

Month.	Discharge in Second-Feet.				Res-Ory		Accuracy
	Maximum.	Minimum.	Slean.	Per square mile.	Depth in inches on Drainage area.	Total in acre-feet.	
January . .	8,9(4)	520	2,170	39.50	45.50	133.000	C
February ${ }^{\text {a }}$ anat	2,800	$4(1)$	875	15.90	16.60	48.6100	i
March.	4,250	4160	1,2:5	22.30	25.70	75,300	i
April	3,050	416	1,220	22.20	24.30	72,600	i
May	1.760	580	1,215	$22 \cdot 10$	25.50	74,700	i
June . .n.er mint	1,630	420	-930	16.90	18.90	35,300	i
July May	1. $3(6)$	80	375	6. 82	7.80	23, 116	i
Auguat	. 170	65	90	1.63	1. Ax	5,510	i
September	5,620	40	. 635	1155	12.94	37,540	c-
October 1	8.510	175	1,655	$30 \cdot 10$	34.70	101. (46)	i.
November	6, 400	205	1,645	29 37 37	$33 \cdot 41$ 43.00	97.7100 12.800	i
December	725	55	305	3730		12 860	
The year midy mond	8.2001	55	1.120	2185	3006 as	737, 200	C

Chehalis River (1003).
Location.-One and a half miles from the mouth, in section 14, township 4, range 30 , west of the 6 th meridian.

Records Available.-Continuous records since March, 1912.
Drainage Area.-Two hundred square miles.
Gauge.-Chain gauge suspended over river by pole spiked to two trees and heldin position by a stay wire from the top of one of the trees.

Channel.-Rocky bed, water swift at higher stages.
Discharge measurements.-Ten discharge measurements during 1912, 1913 and 1914.

Winter Flow.-Open water all year.
Accuracy.-Below 3,000 cubic feet per second, "B". Above 3,000 cubic feet per second, "C".

Discharge Measurements of Chehalis River at $1 \frac{1}{2}$ miles from mouth, 1911-12-13-14.

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Chehalis River one mile from mouth for 1914.

DAY.	January.		February.		March.		April.		May.		June.	
	Gauge Height	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.
	Feet.	Sec. -ft .	Feet.	Sec.-ft.								
1	3.9	1,140	$4 \cdot 3$	1,550	6.4	9,600	4.8	2,450	$4 \cdot 6$	2,000	$4 \cdot 1$	1,320
2	$3 \cdot 8$	1,060	$4 \cdot 2$	1,430	$5 \cdot 7$	6,250	$4 \cdot 7$	2,200	$4 \cdot 55$	1,910	$4 \cdot 05$	1,280
3	$3 \cdot 7$	980	$4 \cdot 05$	1,270	$5 \cdot 2$	3,850	$4 \cdot 8$	2,450	$4 \cdot 5$	1,820	$4 \cdot 0$	1,230
4	$6 \cdot 6$	10,600	$3 \cdot 9$	1,140	$5 \cdot 0$	3,100	$4 \cdot 9$	2,750	$4 \cdot 6$	2,000	$4 \cdot 1$	1,320
5	$8 \cdot 0$	17,000	$3 \cdot 8$	1,060	$4 \cdot 7$	2,200	$5 \cdot 2$	3,850	4.6	2,000	$4 \cdot 0$	1,230
6.	$9 \cdot 0$	22,000	3.7	980	$4 \cdot 5$	1,820	$5 \cdot 1$	3,450	$4 \cdot 55$	1,910	$4 \cdot 0$	1,230
7.	$8 \cdot 0$	17,000	3.8	1,060	$4 \cdot 4$	1,670	$4 \cdot 95$	2,920	$4 \cdot 5$	1,820	$4 \cdot 1$	1,320
8.	6.4	9,600	$3 \cdot 7$	980	$4 \cdot 5$	1,820	$4 \cdot 8$	2,450	$4 \cdot 45$	1,750	$4 \cdot 0$	1,230
9.	$6 \cdot 0$	7,700	$3 \cdot 6$	900	$4 \cdot 6$	2,000	$4 \cdot 7$	2,200	$4 \cdot 4$	1,670	$3 \cdot 9$	1,140
10.	$5 \cdot 5$	5,300	$3 \cdot 6$	900	$4 \cdot 6$	2,000	$4 \cdot 6$	2,000	$4 \cdot 6$	2,000	$3 \cdot 95$	1,180
11	$5 \cdot 2$	3,850	$3 \cdot 7$	980	$4 \cdot 5$	1,820	$4 \cdot 5$	1,820	$5 \cdot 0$	3,100	$4 \cdot 0$	1,230
12	$5 \cdot 1$	3,450	$3 \cdot 7$	980	$4 \cdot 4$	1,670	$4 \cdot 5$	1,820	$4 \cdot 8$	2,450	$4 \cdot 0$	1,230
13.	$5 \cdot 0$	3,100	$3 \cdot 8$	1,060	$4 \cdot 5$	1,820	$4 \cdot 6$	2,000	$4 \cdot 8$	2,450	$3 \cdot 95$	1, 150
14.	$5 \cdot 0$	3, 100	$3 \cdot 8$	1,060	$6 \cdot 5$	10,100	$4 \cdot 8$	2,450	4,75	2, 320	$3 \cdot 95$	1,180
15	$4 \cdot 8$	2,450	3.8	1,060	$5 \cdot 7$	6,250	$6 \cdot 7$	11,000	4.70	2,200	$3 \cdot 9$	1,140
16.	$4 \cdot 7$	$\sim, 200$	$3 \cdot 8$	1,060	$6 \cdot 0$	7,700	$5 \cdot 7$	6,250	$4 \cdot 65$	2,100	$3 \cdot 9$	1,140
17.	$4 \cdot 6$	2,000	$3 \cdot 7$	980	$6 \cdot 5$	10, 100	$5 \cdot 4$	4,850	$4 \cdot 60$	2,000	$3 \cdot 85$	1,100
18	$4 \cdot 5$	1,820	$3 \cdot 6$	900	$5 \cdot 8$	6,700	$5 \cdot 6$	5,800	$4 \cdot 50$	1,820	$3 \cdot 8$	1,060
19.	$4 \cdot 3$	1,550	$3 \cdot 6$	900	$5 \cdot 6$	5,800	$6 \cdot 9$	12,000	$4 \cdot 40$	1,670	$3 \cdot 8$	1,060
20.	$4 \cdot 1$	1,320	$3 \cdot 6$	900	$5 \cdot 4$	4,850	$5 \cdot 8$	6,700	$4 \cdot 50$	1,820	$3 \cdot 85$	1,100
21	$3 \cdot 9$	1,140	$3 \cdot 75$	1,020	$5 \cdot 2$	3,850	$5 \cdot 5$	5,300	$4 \cdot 5$	1,820	$3 \cdot 9$	1,140
22	$4 \cdot 0$	1,230	$5 \cdot 2$	3,850	$5 \cdot 1$	3,450	$5 \cdot 3$	4,350	$4 \cdot 55$	1,910	$3 \cdot 75$	1,020
83.	$4 \cdot 1$	1,320	$5 \cdot 0$	3, 100	4.85	2,600	$5 \cdot 0$	3,100	$4 \cdot 5$	1,820	$3 \cdot 6$	-900
24	$4 \cdot 0$	1,230	$5 \cdot 0$	3,100	$4 \cdot 8$	2,450	$4 \cdot 8$	2,450	$4 \cdot 5$	1,820	$3 \cdot 55$	860
25.	$3 \cdot 8$	1,060	$4 \cdot 8$	2,450	$5 \cdot 0$	3,100	$4 \cdot 7$	2,200	$4 \cdot 6$	2,000	$3 \cdot 7$	980
26.	$3 \cdot 9$	1,140	4.7	2,200	$4 \cdot 9$	2,750	$4 \cdot 6$	2,000	$4 \cdot 8$	2,450	3.8	1,060
27.	$4 \cdot 0$	1,230	$5 \cdot 3$	4,350	$4 \cdot 7$	2,200	$4 \cdot 5$	1,820	$4 \cdot 9$	2,750	$3 \cdot 8$	1,060
28.	$3 \cdot 9$	1,140	$4 \cdot 9$	2,750	$4 \cdot 5$	1,820	$4 \cdot 45$	1,750	$4 \cdot 5$	1,820	$3 \cdot 8$	1,060
29.	$4 \cdot 0$	1,230			$4 \cdot 35$	1,610	$4 \cdot 5$	1,820	$4 \cdot 2$	1,430	$3 \cdot 7$	980
30.	$4 \cdot 3$	1,550			$4 \cdot 2$	1,430	$4 \cdot 6$	2,000	4-15	1,370	3.65	940
31.	$4 \cdot 4$	1,670			$4 \cdot 2$	1,430			$4 \cdot 1$	1,320		

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Chehalis River one mile from mouth for 1914-Con.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gruge Height.	Discharge.	Gauge Height.	Discharge	Gauge Height	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec. ft t.	Feet.	Sec.-ft.
1.	3.75	1,020	$2 \cdot 8$	350	$2 \cdot 50$	200	$3 \cdot 8$	1,060	$6 \cdot 0$	7,700	$4 \cdot 7$	2,200
2.	$3 \cdot 8$	1,060	$2 \cdot 8$	350	$2 \cdot 45$	170	$3 \cdot 7$	980	$6 \cdot 2$	8,700	$4 \cdot 5$	1,820
3.	$3 \cdot 8$	1,060	2.8	350	2.4	150	$3 \cdot 5$	820	$6 \cdot 0$	7,700	$4 \cdot 3$	1,550
4.	$3 \cdot 8$	1,060	$2 \cdot 8$	350	$2 \cdot 4$	150	$3 \cdot 4$	750	$6 \cdot 5$	10,100	$4 \cdot 2$	1,430
5	$3 \cdot 8$	1,060	2.8	350	$2 \cdot 4$	150	$3 \cdot 3$	670	$5 \cdot 9$	7,200	$4 \cdot 05$	1,270
6.	$3 \cdot 7$	980	2.75	320	$2 \cdot 35$	120	3.25	630	$5 \cdot 4$	4,850	3.85	1,100
7.	$3 \cdot 65$	940	2.75	320	$2 \cdot 35$	120	$3 \cdot 2$	600	$5 \cdot 2$	3,850	$3 \cdot 7$	980
8	$3 \cdot 6$	900	$2 \cdot 8$	350	$2 \cdot 4$	150	$3 \cdot 2$	600	$5 \cdot 3$	4,350	$3 \cdot 6$	900
9	$3 \cdot 5$	820	$2 \cdot 75$	320	$2 \cdot 6$	250	$3 \cdot 2$	600	$5 \cdot 4$	4,850	$3 \cdot 5$	820
10.	$3 \cdot 4$	750	$2 \cdot 65$	270	$3 \cdot 0$	470	3.25	630	$5 \cdot 5$	5,300	$3 \cdot 4$	750
11.	3.3	670	$2+55$	220	$2 \cdot 9$	410	$3 \cdot 3$	670	5.9	7,200	$3 \cdot 35$	710
12.	$3 \cdot 3$	670	$2 \cdot 55$	220	$2 \cdot 8$	350	$4 \cdot 2$	1,430	$5 \cdot 4$	4,850	$3 \cdot 20$	600
13.	$3 \cdot 35$	710	$2 \cdot 6$	250	$2 \cdot 8$	350	$3 \cdot 8$	1,060	$5 \cdot 2$	3,850	$3 \cdot 2$	600
14.	$3 \cdot 4$	750	$2 \cdot 6$	250	$3 \cdot 0$	470	$4 \cdot 0$	1,230	$4 \cdot 9$	2,750	$3 \cdot 15$	570
15.	$3 \cdot 35$	710	$2 \cdot 65$	270	$3 \cdot 4$	75 C	$3 \cdot 9$	1,140	$4 \cdot 7$	2,200	$3 \cdot 15$	570
16.	$3 \cdot 3$	670	$2 \cdot 65$	270	$3 \cdot 7$	980	$4 \cdot 9$	2,750	$4 \cdot 3$	1,550	3-1	540
17.	$3 \cdot 3$	670	$2 \cdot 7$	300	$4 \cdot 0$	1,230	$5 \cdot 2$	3,850	$4 \cdot 0$	1,230	$3 \cdot 1$	540
18.	$3 \cdot 25$	630	$2 \cdot 7$	300	$5 \cdot 6$	5,800	$5 \cdot 6$	5,800	$4 \cdot 2$	1,430	3.05	500
19	$3 \cdot 2$	600	$2 \cdot 65$	270	$4 \cdot 8$	2,450	$6 \cdot 4$	9,600	$4 \cdot 6$	2,000	$3 \cdot 0$	470
20.	$3 \cdot 2$	600	$2 \cdot 6$	250	$4 \cdot 7$	2,200	$6 \cdot 0$	7,700	$4 \cdot 8$	2,450	2.95	440
21.	3.15	570	$2 \cdot 6$	250	$4 \cdot 5$	1,820	$5 \cdot 3$	4,350	$4 \cdot 7$	2,200	$2 \cdot 85$	380
22	$3 \cdot 1$	540	$2 \cdot 6$	250	$4 \cdot 1$	1,320	$4 \cdot 8$	2,450	$4 \cdot 8$	2,450	$2 \cdot 8$	350
23.	$3 \cdot 1$	540	$2 \cdot 6$	250	$3 \cdot 8$	1,060	$4 \cdot 5$	1,820	$5 \cdot 2$	3,850	2.75	320
24	3.05	500	$2 \cdot 6$	250	$3 \cdot 7$	980	$4 \cdot 3$	1,550	$5 \cdot 0$	3,100	2.75	320
25.	$3 \cdot 0$	470	$2 \cdot 6$	250	$3 \cdot 6$	900	$4 \cdot 0$	1,230	$6 \cdot 0$	7,700	$2 \cdot 8$	350
26	$3 \cdot 0$	470	$2 \cdot 6$	250	$3 \cdot 65$	940	$3 \cdot 8$	1,060	$5 \cdot 6$	5,800	$2 \cdot 9$	410
27.	$2 \cdot 95$	440	$2 \cdot 55$	225	$4 \cdot 5$	1,820	$3 \cdot 7$	980	$5 \cdot 4$	4,850	$2 \cdot 9$	410
28.	$2 \cdot 9$	410	$2 \cdot 55$	225	$4 \cdot 3$	1,550	$3 \cdot 6$	900	$5 \cdot 3$	4,350	$2 \cdot 95$	440
29.	2.85	380	$2 \cdot 5$	200	$4 \cdot 0$	1,230	$3 \cdot 6$	900	$5 \cdot 1$	3,450	$3 \cdot 0$	470
30	$2 \cdot 8$	350	$2 \cdot 45$	170	$3 \cdot 9$	1,140	$3 \cdot 8$	1,060	$4 \cdot 8$	2,450	$2 \cdot 9$	410
31.	$2 \cdot 8$	350	$2 \cdot 4$	150			$5 \cdot 3$	4,350			2.95	440

Monthly Discharge of Chehalis River one mile from mouth for 1914.
(Drainage area, 200 square miles.)

Mo	Discharge in Second-Feet.				Run-Ofe.		Accuracy
	Maximum.	Minimum	Mean.	Per square mile.	Depth in inches on Drainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$	
January	22,000	980	4,230	$21 \cdot 15$	$24 \cdot 37$	260,000	C
February	4,350	900	1,570	7.85	$8 \cdot 17$	87, 200	B
March...	10,100	1,430	3,800	19.00	21.90	234, 000	C
April..	12,000	1,750	3,610	18.05	$20 \cdot 13$	215,000	C
May..	3,100	1,320	1,980	9.90	11.41	122,000	B
June.	1,320	860	1,130	$5 \cdot 65$	6.30	67,000	B
July,	1,060	350	690	3.45	3.98	42,400	B
August.....	-350	150	270	1.35	1.56	16,600	B
September.	5,800	120	990	4.95	$5 \cdot 52$	58,900	13
October....	9,600	600	2,040	$10 \cdot 20$	11.76	125, 400	C
Novemtier...	10,100	1,230	4,480	22.40	25.00	267,000	C
December...	2,200	320	730	$3 \cdot 65$	$4 \cdot 21$	44,900	B
The year.......	22,000	120	2,130	$10 \cdot 65$	$144 \cdot 30$	1,540,600	C

SESSIONAL PAPER No. 25e
Chilliwack River (1004).
Location.-Five miles above Sumas lake in section 1, township 23, east of Coast meridian.

Records Available.-Daily discharges continuous since November, 1911.
Drainage Area.-Four hundred and fifty square miles, of which about 100 is in the State of Washington.

Gauge.-Vertical staff on rock filled crib. Readings daily.
Channel.-Rocky bottom, good control, water deep; swift at high stages.
Discharge Measurements.-Fifteen meter measurements made during 1911, 1912, 1913, and 1914.

Winter Flow.-Open water all year.
Accuracy.-A.

Discharge Measurements of Chilliwack River near Vedder River Hotel, 1911-14.

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Chilliwack River near Sumas Lake for 1914.

Day.	January.		February.		March.		April.		May.		June.	
	Gauge Height	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height	Discharge	Gauge Height.	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	See.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1.	1.4	1,000	1.9	1,550	$2 \cdot 6$	2,650	$2 \cdot 0$	1,700	$2 \cdot 6$	2,650	$3 \cdot 6$	4,400
2	$1 \cdot 3$	900	1.85	1,470	$2 \cdot 4$	2,300	$2 \cdot 1$	1,850	$3 \cdot 25$	3,770	$4 \cdot 25$	5,900
3.	$1 \cdot 3$	900	1.8	1,400	$2 \cdot 3$	2,150	$2 \cdot 2$	2,000	$4 \cdot 0$	5,300	$3 \cdot 9$	5,000
4.	$2 \cdot 1$	1,850	1.75	1,350	$2 \cdot 2$	2,000	$2 \cdot 6$	2,650	$3 \cdot 45$	4,100	$3 \cdot 6$	4,400
5	$4 \cdot 65$	7,300	$1 \cdot 5$	1,100	$2 \cdot 0$	1,700	2.95	3,220	$3 \cdot 3$	3,850	$3 \cdot 25$	3,770
6.	$7 \cdot 3$	20,000	1.45	1,050	$1 \cdot 9$	1,550	$2 \cdot 8$	3,000	$3 \cdot 2$	3,700	$3 \cdot 0$	3,300
7.	$6 \cdot 6$	16,000	1.5	1,100	1.8	1,400	$2 \cdot 7$	2,800	$3 \cdot 1$	3,500	$2 \cdot 9$	3,150
8	$6 \cdot 9$	13,000	1.55	1,150	1.85	1,470	$2 \cdot 75$	2,900	$3 \cdot 05$	3,460	${ }^{2} \cdot 85$	3,070
9.	$5 \cdot 5$	10,900	1.5	1,100	1.85	1,470	2.8	3,000	$3 \cdot 1$	3,500	$2 \cdot 7$	2,800
10.	$4 \cdot 9$	8,300	$1 \cdot 5$	1,100	$1 \cdot 9$	1,550	$2 \cdot 85$	3,070	$3 \cdot 15$	3,600	2.8	3,000
11.	$3 \cdot 7$	4,600	$1 \cdot 5$	1,100	1.85	1,470	$2 \cdot 9$	3,150	$3 \cdot 1$	3,500	$2 \cdot 95$	3,220
12	$3 \cdot 3$	3,850	1.45	1,050	1.8	1,400	$2 \cdot 85$	3,070	$3 \cdot 2$	3,700	$3 \cdot 05$	3,400
13.	$3 \cdot 2$	3,700	1.4	1,000	1.9	1,550	2.95	3,220	$3 \cdot 3$	3,850	$3 \cdot 2$	3,700
14	$3 \cdot 1$	3,500	1.45	1,050	$2 \cdot 5$	2,500	$3 \cdot 1$	3,500	$3 \cdot 7$	4,600	$3 \cdot 3$	3,850
15	$3 \cdot 0$	3,300	1.4	1,000	$2 \cdot 5$	2,500	$3 \cdot 6$	4,400	$4 \cdot 2$	5,800	$3 \cdot 7$	4,600
16.	$3 \cdot 0$	3,300	1.45	1,050	$2 \cdot 7$	2,800	$3 \cdot 3$	3,850	$4 \cdot 0$	5,300	$4 \cdot 0$	5,300
17.	$2 \cdot 8$	3,000	1.45	1,050	$2 \cdot 75$	2,900	$3 \cdot 05$	3,400	$3 \cdot 85$	4,900	$4 \cdot 1$	5,500
18	$2 \cdot 7$	2,800	1.4	1,000	$2 \cdot 85$	3,070	$3 \cdot 10$	3,500	$3 \cdot 6$	4,400	$4 \cdot 0$	5,300
19	$2 \cdot 6$	2,650	1.4	1,000	$2 \cdot 75$	2,900	$3 \cdot 7$	4,600	$3 \cdot 5$	4,200	$3 \cdot 6$	4,400
20.	$2 \cdot 5$	2,500	1.45	1,050	$2 \cdot 8$	3,000	$3 \cdot 6$	4,400	$3 \cdot 55$	4,300	$3 \cdot 4$	4,000
21.	$2 \cdot 3$	2,150	1.5	1,100	$2 \cdot 8$	3,000	$3 \cdot 4$	4,000	$3 \cdot 7$	4,600	$3 \cdot 3$	3,850
22.	$2 \cdot 2$	2,000	1.6	1,200	$2 \cdot 85$	3,070	3.1	3,500	$3 \cdot 9$	5,000	$3 \cdot 4$	4,000
23.	$2 \cdot 15$	1,920	1.65	1,250	$2 \cdot 8$	3,000	$2 \cdot 95$	3,220	$3 \cdot 95$	5,100	$3 \cdot 3$	3,850
24	$2 \cdot 05$	1,770	$1 \cdot 6$	1,200	$2 \cdot 75$	2,900	$2 \cdot 85$	3,070	$4 \cdot 0$	5,300	$3 \cdot 25$	3,775
25	$2 \cdot 05$	1,770	1.65	1,250	$2 \cdot 6$	2,650	$2 \cdot 7$	2,800	$3 \cdot 8$	4,800	$3 \cdot 2$	3,700
26.	$2 \cdot 1$	1,850	$1 \cdot 6$	1,200	$2 \cdot 5$	2,500	$2 \cdot 65$	2,720	$3 \cdot 6$	4,400	$3 \cdot 15$	3,600
27.	$2 \cdot 0$	1,700	1.7	1,300	$2 \cdot 35$	2,220	$2 \cdot 65$	2,720	$3 \cdot 4$	4,000	$3 \cdot 2$	3,700
28	$1 \cdot 9$	1,550	1.9	1,550	$2 \cdot 3$	2,150	$2 \cdot 6$	2,650	3-3	3,850	$3 \cdot 25$	3,775
29.	1.85	1,470			$2 \cdot 3$	2,150	$2 \cdot 6$	2,650	$3 \cdot 05$	3,400	$3 \cdot 3$	3,850
30	1.95	1,620			$2 \cdot 15$	1,920	$2 \cdot 55$	2,570	$3 \cdot 0$	3,300	$3 \cdot 4$	4,000
31.	1.9	1,550			$2 \cdot 1$	1,850			$3 \cdot 25$	3,770		

SESSIONAL PAPER No. 25e

Daily Gauge Height and Discharge of Chilliwack River near Sumas Lake for 1914-Con.

Diy.	July.		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge.										
	Feet.	Sec.-ft.										
1.	3.6	4,400	$2 \cdot 0$	1,700	1.4	1,000	$1 \cdot 6$	1,200	$3 \cdot 3$	3,850	$2 \cdot 5$	2,500
2	3.65	4,500	$2 \cdot 0$	1,700	$1 \cdot 35$	950	1.65	1,250	$3 \cdot 8$	4,800	$2 \cdot 8$	3,000
3.	$3 \cdot 7$	4,600	$2 \cdot 0$	1,700	$1 \cdot 35$	950	1.7	1,300	$3 \cdot 5$	4,200	$2 \cdot 4$	2,300
4.	$3 \cdot 6$	4,400	$2 \cdot 0$	1,700	$1 \cdot 3$	900	$1 \cdot 6$	1,200	$3 \cdot 4$	4,000	$2 \cdot 3$	2.150
5.	$3 \cdot 4$	4,000	1.95	1,620	1.25	870	$1 \cdot 55$	1,150	$3 \cdot 3$	3,850	$2 \cdot 2$	2,000
6.	$3 \cdot 25$	3,770	$1 \cdot 9$	1,550	1.2	850	$1 \cdot 5$	1,100	$3 \cdot 2$	3,700	$2 \cdot 2$	2,000
7.	$3 \cdot 2$	3,700	1.85	1,470	$1 \cdot 2$	850	1.4	1,000	2.9	3,150	$2 \cdot 1$	1,850
8	$3 \cdot 2$	3,700	1.8	1,400	1.45	1,050	$1 \cdot 35$	950	$2 \cdot 8$	3,000	$2 \cdot 0$	1,700
9.	$3 \cdot 1$	3,500	1.8	1,400	1.55	1,150	1.4	1,000	$2 \cdot 7$	2,800	1.9	1,550
10.	$3 \cdot 2$	3,700	1.75	1,350	1.55	1,150	1.45	1,050	$2 \cdot 8$	3,000	1.8	1,400
11.	$3 \cdot 2$	3,700	$1 \cdot 7$	1,300	1.5	1,100	1.4	1,000	$3 \cdot 9$	5,000	1.7	1,300
12.	$3 \cdot 25$	3,770	1.7	1,300	1.4	1,000	$1 \cdot 35$	950	$3 \cdot 4$	4,000	$1 \cdot 65$	1,250
13.	$3 \cdot 1$	3,500	1.75	1,350	1.35	950	1.4	1,000	2.8	3,000	1.5	1,100
14	$3 \cdot 05$	3,400	1.75	1,350	1.4	1,000	1.45	1,050	$2 \cdot 6$	2,650	$1 \cdot 35$	1,150
15.	$3 \cdot 0$	3,300	1.7	1,300	1.5	1,100	1.45	1,050	$2 \cdot 5$	2,500	$1 \cdot 6$	1,200
16	$3 \cdot 1$	3,500	1.75	1,350	1.55	1,150	$1 \cdot 5$	1,100	$2+4$	2,300	$1 \cdot 55$	1,150
17.	$2 \cdot 95$	3,220	1.7	1,300	1.7	1,300	2.45	2,400	$2 \cdot 35$	2,220	1.5	1,100
18	$2 \cdot 9$	3,150	1.7	1,300	$2 \cdot 5$	2,500	$2 \cdot 6$	2,650	$2 \cdot 4$	2,300	1.45	1,050
19.	$2 \cdot 85$	3,070	1.65	1,250	$2 \cdot 4$	2,300	$2 \cdot 4$	2,300	$2 \cdot 5$	2,500	1.4	1,000
20.	$2 \cdot 8$	3,000	$1 \cdot 65$	1,250	$2 \cdot 3$	2,150	$2 \cdot 25$	2,070	$2 \cdot 6$	2,650	$1 \cdot 4$	1,000
21.	$2 \cdot 6$	2,650	1,65	1,250	$2 \cdot 2$	2,000	$2 \cdot 45$	2,400	$2 \cdot 7$	2,800	1.35	950
22.	$2 \cdot 45$	2,400	1.6	1,200	$2 \cdot 1$	1,850	$2 \cdot 3$	2,150	$2 \cdot 6$	2,650	$1 \cdot 35$	950
23	2.45	2,400	$1 \cdot 55$	1,150	1.9	1,550	$2 \cdot 25$	2,070	$2 \cdot 5$	2,500	$1 \cdot 3$	900
24	$2 \cdot 4$	2,300	$1 \cdot 55$	1,150	1.8	1,400	$2 \cdot 2$	2,000	$2 \cdot 45$	2,400	$1 \cdot 3$	900
25.	$2 \cdot 3$	2,150	1.55	1,150	1,75	1,350	$2 \cdot 15$	1,920	$2 \cdot 4$	2,300	$1 \cdot 25$	870
26	$2 \cdot 25$	2,070	1.55	1,150	1.8	1,400	$2 \cdot 1$	1,850	$2 \cdot 8$	3,000	$1 \cdot 25$	870
27	$2 \cdot 2$	2,000	1.5	1,100	1.9	1,550	1.75	1,350	$2 \cdot 75$	2,900	$1 \cdot 2$	850
28	$2 \cdot 2$	2,000	$1 \cdot 5$	1,100	1.8	1,400	1.75	1,350	$2 \cdot 7$	2, 800	1.25	870
29.	$2 \cdot 15$	1,920	1.45	1,050	1.7	1,300	1.8	1,400	$2 \cdot 7$	2,800	$1 \cdot 3$	900
30	$2 \cdot 1$	1,850	1.45	1,050	1.75	1,350	$2 \cdot 0$	1,700	$2 \cdot 6$	2,650	$1 \cdot 3$	900
31.	$2 \cdot 05$	1,770	1.4	1,000			$2 \cdot 1$	1,850			$1 \cdot 35$	950

Monthly Discharge of Chilliwack River near Sumas Lake for 1914.
(Drainage area, 450 square miles.)

Month.	Discharge in Second-Feet.				Res-Oyf.		Acouracy
	Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on Drainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$	
January	2,000	9\%)	4,280	$9 \cdot 52$	10.98	263, (4x)	H
F'ebruary	1,550	1, ب6\%)	1,170	$2 \cdot 64$	2.71	65, (mx)	1
March......... . .an	3,070	1, 414	2,250	$5 \cdot 64$	5.76	138, 14 Mm)	A
	4,600	1,7010	3,110	$6 \cdot 92$	7.72	1s3, M(M)	A
May	5,806	2,650	+,170	9.28	10.70	256, 4×3	A
June.	5,960	2,810	4,000	$8 \cdot(14)$	9.43	238, (4x)	-
July	4, 6460	1,770	3,140	6.10 S	s. 05	103,(4x)	1
August	1,760	1,0610	1,320	$2 \cdot 43$	$3 \cdot 38$	81,000	A
September.	8851	850	1,310	2.91	3.25	7s, (mx)	1
October...	950	95.1	1,510	3.36	$3 \cdot 87$	(13. (4x)	A
November Nrinur $^{\text {a }}$	2,220	2,220	3,081	6.85	7.64	133, (6x)	1
December.	850	850	1,340	$2 \cdot 0 \mathrm{~s}$	$3 \cdot 44$	\&2, (Mx)	A
The yenr.	20, (1) 6)	880	2, 560	$5 \cdot 61$	$77 \cdot 43$	1,255,(146)	A

Coquihalla River (1005.)

Location.-Near mouth of river, not far from Hope, in section 10, township 5 , range 26 , west of the 6 th meridian.

Records Available.-Continuous records since November, 1911.
Drainage Area.-Three hundred and sixty square miles.
Gauge.-Cable gauge on highway bridge. Readings two or three times a week.

Channel.-Bottom rocky and stream rather shallow; water swift at the higher stages.

Discharge Measurements.-Sixteen meter measurements made during 1912, 1913, and 1914.

Winter Flow. - In very cold weather, ice forms along the edges of the stream, with some anchor ice at the riffle which forms the control.

Accuracy.-C. Gauge readings only about three times a week.

Discharge Measurements of Coquihalla River near mouth, 1912-13-14.

Date.	Hydrographer.	Meter No.	Width.	Area of section.	Mean Velocity.	Gauge Height.	Discharge.
			Feet.	Sq. ft .	Ft. per sec.	Feet.	See.-ft.
June 8	Cline \& Corbould	1046	149	597	$4 \cdot 8$	$3 \cdot 30$	2,880
June 29	C. G. Cline..	1046	122	275	$3 \cdot 2$	1.90	890
Sept. 13	do	1046	110	171	$2 \cdot 0$	1.05	334
Nov. 15	do	1048	120	276	$2 \cdot 8$	1.65	762
Nov. 18	do	1048	120	350	$3 \cdot 5$	$2 \cdot 25$	1,210
Nov. 20	do	1048	120	386	$3 \cdot 9$	$2 \cdot 45$	1,510
1913.							
May 12	C. G. Cline \& K. G. Chisholm	1044	150	576	5•7	$3 \cdot 50$ $3 \cdot 65$	3,140
June 21.	C. G. Cline \& K. G. Chisholm	1044	154 122	540 378	$5 \cdot 8$ $3 \cdot 7$	$3 \cdot 65$ $2 \cdot 60$	3,040 1,410
July Sept. 9.	K. G. Chisholm.... ${ }_{\text {K }}$ (Mac-	1055	122	378	$3 \cdot 7$	$2 \cdot 60$	1,410
	Lachlan...................	1055	119	383	$3 \cdot 7$	$2 \cdot 70$	1,440
Oct. 13.	H. J. E. Keys..	1057	129	524	$6 \cdot 0$	$3 \cdot 47$	3,160
1914.							
July 9 .	Cline \& Hughes	1933	125	299	3.0	1.90	858
July 18.	C. G. Cline...	1933	120 110	224 130	2.5 1.4	1.60 0.75	553 178
Oct. 27.	H. C. Hughes.	1933	1100	188	$1 \cdot 56$	0.75 0.91	283
Dec. 18	do	1521	80	206	$1 \cdot 47$	1.68	300^{1}

[^7]SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Coquihalla River near mouth.

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Coquihalla River near mouth for 1914

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge	Gauge Height	Discharge.	Gauge Height.	Discharge.
	Feet.	See.-ft.	Feet.	Sec.-ft.								
1.		1,400	$1 \cdot 1$	370		220	1.05	350		1,000		1,200
2.		1,300		350	- 70	220		380		1,500		1,150
3		1,200		350		220	$1 \cdot 15$	400	$3 \cdot 0$	2,150	$2 \cdot 2$	1,150
4		1,100 1,000	$1 \cdot 0$	320 320		220 220	1.05	370 350		1,800 1,500		1,100 1,050
5.		1,000					$1 \cdot 05$	350		1,500		1,050
6.		900 900		320 320		220 220		340 320	$2 \cdot 25$ $2 \cdot 1$	1,200 1,060		1,000 950
8.		900 900	$1 \cdot 0$	320 320	. 70	220 300	. 95	320 300	$2 \cdot 1$	1,060 1,200		950 900
8	1.9	990 890	1.0	310	1.05	350	.95	300		1,300		850
10.	1.95	930	95	300		400		300	$2 \cdot 5$	1,460	1.8	810
11		900		300	$1 \cdot 3$	470		300		1,400		800
12.		800	. 95	300		470		300		1,300		750
13		810		300		470		300		1,200		700
14		800		290	1-3	470	-95	300	$2 \cdot 2$	1,150	$1 \cdot 6$	660
15.		700		280	$1 \cdot 35$	630	. 90	270		1,000		600
16	$1 \cdot 6$	660		270		700	. 90	270		900		500
17	$1 \cdot 6$	660		260		800		300	1.8	810		420
18.	$1 \cdot 6$	660		250	$1 \cdot 95$	930		350		900	1.7	300
19.		600	. 85	250		800		400	$2 \cdot 1$	1,060		300
20.		600		250		700	$1 \cdot 25$	450	$2 \cdot 55$	1,520		300
21.	1.4	530	. 85	250		600		450		1,600		300
22	$1 \cdot 3$	470	- 85	250		500		400		1,800		300
23.	$1 \cdot 3$	470		250	$1 \cdot 15$	400	$1 \cdot 15$	400		2,000		300
24.	$1 \cdot 25$	450		250	$1 \cdot 1$	570		400		2,200	$1 \cdot 0$	320
25		450		240		350		350		2,400		320
26	$1 \cdot 25$	450	. 80	240	$1 \cdot 00$	320		300	$3 \cdot 2$	2,480		310
27.	$1 \cdot 05$	350	$\cdot 75$	230		400	. 95	300		2,000		300
28		350	. 75	230	$1 \cdot 35$	500		300	$2 \cdot 5$	1,460	-95	300
29		370	-80	240		450		320		1,300		300
30.	$1 \cdot 10$	370	.75	230		400	$1 \cdot 0$	320	$2 \cdot 25$	1,200		300
31.		37.		220				300				290

Monthly Discharge of Coquihalla River near mouth for 1914.
(Drainage area, 360 square miles.)

Month.	Discharge in Second-Feet.				Ren-Off.		Accuracy.
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$	
January.	7,040	470	1,350	3.75	4-32	83,000	C
February	730	470	1,560	1.56	1.62	31,100	C
March.	3,580	660	1,560	4-34	$5 \cdot 00$	95,900	C
April..	4,550	1,100	2, 850	7.92	$8 \cdot 84$	170,000	C
May.	5,880	2,570	3,980	11.07	12.75	245, 000	C
June.	4,160	1,500	2,630	$7 \cdot 31$	$8 \cdot 16$	156,500	C
July	1,400	- 350	720	$2 \cdot 00$	$2 \cdot 31$	44,300	C
August.	- 370	220	279	0.78	0.90	17,200	C
Neptember.	930	220	444	1.23	$1 \cdot 37$	26,400	C
October ...	500	270	345	0.96	$1 \cdot 11$	21, 200	C
November..	2,480	810	1,460	4.06	4. 53	86,900	C
December..	1,200	290	674	1.87	$2 \cdot 16$	41,400	C
The year	5,880	220	1,405	$3 \cdot 9$	53.07	1,018,900	C

Praser River (1007).
Location.-At Hope, in section 16, township 5, range 26, west of the 6 th meridian.

Records Available.-Daily discharges, continuous since March, 1912.
Drainage Area.-Above gauging station, 85,600 square miles; above mouth, 90,000 square miles.

Gauge.-Painted on rock bluff at Kettle Valley Railway bridge; readings daily.

Channel.-Permanent channel, deep water; swift at higher stages.
Discharge Measurements.-Nine measurements during 1912, 1913, and 1914; some made with meter, some by floats.

Winter Flow. -Not usually ice enough to affect the gauge height-discharge relations.

Accuracy.-C.
Co-operation.-Gauge read by the engineers of the Kettle Valley Railroad.

Discharge Measurements of Fraser River at Hope, 1912-14.

[^8]6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Fraser River at Hope for 1914.

Day.	January.		February.		March.		April.		May.		June.	
	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge.
	Feet.	Sec. -ft .	Feet.	Sec.-ft.								
1		50,000	11.0	28,000	11.8	36,000	11.5	33,000	$17 \cdot 6$	108,000	23.3	206,000
2		50,000	11.2	30,000	11.7	35,000	11.4	32,000	18.3	117,000	23.0	200,000
3		50,000	11.2	30,000	11.5	33.000	11.5	33,000	$19 \cdot 1$	129,000	$23 \cdot 1$	202,000
4		50,000	$11 \cdot 2$	30,000	11.4	32,000	11.6	34,000	19.4	133,000	$22 \cdot 8$	195,000
5	$13 \cdot 3$	53,000	$11 \cdot 2$	30,000	11.4	32,000	$12 \cdot 0$	38,000	19.4	133,000	22.8	195,000
6	14.9	73,000	11.1	29,000	11.4	32,000	12.2	40,000	$20 \cdot 3$	146,000	$23 \cdot 6$	214,000
7	$13 \cdot 6$	57,000	$10 \cdot 9$	27,000	$11 \cdot 3$	31,000	$12 \cdot 3$	42,000	$20 \cdot 1$	144,000	24.2	229,000
8	13.1	51,000	$10 \cdot 7$	25,000	$11 \cdot 3$	31,000	$12 \cdot 6$	45,000	$19 \cdot 8$	138,000	$24 \cdot 3$	232,000
9	12.8	47,000	$10 \cdot 8$	26,000	$11 \cdot 3$	31,000	12.8	47,000	19.9	140,000	$24 \cdot 0$	224,000
10.	$12 \cdot 6$	45,000	10.8	26,000	$11 \cdot 3$	31,000	13.1	51,000	$20 \cdot 2$	145,000	23.9	222,000
11.	$12 \cdot 3$	42,000	11.1	29,000	11.3	31,000	13.4	54,000	20.4	148,000	23.9	222,000
12.	$12 \cdot 1$	39,000	11.1	29,000	11.3	31,000	13-7	58,000	$21 \cdot 3$	164,000	$24 \cdot 3$	232,000
13.	$12 \cdot 2$	40,000	11.2	30,000	11.3	31,000	$14 \cdot 0$	62,000	21.9	176,000	24.4	234,000
14	$12 \cdot 3$	42,000	11.3	31,000	11.8	36,000	14.8	72,000	$22 \cdot 8$	195,000	24.6	240,000
15	$12 \cdot 1$	39,000	$11 \cdot 4$	32,000	11.8	36,000	$15 \cdot 4$	79,000	$23 \cdot 3$	206,000	$25 \cdot 1$	253,000
16	11.9	37,000	$11 \cdot 4$	32,000	11.7	35,000	$15 \cdot 4$	79,000	23.6	214,000	25.6	267,000
17.	11.9	37,000	11.4	32,000	11.9	37,000	$15 \cdot 8$	84,000	$24 \cdot 0$	224,000	$26 \cdot 2$	283,000
18	11.9	37,000	11.4	32,000	$12 \cdot 0$	38,000	$16 \cdot 2$	90,000	24.4	234,000	$26 \cdot 5$	292,000
19	11.9	37,000	$11 \cdot 3$	31,000	12.0	38,000	16.9	99,000	24.5	237,000	26.9	303,000
20.	11.9	37,000	$11 \cdot 2$	30,000	$12 \cdot 0$	38,000	$17 \cdot 2$	108,000	$24 \cdot 1$	226,000	$27 \cdot 2$	311,000
21	11.5	33,000	11.2	30,000	12.1	39,000	$17 \cdot 1$	101,000	$23 \cdot 6$	214,000	$27 \cdot 0$	306,000
22	11.4	32,000	11.3	31,000	12.2	40,000	$17 \cdot 3$	104,000	$23 \cdot 5$	212,000	$26 \cdot 2$	283,000
23.	11.4	32,000	11.3	31,000	12.2	40,000	17.3	104,000	$23 \cdot 7$	216,000	25.5	264,000
24	11.4	32,000	$11 \cdot 3$	31,000	12.2	40,000	17.3	104,000	$24 \cdot 0$	224,000	$25 \cdot 0$	250,000
25.	$11 \cdot 2$	30,000	$11 \cdot 3$	31,000	$12 \cdot 1$	39,000	16.8	98,000	$23 \cdot 9$	222,000	$25 \cdot 0$	250,000
26	10.8	26,000	11.3	31,000	11.8	36,000		96,000	$24 \cdot 0$	224,000	$24 \cdot 9$	248,000
27	10.9	27,000	11.4	32,000	11.5	33,000	16.8	98,000	24.2	229,000	$24 \cdot 5$	237,000
28	$10 \cdot 8$ 10.6	26,000 24,500	11.4	32,000	11.4	32,000 33,000	17.0 17.0	100,000 100,000	$24 \cdot 6$ $24 \cdot 0$	240,000	$24 \cdot 5$	237,000
29. 30.	$10 \cdot 6$ 10.5	24,500 24,000			11.5 11.5	33,000 33,000	17.0 17.2	100,000 103,000	$24 \cdot 0$ $23 \cdot 6$	224,000 214,000	$24 \cdot 2$ 24.9	$2 亡 9,000$ 248,000
30.	$10 \cdot 5$	24,000			11.5	33,000	$17 \cdot 2$	103,000	$23 \cdot 6$	214,000	$24 \cdot 9$	248,000
31.	$10 \cdot 6$	24,500			11.5	33,000			$23 \cdot 6$	214,000		

SESSIONAL PAPER No. 25e
Dally Gauge Height and Discharge of Fraser River at Hope for 1914 -Con.

Day.	July.		August.		September.		October.		November.		December.	
	$\begin{aligned} & \text { Gauge } \\ & \text { Height. } \end{aligned}$	Discharge.	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge. } \end{gathered}$	Gauge Height	Dis- charge	Gauge Height	Discharge	Gauge Height	Dis- charge	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge. } \end{aligned}$
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.ft.	Feet.	Sec. ft .
1.	24.9	248,000	20.8	154,000	16.4	92,000	15.0	74,000	15.3	78,000	14.0	62.000
${ }_{3}$	25.0 24.8	250,000	20.5 20.3	150,000 146,000	16.0 15.8	87,000 84,000	15.1 15.0	74,000	15.5 15.6	80,000 82,000	13.9 13.6	60,000 57,000
4	25.1	253,000	20.1	144,000	15.5	80,000	15.2	76,000	15.2	76,000	13.3	53,000
5.	25.2	256,000	19.9	140,000	15.4	79,000	15.1	75,000	$15 \cdot 1$	75,000	$13 \cdot 1$	51,000
6	25.0	250,000	19.7	137,000	15.4	79,000	15.2	76,000	14.9	73,000	13.1	51,000
7	25.0	250,000	19.9	140,000	15.6	82,000	14.7	70,000	14.8	72,000	13.0	50.000
8	24.8	245,000	19.6	${ }^{136,000}$	15.5	80,000	14.5	68,000	14.8	72,000	12.8	47,000
9.	24.6	240,000	19.4	133,000	15.4	79,000	14.4	66,000	14.6	69,000	12.5	44,000 42,000
10.	24.5	237,000	19.1	129,000	$15 \cdot 3$	78, 000	14.2	64,000	14.5	68,000	$12 \cdot 3$	42,000
11.	24.3	232,000	19.0	127,000	15.3	78,000	14.2	64,000	14.5	68,000	12.0	38,000
12.	$24 \cdot 3$	232,000	18.8	124,000	$15 \cdot 2$	76,000	14.0	62,000	$14 \cdot 3$	65,000	11.8	36,000
13.	$24 \cdot 2$	229,000	18.4	119,000	15.1	75,000	13.9	60,000	14.2	64,000	11.7	35,000
14.	24.4	234,000	18.2	116,000	15.0	74,000	14.0	62,000	14.0	62,000	11.6	34,000
15.	24.2	229,000	18.1	115,000	15.2	76,000	14.2	64,000	13.8	59,000	11.4	32,000
16.	24.0	224,000	18.0	114,000	14.9	73,000	14.5	68,000	13.8	59,000	11.5	33,000
17	23.9	222,000	18.0	114,000	14.4	66,000 70,000	14.7	70,000	13.7 13.6	58,000	11.5	33,000 31000
18	23.6	${ }^{214,000}$	17.9	112,000	14.7	70,000	14.7	70,000	13.6	57,000	11.3	31,000
19	23.6	214,000	17.9	112,000	14.7	70,000	14.9	73,000	13.4	54,000	$11 \cdot 2$	30.000
20.	23.3	206,000	17.8	110,000	14.9	73,000	14.	72,000	13.3	53,000	11.2	30,000
21.	$23 \cdot 1$	202,000	17.6	108,000	14.8	72,000	14.9	73,000	13.2	52,000	$11 \cdot 4$	32,000
22	$22 \cdot 9$	198,000	17.5	107,000	14.7	70,000	15.0	74,000	13.3	53,000	11.6	34, 0c0
23.	23.0	200,000	17.5	107,000	14.9	73,000	14.9	73,000	13.5	55,000	11.7	35,000
24.	$22 \cdot 5$	188,000	$17 \cdot 4$	106,000	15.0	74.000	14.7	70,000	14.0	62,000	11.8	36,000
25.	22.3	184,000	17.3	104,000	14.8	72,000	14.8	72,000	13.9	60,000	12.0	38,000
26.	22.2	182,000	17.2	103,000	14.8	72,000	14.9	73,000	13.9	60,000	11.9	37,000
27	$22 \cdot 0$	178,000	17.0	100,000	14.9	73,000	15.1	75,000	14.0	62,000 60	12.0	38,000 $+3,000$
28	21.8	174,000	17.0	100,000	15.0 14.9	74,000	15.0	74,000	13.9	60,000	12.4	43,000 45,000
29	21.5	168,000	16.8 16.8	98,000 98,000		73,000 76,000	15.1 15.2	75,000	13.9 14.0	60,000	${ }_{12 \cdot 6}^{12.6}$	45.000 44.000
30.	21.1	160,000	16.8	98,000	15.2	76,000	$15 \cdot 2$	76,000	14.0	62,000	12.5	+4.000
31	21.0	158,000	16.7	96,000			15.2	76,000			$12 \cdot 3$	42,000

Monthly Discharge of Fraser River at Hope, for 1914.
(Drainage area, 85,600 square miles.)

Month.	Discharge in Second-Feet.				Rex-Ofr.	
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage aren.	$\begin{aligned} & \text { Total } \\ & \text { in } \\ & \text { acre-feet. } \end{aligned}$
January .	73,060	24, (60)	30, 500	$0 \cdot 46$	0.53	2, 430, 060
February	32,000)	25,000	29,660	0. 45	$0 \cdot 36$	1.640, (124)
Mareh.................... . . 1 .	40,000	31,060)	34.600	0.40	$0 \cdot 46$	2, 127, (134)
April............ 1 y	104,000	32, (4)	72,8161	(1.25	0. 0.95	4.330,060
May..........	240,000	108, 060	187,000	$2 \cdot 15$	2.51	11. 5100,000
June	311,0060	$105,(\mathrm{tha}$	243,600	2.85	3.18	
	256,000	158,000	$\underline{218,060}$	$\underline{2.53}$	3.92	13. $2 \mathrm{~mm}, \mathrm{my}$
	154,000	06, (kh)	119, (4)	1.39	1. (06)	7,320), (4x)
Septomber..... . .	92,000)	66, (\%)	76.000	0. 59	(1. 09	4. 520. 3040
October...	76, 0160	60, (13\%)	70, 800	0. 83	0. 06	4. $3851,(146)$
November 4 dity	82,060)	52.1461	(64,300)	11.75	(1).44	3, $2 \times 30,(k)$
	62, 610	$30,(\mathrm{HKC})$	41, 114)	(1). 48	10.55	2,580, 064
The year. ...-	311,000	24.000	90, 810	1.16	15.8.5	72.887 .14 M

SESSIONAL PAPER No. 25e
Hixon Creek near Mouth (1009).
Locution.-About half a mile from the mouth, in section 34, township 6, range 7 , west of 7 th meridian.

Records Available.-November and December, 1912; January to December, 1913; January to July, 1914, station discontinued.

Drainage Area.-Not known.
Gauge.-Vertical staff gauge, readings about three times a week.
Čhannel.-Rock and gravel.
Discharge Measurements.-Five measurements during 1913 and 1914.
Winter Flow.- Open water conditions, no ice.
Accuracy.-C. and D.
Co-operation.-Gauge readers maintained by Westminster Power Company-

Discharge Measurements of Hixon Creek near mouth, 1913-14.

Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area or Section.	Mean Velocity.	Gauge Height.	Discharge.
1913.			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
Sept. 24.	F. MacLachlan	1673	48	27	$1 \cdot 2$	3.79	33
Oct. 18	do	1673	54	44	1.6	$4 \cdot 34$	72
Oct. Nov. Nor.	do	1673 1521	51 56	32 53	$1 \cdot 2$ $2 \cdot 3$	$3 \cdot 89$ $4 \cdot 59$	36 121
May 19.	do	1521	59	71	$3 \cdot 1$	$4 \cdot 87$	217

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Hixon Creek at mouth for 1914.

Day.	January.		February.		March.		April.		May.		June.	
	Gauge Height	Discharge.	Gauge Height	Discharge	Gauge Height	Discharge.	Gauge Height	Discharge	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge. } \end{gathered}$	Gauge Height	Discharge.
	Feet.	See.-ft.	Feet.	See.ft.	Feet.	$\mathrm{Sec} . \mathrm{ft}$.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1.	$4 \cdot 2$ $4 \cdot 6$			50 40		150 170	4.15 4.15	55 55 50	4.75 4.9	170 230	$5 \cdot 2$	360 250
$\frac{2}{3} .$	$4 \cdot 6$	125 500 750	3.9	49 3	4.75	150	4.85 4.85	55 210		170 170	$4 \cdot 55$	250 110
4	6.0	750		37		100		250	4.55	110		90
5.		700	3.8	35	4.35	75	5.05	300		130	4.2	60
6	$5 \cdot 7$	690	3.75	33	$4 \cdot 3$	70		250		150		
7	$5 \cdot 15$	340		33		80	4.8	185		170		70
9		300 200	$3 \cdot 75$ $3 \cdot 15$	33 33		90 100	4.78 4.8	170	${ }_{4}^{4 \cdot 8} \cdot 7$	185		80
10.		150		${ }_{33}^{33}$		100.	$4 \cdot 8$	185	$4 \cdot 15$	165 190		80 90
11.		140	3.75	33		120	4.8	185		220		100
12		130 120	3.75	33 40		130 140		400 650		${ }_{2}^{250}$	$4 \cdot 5$	100
14		120 110	4.1	40 50		140	5.8	650 340	5.0 4.95	270		110
15.		100		50		160	5.6	560		220	$4 \cdot 6$	120
16.		90	$4 \cdot 1$	50	4.75	170	4.95	250		180		
17	$4 \cdot 35$	80		50	4.70	150	4.85	210	4.7	150		200
18.		85		55 60	4.65	135		200		200	4.95	250
19	$4 \cdot 45$	90		60		150		180	4.9	230		200
20.		70	$4 \cdot 2$	60		170	$4 \cdot 75$	170		270		150
21.	4.2	60		120	4.80	185		150	$5 \cdot 1$	320		100
22		50	4.8	185		150		140		300	$4 \cdot 40$	83
24.	4.0	44		150	4.55 4.45	110	$4 \cdot 6$	125		250	121	100
25	$4 \cdot 0$	70	4.4	85	4.45	80	4.35	100	1.7	150	4.95	${ }_{250}^{200}$
26.	$4 \cdot 4$	85		90	$4 \cdot 15$	55		80		130		250
27.	$4 \cdot 1$	50	4.45	90	$4 \cdot 05$	47		80		160		240
28.	$4 \cdot 0$	44		100	$4 \cdot 07$	48	$4 \cdot 37$	80	4.75	165		230
33.		60				60		100 150	$1 \cdot 4$	85		220
	$4 \cdot 2$	60			1-3	70		150		-00		210
31.		60				60			$5 \cdot 1$	320		

Daily Gauge Height and Discharge of Hixon Creek at mouth for 1914.
DAצ.

Monthly Discharge of Hixon Creek at mouth for 1914.

Month.	Discharge in Second-Feet.			Accuracy.
	Maximum.	Minimum.	Mean.	
January...	750	44	173	D
February	185 185	33 47	$\begin{array}{r}64 \\ 114 \\ \hline 1\end{array}$	C
April....	650	45	202	C
May...	320	85	199	C
June...	360	60	155	D

Hixon Creek above Belknap Creek (1064.)
Location.-About a mile above the mouth of Belknap creek, in section 36, township 6, range 7, west of 7 th meridian.

Records Available.-April to September, 1914. Not maintained regularly at present.

Drainage Area.-Not known.
Gauge.-Vertical staff, nailed to tree.
Channel.-Rocks and gravel, with natural \log weir as control.

SESSIONAL PAPER No. 25e

Discharge Measurements.-Four meter measurements during 1913 and 1914.

Winter Flow.-Very heavy snowfall and some ice in winter.
Accuracy.-D.
Co-operation.-Gauge readings taken by employees of Westminster Power Company.

Discharge Measurements of Hixon Creek above Belknap Creek, 1913-14.

Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
July 8	H. C. Hughes.	1673	23	31	1.3	1.41	$42 \cdot 1$
July 31.		1673	24	13	0.7	1.15	$9 \cdot 8$
Sept. 22	do	1673	21	12	0.5	$0 \cdot 90$	$6 \cdot 1$
1914.							
Aug. 1.	C. G. Cline	1933	22	18	$0 \cdot 5$	1.01	$9 \cdot 3$

Daily Gauge Height and Discharge of Hixon Creek above Belknap Creek for 1914.

6 GEORGE V, A. 1916
Monthly Discharge of Hixon Creek above Belknap Creek, for 1914.

	Month.	Discharge in Second-Feet.		
		Maximum.	Minimum.	Mean.
June-		55	10	
July..... ${ }_{\text {August....... }}$		50 10	8 4	23 7

Accuracy "D."
Jones Creek (1010).
Location.-At outlet of Jones lake in section 28, township 3, range 27, west of the 6 th meridian.

Records Available.-Continuous records have been kept by Messrs. Anderson and Warden for the Vancouver Power Company since April, 1911.

Drainage Area.-Twenty-five square miles, determined by triangulation survey by Anderson and Warden.

Gauge.-Vertical staff fastened to rock filled crib. Readings daily.
Channel.-Uniform section with deep water and good control.
Discharge Measurements.-Five meter measurements during 1911, 1912, 1913 and 1914.

Winter Flow.-Open water practically all year.
Accuracy.-A.
Co-operation. -The records of this stream are kept by Messrs. Anderson and Warden, Civil Engineers, Vancouver, for the Vancouver Power Company.

Discharge Measurements of Jones Creek at Jones Lake, 1911-12-13-14.

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
Nov. 3	K. H. Smith.	1057	51	96	$0 \cdot 5$	$0 \cdot 50$	518
Sept. 18	C. G. Cline.	1046	51	104	$0 \cdot 8$	$0 \cdot 85$	87
July 24	K. G. Chisholm.	1055	51	180	$2 \cdot 3$	$2 \cdot 06$	411
	Lachlan	1055	51	131	$1 \cdot 3$	$1 \cdot 24$	175
July 23	C. G. Cline....	1933	51	128	$1 \cdot 3$	$1 \cdot 22$	164

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Jones Creek at Jones lake for 1914.

Dax.	January.		February		March.		April.		May.		June.	
	Gauge Height	Discharge.	Gauge Height	Discharge	Gauge Height	Discharge.	Gauge Height.	Discharge	Gauge ${ }^{3}$ Height	Discharge	Gauge Height	Discharge.
	Feet.	Sec.-ft.										
1.	$0 \cdot 60$	60	0.70	70	0.80	85	0.85	90	$1 \cdot 10$	140	1.40	215
2	$0 \cdot 60$	60	0.70	70	0.90	100	0.80	85	1.20	165	1.50	240
3	$0 \cdot 60$	60	$0 \cdot 65$	65	0.90	100	$0 \cdot 85$	90	1. 60	270	1.60	270
4.	0.90	100	$0 \cdot 65$	65	$0 \cdot 80$	85	0.90	100	1.65	280	1. 60	270
5.	1.75	310	0.60	60	0.75	75	$1 \cdot 10$	140	1.45	230	1.50	240
6	2.80	680	$0 \cdot 60$	60	0.70	70	$1 \cdot 10$	140	1.35	200	1.40	215
7	2-60	600	0.55	55	0.70	70	$1 \cdot 10$	140	1-30	190	1. 30	190
8	$2 \cdot 15$	440	$0 \cdot 55$	55	0.75	75	1. 10	140	$1 \cdot 30$	190	1.20	165
9	1.85	340	$0 \cdot 55$	55	0.70	- 70	1. 10	140	1.35	200	1. 20	165
10.	$1 \cdot 60$	270	$0 \cdot 55$	55	0.70	70	1.10	140	1.35	200	1.15	150
11.	1.45	230	$0 \cdot 55$	55	0.70	70	$1 \cdot 10$	140	1.40	215	1.15	150
12	$1 \cdot 35$	200	$0 \cdot 55$	55	0.65	65	$1 \cdot 05$	130	1.40	215	$1 \cdot 20$	165
13	$1 \cdot 25$	180	$0 \cdot 50$	50	0.70	70	$1 \cdot 10$	140	1.40	215	1.30	190
14	1.20	165	$0 \cdot 50$	50	1.00	120	$1 \cdot 20$	165	1.55	250	1.40	215
15.	$1 \cdot 15$	150	$0 \cdot 50$	50	1.10	140	1-30	190	1.65	280	1.55	260
16.	$1 \cdot 10$	140	0.50	50	$1 \cdot 15$	150	$1 \cdot 40$	215	1. 55	250	1.70	295
17.	1.05	130	0.50	50	1. 25	180	1.30	190	1.50	240	1.75	310
18	1.00	120	$0 \cdot 50$	50	$1 \cdot 15$	150	1.25	180	1.45	230	1.75	310
19.	0.95	110	0.45	45	1.10	140	1.45	230	1.40	215	1.65	280
20.	0.90	100	$0 \cdot 45$	45	$1 \cdot 15$	150	1.65	280	$1 \cdot 40$	215	1. 60	270
21.	090	100	0.45	45	1.15	150	$1 \cdot 50$	240	1.40	215	1. 55	250
22	$0 \cdot 85$	90	$0 \cdot 55$	55	1.10	140	1-40	215	1. 45	230	1.50	240
23.	0.85	90	$0 \cdot 60$	60	$1 \cdot 10$	140	$1 \cdot 30$	190	1.50	240	1. 40	215
24	0. 30	85	$0 \cdot 65$	65	$1 \cdot 10$	140	$1 \cdot 25$	180	1.55	250	1.30	190
25.	0.80	85	0.65	65	1.10	140	$1 \cdot 20$	165	1.55	250	1.30	190
26.	080	85	0.65	65	1.05	130	$1 \cdot 15$	150	1.65	280	1.30	190
27.	080	83	0.70	70	1.00	120	1.10	140	$1 \cdot 60$	270	1.30	190
28.	0.80	85	0.65	65	0.95	110	$1 \cdot 10$	140	1.45	230	1.30	190
29.	0.80	85			0.90	100	$1+10$	110	1.35	290	1.30	190
30.	0.75	75			$0 \cdot 90$	100	1.05	130	1.25	180	1.45	230
31	0.70	70			0.85	90			$1 \cdot 25$	180		, .

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Jones Creek at Jones lake for 1914 -Con.

Day.	July .		August.		September.		October.		November.		December.	
	Gauge Height	$\begin{array}{\|c} \text { Dis- } \\ \text { charge } \end{array}$	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge. } \end{aligned}$	Gauge Height	Discharge	Gauge Height.	$\begin{aligned} & \text { Dis- } \\ & \text { charge. } \end{aligned}$
	Feet.	Sec.-ft.										
1.	1. 55	250	1.00	120	0.85 0.80	90 85	. 90	100	1.30 1.70	${ }_{295}^{190}$	1.15 1.10	150
3	1.60 1.65	270 280	1.00 1.05	120 130	0.80 0.80	85 85	. 80	100 90	1.70 1.90	${ }_{325}$	$1 \cdot 10$ 1.05	140 130
4.	1.70	295	$1 \cdot 10$	140	0.80	85	. 80	85	1.75	310	1.00	120
4	1.60	270	$1 \cdot 10$	140	0.75	80	. 75	80	$1 \cdot 65$	280	. 95	110
6	1.55	250	$1 \cdot 10$	140	0.70	70	70	70	1.55	250	90	100
7	1.45	230	$1 \cdot 10$	140	0.70	70	. 70	70	$1 \cdot 45$	230	. 85	90
8	1.45	230	$1 \cdot 10$	140	0.85	90	.70	70	1.30	190	. 80	85
9.	1.45	230	1.05	130	0.90	100	$\cdot 70$	70	1.40	215	. 80	85
10.	1.45	230	1.00	120	0.90	100	.70	70	$1 \cdot 35$	200	. 75	75
11.	1.50	240	1.00	120	1.00	120	. 70	70	1.80	325	75	75
12.	$1 \cdot 50$	240	$1 \cdot 00$	120	1.00	120	. 70	70	1.70	295	. 70	70
13.	$1 \cdot 55$	250	1.05	130	(0. 90	100	. 75	80	1.60	${ }_{210}$. 70	70
14.	1.55	${ }_{250}^{250}$	1.10	140	0.90 1.00	100	. 75	80	1.40	${ }_{190}^{215}$. 65	${ }_{65}^{65}$
15.	1.55	250	$1 \cdot 10$	140	1.00	120	. 80	85	$1 \cdot 30$	190	. 65	65
16.	1.50	240	1.05	130	0.95	110	. 75	80	1.20	165	. 60	${ }^{60}$
17.	$1 \cdot 45$	230	1.00	120	0.90	100	1.05	130	$1 \cdot 10$	140	- 55	55
18.	1.45	${ }_{240}^{230}$	${ }^{0.95}$	110	1.10	140	1.15	150	$1 \cdot 10$	140	-55	55
19.	1.50 1.50	240 240	0.95 0.95	110 110	$1 \cdot 30$ 1.30	190 190	1.20 1.20	165 165	1.10 1.20	140 165	. 55	55 55
20.	$1 \cdot 50$	240	0.95	110	$1 \cdot 30$	190	$1 \cdot 20$	165	$1 \cdot 20$	165	- 55	55
21.	$1 \cdot 40$	215	1.00	120	1.20	165	${ }_{1}^{1.10}$	140	${ }^{1} \cdot 20$	165	55	55
${ }_{23}^{22}$	$1 \cdot 30$	190	$1 \cdot 00$	120	$1 \cdot 10$	140	1.00	120	$1 \cdot 20$	165	. 50	5
${ }_{24}^{23}$	1.25 1.20 1.20	180 165	0.95 0.95	110 110	1.05 1.00	130 120	.95 .90	110 100	1.20 1.10	165 140	. 50	50 50
25.	1.15	150	0.90	100	0.95	110	.85	${ }_{90}$	1.20	165	- 50	50
26.	1. 10	140	0.90	100	0.95	110	. 80	85	$1 \cdot 60$	270	50	50
27.	$1 \cdot 10$	140	$0 \cdot 90$	100	1.05	130	. 80	85	1.45	230	. 50	50
28.	1.05	130	$0 \cdot 90$	100	1.05	130	-75	80	1.45	230	. 50	50
29. 30.	1.00 1.00	120 120	0.90 0.90	100 100	1.00 0.95	120 110	. 70	70 90	$1 \cdot 40$ $1 \cdot 30$	${ }_{190}^{215}$	- 50	50 50
31.	1.00	120	0.85	90			$1 \cdot 15$	130			. 55	55

Monthly Discharge of Jones Creek at Jones lake for 1914.
(Drainage area, 25 square miles.)

Month.	Discharge in Second-Feet.				Run-Off.		Accuracy
	Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on Drainage area.	Total in acre-feet.	
January.	680	60	173	6. 92	7.98	10,600	A
February	70	45	57	$2 \cdot 28$	$2 \cdot 37$	3,160	B
March.	180	65	. 109	$4 \cdot 36$	5.03	6. 700	A
April.	280	85	158	$6 \cdot 32$	7.05	9,400	A
May..	280	140	223	8.92	10.28	13,700	A
June.	310	150	221	8.84	9.86	13,200	A
July .	295	120	213	8.52	9.82	13,100	A
August.	140	90	119	$4 \cdot 76$	5.49	7,320	A
September.	190	70	114	$4 \cdot 56$	5.09	6,780	A
October...	165	70	96	$3 \cdot 84$	$4 \cdot 43$	5,900	A
November.	325	140	215	$8 \cdot 60$	$9 \cdot 60$	12,800	A
December.	150	50	73	$2 \cdot 92$	$3 \cdot 37$	4,490	B
The year.	680	45	148	$5 \cdot 90$	$80 \cdot 37$	107,150	A

Lynn Creek (1046.)

Location.-Below the overflow from the North Vancouver town intake, and about 4 miles from the mouth of the creek.

Records Available.-Daily discharges since June, 1914.
Drainage Area.-Seventeen square miles. Estimated by the engineers of the Provincial Water Rights Branch.

Gauge.-Cable gauge on flume bridge.
Channel.-Boulders and solid rock.
Discharge Measurements.-Four meter measurements made during 1914.
Winter Flow.-Open water all year.
Accuracy.-C.
Co-operation.-Gauge readings are made by Mr. Kirkland, who is employed at the intake by the Waterworks Department of North Vancouver.

Discharge Measurements of Lynn Creek below intake 1914.

Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
1914.			Feet.	Sq. it.	Ft. per see	Feet.	Sec.-ft.
June 10.	C. G. Cline	1933	30	54.0	$2 \cdot 40$	$5 \cdot 00$	124
	"	1933	30 11	60.0 9.4	$2 \cdot 30$ $0 \cdot 20$	$5 \cdot 12$ $3 \cdot 45$	${ }_{2}{ }_{2}{ }^{2}$
Oct. 21.	H. C. Hughes	1933	44	$91 \cdot 0$	$2 \cdot 82$	$5 \cdot 80$	250

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Lynn Creek below Intake for 1914.

Day.	June.		July.		August.		September.		October.		November.	
	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge } \end{aligned}$	Gauge Height	Discharge	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge. } \end{gathered}$	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$
	Feet.	See.-ft.	Feet.	Sec.-ft.	Feet,	Sec.-ft.	Feet.	Sec.-ft.	Feet	Sec.-ft	Feet.	Sec.ft.
1.			5.05 4.95	130 120	3.30 3.25		3.25 3.05		4.90 4.90	110 110	7.15 7.90	510 660
3			4.95 4.85	120 105	$3 \cdot 25$ $3 \cdot 15$		3.05 3.00		4.90 4.50	${ }_{1}^{110}$	7.90 7.30	660 540
4			$4 \cdot 85$	105	$3 \cdot 10$		$2 \cdot 90$		$4 \cdot 35$	52	$6 \cdot 15$	320
5.			4.70	86	$3 \cdot 10$	1	$2 \cdot 90$	1	$4 \cdot 25$	44	$5 \cdot 65$	230
6.			4.65	80	$3 \cdot 30$	2	$2 \cdot 80$		$4 \cdot 10$	34	$5 \cdot 80$	260
7			4.70	86	3.55	${ }^{7}$	2.90 3	1	$4 \cdot 15$	37	$5 \cdot 95$	285
8			4.50	65	3. 85	20	$3 \cdot 10$		4.75			
9.			4.45	60	$3 \cdot 75$	15	$3 \cdot 40$	2	4.80	98	$6 \cdot 10$	315
10.	4.95	115	$4 \cdot 35$	52	3. 50	5	$3 \cdot 50$	5	4.90	110	6. 10	315
11.	$5 \cdot 05$	130	4.45	60	$3 \cdot 35$,	3.95	25	4.80	98	5.90	275
12.	5.05	130	4.40	56	$3 \cdot 30$	2	$4 \cdot 30$	48	$7 \cdot 40$	560	$5 \cdot 75$	250
13.	$5 \cdot 15$	150	$4 \cdot 35$	52	3.25 3.15	1			$\begin{array}{r}\text { 6. } \\ 5 \\ 5 \cdot 30 \\ \hline\end{array}$	305 170	$5 \cdot 50$ 5.35 5	200 180
14.	$5 \cdot 35$	180 170	$4 \cdot 40$ 4.35	56 52	3.15 3.25	1	4.70 4.85	86 105	$5 \cdot 30$ 4.95	170 120	$5 \cdot 35$ $5 \cdot 20$	180 155
15.	$5 \cdot 30$	170	$4 \cdot 35$	52	3.25	1	4.85	105	$4 \cdot 95$	120	$5 \cdot 20$	155
16.	$5 \cdot 50$	200	$4 \cdot 30$	48	3.30	,	$5 \cdot 10$	140	6. 40	370	5.75	250
17.	5.00	125	$4 \cdot 10$	34	3.25 3.35		$5 \cdot 50$ 5.85	200	6.70 6.50	425	$5 \cdot 50$ 5.50	200
18.	$5 \cdot 20$ 5.10	155 140	4.05 4.00	31 28 38	$3 \cdot 35$ 3.30	2	5.85 6.25	340	6.50 6.00	295	${ }_{5} 5.65$	230
$\begin{aligned} & 19 . \\ & 20 . \end{aligned}$	$4 \cdot 95$	120	$4 \cdot 10$	34	$3 \cdot 45$	2	6.75	480	$5 \cdot 95$	280	5.75	250
21.	$5 \cdot 30$	170	3.95	25	$3 \cdot 40$	2	$5 \cdot 50$	200	$5 \cdot 90$	275	5.70	240
22.	$5 \cdot 45$	190	3.75	15	$3 \cdot 35$	2	$5 \cdot 40$	185	5.30	170	$5 \cdot 50$	200
23.	$5 \cdot 10$	140	$3 \cdot 75$	15	$3 \cdot 25$	2	$5 \cdot 70$	240	5. 10	140	$5 \cdot 85$	270
24.	$4 \cdot 85$	105	3.80	17	$3 \cdot 35$	2	6.05	305	4.90	110	$6 \cdot 35$	360
25.	4.80	98	3.80	17	$3 \cdot 35$	2	6.65	415	4.70	86	6.65	415
26	4.80	98	$3 \cdot 65$	10	$3 \cdot 35$,	6.70	425	4.40	56	6.85	450
27.	$5 \cdot 00$	125	3. 60	8	$3 \cdot 15$	1	6.30	350	$4 \cdot 30$	48	6.75	430
28.	$5 \cdot 15$	150	$3 \cdot 55$	6	$3 \cdot 25$	1	$5 \cdot 50$	200	$4 \cdot 20$	41	6. 80	445
29	$5 \cdot 20$	155	$3 \cdot 55$	6	3.25	1	$5 \cdot 30$	170	4.25	44	6. 25	340
30.	$5 \cdot 35$	175	$3 \cdot 40$	2	$3 \cdot 15$	1	$5 \cdot 15$	150	4.95	120	6.00	295
31.			$3 \cdot 35$	2	3.25	1			5. 65	230		

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Lynn Creek below Intake for 1914 -Con.

DAY.	

Monthly Discharge of Lynn Creek below Intake for 1914.
(Drainage area, 17 square miles.)

Month.	Discharge 1n second-Feet.				Res-Orr.		Accuracy:	
	Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on Drainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$		
	130	2	47	$2 \cdot 8$	$3 \cdot 7$	2.9401	C	
August . ${ }_{\text {der }}$	30	1	3	$0 \cdot 2$	$0 \cdot 2$	1×0	1)	
Septemiser. 80	430	1	145	$8 \cdot 5$	9.5	8, 6614	1)	
October	560	34	164	9.7	11.2	10. 1161	(
	660	155	313	18.5	20.6	1s.71k	(
	285	10	\$5		5.8	5.2\|x		C

Mesliloet River (1011).
Location.-A short distance below canyon, 8 miles from mouth of river and in section 8 , township 7 , range 7 , west of 7 th meridian.

Records Available.-Continuous since October 31, 1912.
Drainage Area.-Estimated at 65 square miles.
Gauge.-Vertical staff; readings two or three times a week.
Channel.-Boulders and gravel; permanent control.
Discharge Measurements.-Twelve meter measurements taken during 1912, 1913, and 1914 define the rating curve for almost the entire range.

Winter Flow.-Open water conditions all winter.
Accuracy. - The value B is assigned where the gauge readings have been taken frequently enough to warrant it.

Co-operation.-Gauge readers are maintained by the Westminster Power Company.

Discharge Measurements of Mesliloet River eight miles from mouth 1914.

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
1912.			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
Oct. 31.	C. G. Cline.	1046	70	120	$1 \cdot 6$	$2 \cdot 26$	188^{1}
June 6 .	H. C. Hughes	1673	80	${ }_{2} 32$	$2 \cdot 9$	3-25	662
" 13	do	1673	80	240	$3 \cdot 1$	$3 \cdot 40$	713
" 17.	do	1673	80	195	$2 \cdot 4$	$2 \cdot 90$	446
July ${ }^{3}$	do	1673	80	203	${ }^{2 \cdot 4}$	2.98	471
Sept. 17.	C. G. Cline	1673 1673	75 70	146 109	1.6 1.2	2.28 1.87	122
Oct. 9.	F. MacLachlan	1673	77	81	0.9	1.61	76
Nov. 10.		1521	83	186	$2 \cdot 2$	2.86	417
" 16.	do	1521	85	277	$3 \cdot 5$	$3 \cdot 58$	942
Aug. 2.	C. G. Cline	1933	75	131	1.2	2.00	154
Nov. 11.	H. C. Hughes.	1933	80	220	$2 \cdot 6$	3.05	555

[^9]SESSIONAL PAPER No. 25e
Dally Gauge Height and Discharge of Mesliloet River eight miles from mouth, for 1914.

Day.	January.		February.		March.		April.		May.		June.	
	Gauge Height.	$\begin{gathered} \text { Dis- } \\ \text { charge. } \end{gathered}$	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge. } \end{aligned}$	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height	Dis-	Gauge Height	Discharge.	Gange Height	Discharge
	Feet.	Sec.ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec. 5 It .	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1		400		110	3.80	1,010	$2 \cdot 1$	170	${ }_{3}^{2 \cdot 95}$	461	3.4	720
2	${ }^{2.90}$	436		100		700	$2 \cdot 1$	170	$3 \cdot 2$	595	${ }^{3 \cdot 1}$	540
4.	2.75 6.80	368 3,320	1.70	89	$2 \cdot 75$	368 290	$3 \cdot 2$	380 595	$2 \cdot 8$	490 389	$2 \cdot 85$	410 360
5.		2,400		80	$2 \cdot 30$	222		520		380	$2 \cdot 45$	265
6.	$4 \cdot 60$	1,580	1.60	72	2-30	222		470		375		265
7.		1,440	1.60	72		240		450	$2 \cdot 75$	368		270
8		1,270	$1 \cdot 60$	72		${ }^{260}$	${ }^{2} \cdot 9$	436		388		270
9.		1,110		76		280	$2 \cdot 95$	461	2.85	413		275
10.		950	1.65	80		300	$3 \cdot 0$	485	2.8	389	$2 \cdot 5$	280
11.		790	$1 \cdot 65$	80		320		400		460		295
12.		620		108		340	$2 \cdot 6$	311		530	$2 \cdot 6$	311
13.		440	1.95	136		360		640		600		
14.	$2 \cdot 40$	251		136		380	3.75	975	$3 \cdot 3$	660	$3 \cdot 45$	755
15.		260	1.95	136		400	3.95	1,115	$3 \cdot 2$	595	$3 \cdot 6$	860
16.		270		141		420		760	2.9	436		
17.	2. 50	280	$2 \cdot 00$	147	2.90	436	2.85	413		420	$3 \cdot 05$	510
18	$2 \cdot 45$	265		160	2.80	389	$3 \cdot 15$	570		400	$2 \cdot 9$	436
19.		235		190		464	3.7	940	2.8	389		380
20.	$2 \cdot 25$	210		220	$3 \cdot 10$	540	3. 15	570	$3 \cdot 0$	485	2.65	329
21.	$2 \cdot 20$	195	$2 \cdot 40$	251	3.05	510		440	3.7	940		285
22.		160	$2 \cdot 55$	295	3.00	485	$2 \cdot 6$	311		720	$2 \cdot 40$	251
${ }_{2} 23$.	1.95	136		350		390	$2 \cdot 5$	295	3.05	510	$2 \cdot 40$	251
${ }_{25}^{24 .}$	$1 \cdot 90$	155	2.85	413 300	- $2 \cdot 40$	251		275	3.5	650 790	$2 \cdot 40$ 3.05	251 510
26.	$2 \cdot 20$	195	$2 \cdot 20$	195	$2 \cdot 25$	210		265	$4 \cdot 0$	1,150	2.55	
27.		155		210		190		255	$3 \cdot 3$	660		295
28.	1.85	116	$2 \cdot 30$	222	$2 \cdot 10$	170		245	2.8	389		295
29.		121			2.50	280	$2 \cdot 35$	236	2.5	280		290
30.		128			$2 \cdot 30$	222		350		360		285
31.	1.95	136				200			$2 \cdot 9$	436		

Daily Gauge Height and Discharge of Mesliloet River eight miles from

 mouth, for 1914-Con.| Day. | July. | | August. | | September | | October. | | November. | | December. | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Guage Height. | Discharge | Gauge Height | Discharge | Gauge
 Height | Discharge | Gauge Height. | Discharge | Gauge Height | Discharge | Gauge Height | Discharge. |
| | Feet. | See.-ft. | Feet. | Sec.-ft. | Feet. | Sec.-ft. | Feet. | See.-ft. | Feet. | Sec.-ft. | Feet. | Sec.-ft. |
| ${ }_{2} 1$. | $2 \cdot 50$ | 280 280 | | 145
 147 | | 50 50 | | 260 257 | | 1,600 1 | 2.75 | 370 300 |
| 3. | | 280 | | 145 | | 50 60 | $2 \cdot 40$ | 257 250 | | 1,400 1,300 | | 300 250 |
| 4. | | 280 | | 145 | | 75 | | 210 | 4.00 | 1,150 | $2 \cdot 35$ | 235 |
| 5. | | 280 | | 140 | | 85 | | 190 | | 900 | | 200 |
| 6. | $2 \cdot 50$ | 280 | | 140 | | 100 | | 170 | | 600 | | 170 |
| 8 | | 280 280 | | 135 | | 115 | | 150 | $2 \cdot 70$ | 347 380 | 2.00 | 145 |
| 8 | | 280 | | 125 | | 125 | $1 \cdot 85$ | 135 | | 380 | | 140 |
| 10. | | 285 | | 125 | 2.00 | 145 | | 150 | 3.00 | 485 | | 130 120 |
| 11 | | 290 | 1.90 | 125 | 1.75 | 95 | | 200 | | 430 | | 110 |
| 12 | | 290 | | 125 | | 100 | | 400 | | 350 | 1.80 | 105 |
| 13. | | 295 | | 120 | | 200 | | 600 | | 290 | | 100 |
| 14 | $2 \cdot 55$ | 295 | | 115 | | 300 | | 800 | $2 \cdot 35$ | 235 | 1.70 | 90 |
| 15 | $2 \cdot 50$ | 280 | 1.85 | 115 | | 1,000 | | 1,000 | | 210 | | 90 |
| 16 | | 260 | | 100 | | 1,200 | | 1,300 | | 190 | | 80 |
| 17. | | 240 | $1 \cdot 65$ | 80 | 4.50 | 1.510 | $4 \cdot 30$ | 1,370 | 2. 10 | 170 | | 70 |
| 18 | | 195 | | 80 80 | $5 \cdot 00$ | 1,880 1,300 | | 1,300 1,200 | 2. 50 | 220 | $1 \cdot 60$ | 70 |
| 20. | | 170 | | 75 | 3.40 | 1,720 | $4 \cdot 00$ | 1,150 | | 450 | | 65 |
| 21. | 1.95 | 136 | | 75 | | 700 | | 1,000 | | 600 | 1.55 | 65 |
| 22. | 1.95 | 136 | | 70 | | 600 | | 850 | | 750 | | 60 |
| 23 | | 145 | | 70 | | 500 | $3 \cdot 40$ | 720 | 3.65 | 900 | 1.50 | 60 |
| 24 | | 155 | | 65 | | 400 | | 600 | | 1,100 | | 60 |
| 25 | | 165 | | 65 | | 350 | | 460 | $4 \cdot 40$ | 1,440 | | 65 |
| 26. | | 175 | | 65 | | 350 | | 330 | | 1,200 | | |
| 27. | | 185 | | 60 | | 350 | $2 \cdot 20$ | 195 | | 1,000 | 1.55 | 65 |
| 28 | 2.20 1.95 | 195 | | 60 | $2 \cdot 65$ | 330 | | 300 | $3 \cdot 55$ | 820 | | 80 |
| 29 | 1.95 | 136 | | 55 | | 300 | | 1,000 | | 800 | | 90 |
| 30 | | 140 | | 55 | | 280 | | 1,500 | | 700 | | 100 |
| | | 145 | | 50 | | | $4 \cdot 90$ | 1,800 | | | 1.90 | 125 |

Monthly Discharge of Mesliloet River eight miles from mouth, for 1914.
(Drainage area, 65 square miles.)

Month.	Discharge in Second-Feet.				Run-Off.		Accuracy.
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Deptn in inches on Drainage area.	Total in acre-feet.	
January .	3,320	116	597	$9 \cdot 2$	$10 \cdot 6$	36,700	B
February	413	72	162	$2 \cdot 5$	$2 \cdot 6$	9,000	B
March..	1,010	170	360	$5 \cdot 5$	$6 \cdot 3$	22, 100	B
April.	1,115	170	460	$7 \cdot 1$	$7 \cdot 9$	27,400	13
May M $^{\text {. }}$.	1,150	280	520	$8 \cdot 0$	$9 \cdot 2$	32,000	B
June.	-755	251	393	$6 \cdot 0$	$6 \cdot 7$	23,400	B
July..	295	136	228	$3 \cdot 5$	$4 \cdot 0$	14,000	C
August.	147	50	99	1.5	1.7	6,100	C
September... .	1,880	50	447	$6 \cdot 9$	$7 \cdot 7$	26,600	C
October	1,800	115	644	$9 \cdot 9$	11.4	39,600	C
November..... -	1,600	170	691	10.6	11.8	41,100	C
December..	370	60	121	$1 \cdot 9$	$2 \cdot 2$	7,400	C
The year.	1.880	50	394	$6 \cdot 05$	$82 \cdot 1$	285,400	C

Location.-At the pack trail bridge, 4 miles from the mouth of the river and 9 miles from Hope; in section 27, township 4, range 5, west of 6 th meridian

Records Available.-August to December, 1914-irregular.
Drainage Area.-Thirty square miles (above gauging station.)
Gauge.-Vertical staff. Readings irregular.
Channel-Rocky; water swift at high stages.
Discharge Measurements.-Four during 1914; one of them was under ice conditions.

Winter Flow.-Stream remains open all winter but during cold spells anchor ice disturbs somewhat the ordinary relation between gauge height and discharge.

NICOLUM RIVER.

The Nicolum river has its source in the Nicolum lakes at an elevation of something like twenty-one hundred feet. It discharges into the Coquihalla river near Hope, about 4 miles from the Fraser river at an elevation of some three hundred feet. The stream has a drainage area of 30 square miles above the gauging section.

For the greater part of the year there is no direct surface flow from the lakes into the river, but the flow is kept up by seepage, which comes out as springs in the bed of the stream, some little distance below the lakes. It is only for a short period during the spring freshet that the lakes overflow directly into the stream. This condition of affairs gives a very uniform flow, which, however, is affected to some extent by two tributaries which enter from either side of the stream a few miles below the lake.

The precipitation in the Nicolum river watershed probably averages something over seventy inches. In the winter there is very little snow near the mouth of the creek, but at the headwaters there is a considerable depth. The stream does not generally freeze at the gauging station but the water is sometimes backed up a little by ice.

The pack trail from Hope to Princeton follows the Nicolum river from its mouth to the lakes. Part of this road was widened at one time for the use of wagons, and it would be a simple matter to convert it into a wagon road at least as far as the Nicolum lakes. Lately, however, it has heen used merely as a pack trail.

There is practically no settlement or development in the Nicolum valley. The country is mostly mountainous, and there is very little good farming land, with the exception of a fringe around the lakes.

The Nicolum lakes are located at one end of a valley which lies among the hills at an altitude of some twenty-one hundred feet. The Nicolum river drains one end of this valley. The sumallo river flows down from the hills near the other end of the valley on its way to join the skagit below. The natural conditions are such that it would be quite possible to divert the sumallo river into the Nieolum lakes. This would give a fairly good flow of water at quite a high head. By utilizing the total fall to the Fraser river, a head of something like two thonsand feet could be obtained, thongh this would require a pipe line about 10 miles long. The lakes would give good storage, particulaly since their area cond be greatly increased by means of storage dams. The natural secpage which takes place from the lakes at present womld be a considerable disalvantage. However, test pits which have been sunk, seem to indicate that there is only one of the lakes that supplies this seepage and that the glacial silt in the rest of the valley bottom would prevent any such losses, provided that the one troublesome lake was omitted from the storage system.
$25 \mathrm{E}-8 \frac{1}{2}$

The flow available for such a development is given by the flow of the Sumallo river as measured at the station eight miles from the mouth. To this must be added a portion of the flow as measured at the station on the Nicolum, which cannot all be utilized because it includes the water brought down by the two tributaries which enter below the lake, and it would only be possible to divert one of these streams into the proposed pipeline. The measurements at the upper station on the Sumallo, however, are not as complete as those which have been taken at the station near the mouth, since it was not possible to get regular gauge readings. In using the flow of the Sumallo river at the lower station, a considerable reduction should be made. This amount can be determined by comparing the discharges at the two stations, at various times of the year. It is expected that next year more complete data on these streams will be available.

Discharge Measurements of Nicolum River at Nine-mile Bridge, 1914.

Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of section.	Mean Velocity.	Gauge Height.	Discharge.
1914.			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
July 117.	C. G. Cline	1933	26	27.0	$2 \cdot 80$	1.55	74.3
Aug. 27.	H do du ${ }^{\text {d }}$	1933	26	16.4	1.50 1.60 1.60	1.10	24.0 $24 \cdot 0$
$\begin{array}{ll}\text { Oct. } & 29 . \\ \text { Dec. } & 17 .\end{array}$	H.C. Hughes	1933 1521	28 28	15.7 16.5	1.60 1.87	$\stackrel{1}{1 \cdot 30}$	

[^10]SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Nicolum River four miles from mouth for 1914.

Norton Creek (1013.)
Location.-An outlet of Norton lake in section 10, township 7, range 7, west of 7th meridian.

Records Available.-Continuous since October 20, 1912, except for part of January, 1914.

Drainage Area.-Not known-very small.
Gauge.-Vertical staff. Very few readings during the winter of 1914.
Channel.-Boulders.
Discharge Measurements.-Twelve meter measurements made during 1912, 1913, and 1914, define the rating curve accurately except for highest freshets.

Winter Flow.-The lake freezes over, but the stream remains free of ice at the gauge.

Accuracy.-C. and D. Gauge readings irregular for part of the year.
Co-operation.-The gauge readers are maintained by the Westminster Power Company.

Discharge Measurements of Norton Creek at Norton Lake, 1912-13-14.

${ }^{1}$ Station established.
${ }^{2}$ Several different sections used.
${ }^{3}$ Different section for a check.
Daily Gáage Height and Discharge of Norton Creek at Norton Lake for 1914.

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Norton Creek at Norton lake, for 1914-Con.

Day.	July.		August.		September		October.		November		December.	
	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge.
	Feet.	Sec.-ft.										
,		3.2	$1 \cdot 8$	0.4	1.6 1.6	0.1 0.1		6		40 50	2. 35	16 13
3.	2*2	$2 \cdot 7$ $2 \cdot 4$		0.4 0.4	1.6	$0 \cdot 1$ 0.1	$2 \cdot 45$	6	$3 \cdot 60$	50 40	2.75	111
4		$2 \cdot 1$	II	$0 \cdot 4$		$0 \cdot 2$		6		30	2. 60	$8 \cdot 6$
5.		1.8	11.	$0 \cdot 4$		$0 \cdot 2$		5		20	$2 \cdot 35$	$7 \cdot 6$
6.		1.5		$0 \cdot 4$		$0 \cdot 3$		4		10		6
7	$2 \cdot 0$	1.2		$0 \cdot 5$		$0 \cdot 4$		4	$2 \cdot 60$	$8 \cdot 6$		5
8.	$2 \cdot 0$	$1 \cdot 2$	1.84	$0 \cdot 5$	$1 \cdot 80$	0.4		3		10	$2 \cdot 35$	$4 \cdot 5$
9	$2 \cdot 0$	1.2		$0 \cdot 5$		$0 \cdot 4$		3		15	$2 \cdot 30$	3.7
10.	$2 \cdot 0$	$1 \cdot 2$	1.81	$0 \cdot 4$		$0 \cdot 5$	$2 \cdot 20$	$2 \cdot 7$		20	2.30	$3 \cdot 7$
11.	1.95	$0 \cdot 9$		0.4	1.85	$0 \cdot 5$		2.7	3.00	22	$2 \cdot 25$	3.2
12.		$0 \cdot 9$	$1 \cdot 80$	$0 \cdot 4$		1.0		2.7	2.90	18		3.0
13	$1 \cdot 9$	$0 \cdot 7$		$0 \cdot 4$		2		$2 \cdot 7$	2.80	14		$2 \cdot 5$
14		$0 \cdot 7$		$0 \cdot 4$		3		2.7	2. 70	11	$2 \cdot 15$	2. 3
15.		0.7	1.80	$0 \cdot 4$		4	$2 \cdot 20$	$2 \cdot 7$		10	$2 \cdot 15$	$2 \cdot 3$
16.	1.9	0.7		$0 \cdot 4$		5		40	$2 \cdot 60$	8.6	$2 \cdot 15$	2.3
17.		$0 \cdot 7$		$0 \cdot 3$		10	4.20	80		$8 \cdot 6$	$2 \cdot 15$	2.3
18.	1.91	$0 \cdot 7$	$1 \cdot 75$	0.3	2.9	18	$4 \cdot 30$	85	$2 \cdot 60$	$8 \cdot 6$	$2 \cdot 10$	1.9
19	1.91	$0 \cdot 7$		$0 \cdot 3$	$3 \cdot 3$	36		60		$8 \cdot 6$		1.8
20.	1.89	$0 \cdot 7$		$0 \cdot 2$	$3 \cdot 25$	34		40		$8 \cdot 6$		$1 \cdot 6$
21		$0 \cdot 7$		$0 \cdot 2$		30		20	$2 \cdot 6$	8.6	2.05	1.5
22		0.7	1.70	0.2		20	$2 \cdot 80$	14		15	$2 \cdot 05$	1.5
23	1.89	$0 \cdot 7$		$0 \cdot 2$	16		10	$2 \cdot 90$	18	$2 \cdot 05$	1.5
24		$0 \cdot 7$	1.70	$0 \cdot 2$		14	$2 \cdot 50$	$6 \cdot 7$		20		1.5
25.........	1.90	$0 \cdot 7$	$1 \cdot 70$	$0 \cdot 2$		12		6		20		$1 \cdot 6$
26.	1.94	0.9		$0 \cdot 2$		10		5	3.00	22		1.7
27.		$0 \cdot 8$		$0 \cdot 1$		8		4	$3 \cdot 0$	22		1.8
28.		$0 \cdot 6$	1.62	$0 \cdot 1$	$2 \cdot 55$	$7 \cdot 5$	$2 \cdot 30$	$3 \cdot 7$	$3 \cdot 25$	34	$2 \cdot 10$	1.9
29 30		0.5 0.4		$0 \cdot 1$		7	5 10		30 20	2.10 2.15	1.9 2.3
30.	1.8	$0 \cdot 4$	1.62	$0 \cdot 1$		7		10	-	20	$2 \cdot 15$	$2 \cdot 3$
31.	1.8	$0 \cdot 4$	1.60	$0 \cdot 1$		20	\ldots		$2 \cdot 30$	3.7

Monthly Discharge of Norton Creek at Norton Lake, for 1914

	Month.	Discharge in second-Feet.			Aceuracy
		Maximum.	Minimum.	Mean.	
February				4.3	$1)$
March.					
April				15.5	$1)$
May				61.6 3.7	${ }^{\text {I) }}$
June.		3.2 3.2	2.3 0.4	3.7 1.1	C
August		0.5	0.1	0.3	c
Nieptember	1	36	0.1	8.2	$1)$
October		* 5	2.7	151	$1)$
November		511	8.6	19.4	C.
Becember		16	1.3	+.11	c

Seymour Creek (1022).
Location.-Above the Vancouver waterworks intake and about seven miles from the mouth of the creek.

Records available.-Daily discharges since November, 1913.
Drainage Area.-Above intake, 76 square miles, estimated by the engineers of the Provincial Water Rights Branch.

Gauge.-Vertical staff gauge spiked to cribbing at intake.
Channel.-Rocks and boulders; water swift at high stages.
Discharge Measurements.-Seven meter measurements during 1913 and 1914.

Winter Flow.-Open water all year.
Accuracy.—B.
Co-operation.-Gauge readings are made by employees of the Vancouver Waterworks Department.

Discharge Measurements of Seymour Creek above city intake, 1913-14.

Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
1913.				Sq.-ft.	Ft. per sec.	Feet.	Sec.-ft.
Nov. 6	H. J. E. Keys.		67	133		$1 \cdot 60$	282^{1}
Jan.	Keys \& McLachlan.	1046	155	662	6.7	$4 \cdot 20$	4,450
April 30.	Keys \& Webb.	1057	135	368	${ }^{2 \cdot 1}$	${ }^{2} \cdot 35$	775
May 29.	C. G. Cline..	${ }_{193}^{1521}$	100	281	1.6 0.47	1.91 0.60	${ }_{73}{ }^{2}$
Aug. ${ }_{\text {Oct }} 14$.	C. ${ }_{\text {E }}^{\text {do Webb }}$	1933 1057	115 139	${ }_{355}^{157}$	1.47 1.9	1.60 2.00	${ }_{600}^{732}$
Oct. 20.	H. C. Hughes	1933	160	588	3.9	$3 \cdot 20$	2,290

[^11]SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Seymour Creek at Upper Intake, 1914.

Day.	January.		February.		March.		April.		May.		June.	
	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge. } \end{gathered}$	Gauge Height.	$\begin{gathered} \text { Dis- } \\ \text { charge. } \end{gathered}$	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height.	$\begin{aligned} & \text { Dis- } \\ & \text { charge. } \end{aligned}$	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge. } \end{aligned}$	Gauge Height	Discharge
	Feet.	Sec.-ft.										
1.	1.95 2.35	490 850	1.55 1.45	265 225	3.20 2.45	2,140	${ }_{1}^{1.70}$	330 285	2.47	970	2.50	1,000
3.	+ ${ }_{2 \cdot 65}$	1,185	1.45 1.30	${ }_{175}^{225}$	$2 \cdot 45$ 2.40	950 900	1.60 $2 \cdot 10$	${ }_{620}^{285}$	${ }_{2}^{2.75}$	1,325	$2 \cdot 55$	1,060
4.	$6 \cdot 10$	9,210	1.23	158	$2 \cdot 17$	682	$\stackrel{2}{2 \cdot 50}$	1,000	$2 \cdot 55$ 2.25	1,060	$2 \cdot 45$ $2 \cdot 12$	930 640
5.	$3 \cdot 55$	2,810	$1 \cdot 17$	144	1.90	450	$3 \cdot 10$	1,920	${ }_{2 \cdot 15}^{2 \cdot 5}$	${ }_{665}^{755}$	$2 \cdot 12$ 1.90	640 450
6.	5.00	6,460	1.09	128	1.70	330	$2 \cdot 52$	1,025	$2 \cdot 20$			
	3.05 2.70	1,825	1.03	116	1.65	307	$2 \cdot 42$	1,025	$2 \cdot 40$	900	1.85 1.80	${ }_{380} 41$
8.	$2 \cdot 70$ $2 \cdot 30$	1,250	1.00	110	1.77	365	$2 \cdot 35$	850	$2 \cdot 30$	800	2.05	575
10.	$2 \cdot 12$	638	1.02	114	1.70	430 330	$2 \cdot 30$ $2 \cdot 45$	800 950	2.20 2.10	710	2.00	530
12.	$2 \cdot 00$	530	1.150	130	1.60	285	$2 \cdot 40$	900	$2 \cdot 25$	755	2.00	530
13.	$2 \cdot 10$	620	1.50	245	${ }_{2}^{1.57}$	1,090	2.20 2.92	1710	2.30	800	$2 \cdot 20$	710
14.	$2 \cdot 00$	530	1.50	245	3.72	1,090 3,300	${ }_{3.40}$	1,595 2,580	${ }_{2}^{2 \cdot} 70$	1,000 1,250	$2 \cdot 20$ 2.35	710
15.	1.85	415	1.52	253	$2 \cdot 55$	1,060	$3 \cdot 45$	2,690	${ }_{2 \cdot 60}^{2 \cdot 70}$	1,250 1,120	$2 \cdot 35$ 2.60	
16.	2.55	1,060	1.50	245	$2 \cdot 42$	925	2.70	1,250	$2 \cdot 40$			
17.	2.17	683	1.50	245	$2 \cdot 45$	${ }_{950}^{950}$	$2 \cdot 40$	1,900	$2 \cdot 30$	800	$\stackrel{\text { 2 }}{2 \cdot 32}$	1,140
18.	2.05	575	$1 \cdot 45$	225	${ }^{2 \cdot 45}$	950	$2 \cdot 25$	755	2.20	710	$2 \cdot 30$	800
12.	1.95 1.77	490 365	$1 \cdot 45$ $1 \cdot 45$	225	${ }_{2} 2 \cdot 45$	950	$2 \cdot 80$	1,400	$2 \cdot 35$	850	$2 \cdot 15$	665
	1.77	365	$1 \cdot 45$	225	$2 \cdot 60$	1,120	$2 \cdot 60$	1,120	$2 \cdot 50$	1,000	2.00	530
21.	1.65	307	1.85	415	$2 \cdot 50$			800	$2 \cdot 60$	1,120	2.00	
22.	1.52	225	$2 \cdot 27$ 2.25	773 755	$2 \cdot 45$ $2 \cdot 25$	$\begin{array}{r}1090 \\ 755 \\ \hline\end{array}$	$2 \cdot 20$ 2.10	710 620	${ }_{2}^{2 \cdot 65}$	1,185	2.05	575
24.	$1 \cdot 32$	181	${ }_{2} \cdot 50$	755 1,000	$2 \cdot 25$ $2 \cdot 10$	755 620	$2 \cdot 10$ 2.00	620 530	$2 \cdot 50$ 2.55	1,000 1,060	1.95 2.00	490
25	$1 \cdot 27$	168	2.07	${ }^{593}$	1.90	450	1.90	450	${ }_{2} \cdot 60$	1,060 1,120	$2 \cdot 50$	
26.	1.95	490	1.92	466	1.70	330	1.85					
27.	1.65	307	$2 \cdot 07$ $2 \cdot 10$	593	1.60	285	1.95	490	${ }_{2} \cdot 77$	1,355	$2 \cdot 10$	630
28	1.45	225	$2 \cdot 10$	620	1.50	245	1.90	450	$2 \cdot 20$	710	$2 \cdot 05$	575
9,	1.45 1.75	${ }_{3}^{225}$			1.80	380	1.80	380	1.95	490	$2 \cdot 10$	620
	1.75	355			$1 \cdot 80$	380	$2 \cdot 00$	530	$2 \cdot 10$	620	$2 \cdot 20$	710
31.	$1 \cdot 45$	225			1.70	330			$2 \cdot 30$	800		

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Seymour Creek above Upper Intake, for 1914.-Con.

Monthly Discharge of Seymour Creek, Upper Station, for 1914.
(Drainage area, 76 square miles.)

Mosth.	Discharge in Second-Feet.				Rev-Off		Accuracy
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	Total in acre-feet.	
January .	9,210	168	1,115			68,500	
February	1,000	110	- 320	4. 22	4.39	17,800	B
March.	3, 3¢0	245	758	$10 \cdot 00$	$11 \cdot 53$	46,600	B
April.	2,690	285	933	$12 \cdot 30$	13.72	55,500	B
May.	1.355	490	919	12,10	13.95	56,500	B
June - - -	1,145	380	697	$9 \cdot 17$	$10 \cdot 23$	41.500	${ }_{8}^{8}$
July 1 . 1 . . .	710	95	315	4.14	$4 \cdot 77$	19,400	B
Augustn.	130	55	71	0.94	$1 \cdot 09$	4.400	C
September.	4,710	50	534	7.03	$7 \cdot 84$	31,800	B
October.	5,710	150	1. 220	$16 \cdot 10$	18.56	75.060	B
November... ${ }^{\text {N }}$ (4)	5, 700	205	1,540	$20 \cdot 30$	$22 \cdot 65$	91,600	B
	750	so	185	$2 \cdot 44$	$2 \cdot 81$	11.400	B
The year...	9.210	50	717	$9 \cdot 45$	12s.46	520,000	B

Silver-Pitt Creek (1017).

Location.-At lower end of canyon about 2 miles from mouth of creek in section 8 , township 4 , range 5 , west of the 7 th meridian.

Records Available.-Continuous since August, 1912.
Drainage Area.-Seventy square miles above gauging station.
Gauge.-Vertical staff gauge readings three times a week.
Channel.-Rocky; uneven bottom but permanent control. Deep still pool just above gauging section.

Discharge Measurements.-Eight meter measurements during 1912, 1913 and 1914.

Winter Flow.-Open water all year.
Accuracy.-C. Gauge readings only three times a week.

Discharge Measurements of Silver-Pitt Creek at mouth of Canyon, 1912-14.

Date.	Hydrographer.	Meter No.	Width.	Area of Section	Mean Velocity.	Gauge Height.	Discharge.
			Feet.	Sq. ft.	Ft. per sec	Feet.	Sec.-ft.
Aug. 9.	C. G. Cline	1046	65	104	$2 \cdot 39$	1. 50	242
May $25 .$.	C. G. Cline	1044	60	121	3.05	$\stackrel{2}{ } \cdot 15$	369
July ${ }^{\text {Sept. }} 16 .$.	K. G. Chisholm	1055 1055	62 57	100 68	1.83	${ }_{0}^{1.41}$	190
Sept. 17.		1055	55	66	1.27	0.90	8
Oet. 25.	H. J. E. Keys.	1057	61	73	1.60	0.99	116
July 20.	C. G. Cline	1933		60			
Nov. 5..	H. C. Hughes....	1933	72	142	3.00	$2 \cdot 19$	405

Daily Gauge Height and Discharge of Silver Pitt Creek two miles from mouth, for 1914.

Day.	January.		February.		March.		April.		May.		June.	
	$\begin{aligned} & \text { Gauge } \\ & \text { Height. } \end{aligned}$	Discharge	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge. } \end{gathered}$	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge. } \end{gathered}$	Gauge Height.	$\begin{aligned} & \text { Dis- } \\ & \text { charge. } \end{aligned}$
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.ft.	Feet.	Sec.-ft.
1		200		140		400	$1 \cdot 6$	240	1.9	310	1.95	325
2	1.2	155	1.1	135	1.8	285	1.8	${ }_{285}^{260}$		300 200		300 285
3		8800	1.0	120	1.4	240 195	1.8	285	$1 \cdot 8$	282	1.8	$\stackrel{285}{270}$
5	4.8	1,220		140		170		270		270	1.7	260
		1,200	$1 \cdot 25$	165	$1 \cdot 15$	145	1.7	260	1.7	260		300
7.	$4 \cdot 5$	1,130		160		150		270		${ }_{285}^{270}$		300
8		1,100		160		170	1.8	285	1.8	285	2.05	350
10.	$4 \cdot 2$	1.040 800	$1 \cdot 2$	155 170	$1 \cdot 3$	175 180	$1 \cdot 6$	260 240		290 300	1.8	320 285
11.		500	$1 \cdot 4$	195	1.4	195		250	1.9	310		70
12.	$2 \cdot 2$	395		210		240		250		300	1.7	260
13.		350	$1 \cdot 55$	230	1.8	285	1.7	260	1.8	285		270
14.	1.8	285 300		200		300 400 40		400 530	1.7	${ }_{260}^{270}$	1.8	280 285
15.							$2 \cdot 6$		1.7		1.8	
16.	2.0	335	$1 \cdot 3$	175	$2 \cdot 3$	430		480		250		270
17.		350		160		380	$2 \cdot 3$	430	1.65	250	$1 \cdot 7$	260 280
18.	$2 \cdot 2$	370 395	$1 \cdot 15$	145	$2 \cdot 0$	335 380		350		270	1.85	300
20.		360	1.0	115	$2 \cdot 3$	430	2.0	335	1.8	285		360
21.	2.0	335		200		450		320		270	$2 \cdot 3$	430
22.		300 275		300 430		500 530	1.9	310 390	1.7	260 300	2.75	500 580
23.	$1 \cdot 75$	275	$2 \cdot 3$	4460	$2 \cdot 6$	530 500	$1 \cdot 75$	390 295		300 330	2.75	580 540
24.		200	2.5	495	$2 \cdot 4$	460		280	$2 \cdot 1$	360		500
26	1.4	195		530		520		280		500	$2 \cdot 4$	
27.	1	180	2.7	565	$2 \cdot 75$	580	1.8	285	$2 \cdot 9$	${ }_{6}^{630}$		400
28	$1 \cdot 3$	175		500		450		290		500 430	$1 \cdot 55$	300 230
29.	1.2	175		.	1.8	285		300		400		220
31		150				260				370		

SESSIONAL PAPER No. 25e

Daily Gauge Height and Discharge of Silver Pitt Creek two miles from mouth, for 1914-Con.

D.x.	July.		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge.						
	Feet.	Sec.-ft.	Feet.	Sec.ft.	Feet.	Sec. -ft .	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1.	$1 \cdot 45$	210		60	0.4	35		220	$3 \cdot 0$	660		550
2.	1.25	190	$0 \cdot 6$	57 60	0.4	35 30	1.4	195 200	2.4	560 460	$2+4$	460 330
4	1.25	160		65	$0 \cdot 35$	30		220	$3 \cdot 0$	660	1. 4	195
5.		150	$0 \cdot 7$	70		30	1.6	240	$2 \cdot 2$	395		150
6.	$1 \cdot 15$	145		68		35		220	1.8	285	$1 \cdot 0$	115
7		140	0.65	63	0.4	35	1.4	195		350		100
8.	$1 \cdot 1$	135		70		60		170		500		90
9.		140	0.75	77	0.8	84	$1 \cdot 2$	155	$3 \cdot 0$	660	0.7	70
10.	1.15	145		70		140		150		800		60
11.		140		70	1.4	195		130	$3 \cdot 8$	910	0.45	40
12.	$1 \cdot 1$	135	$0 \cdot 65$	63		200	1.05	125		600		40
13.		150		60		220		150	$2 \cdot 0$	335	0.4	35
14	$1 \cdot 2$	155	$0 \cdot 6$	57	$1 \cdot 6$	240	$1 \cdot 3$	175		300		35
15.		160		50		350		190		200		30
16.	$1 \cdot 3$	175	$0 \cdot 5$	45	$2 \cdot 4$	460	$1 \cdot 45$	210	$1 \cdot 2$	155	0.35	30
17.		150		45		560		220		140		30
18	$1 \cdot 1$	135		40	$3 \cdot 0$	560		240	1.05	125	$0 \cdot 3$	25
19.		130	0.45	40		600	1.7	260		200 285		25 25
20.	0.95	110		40	$2 \cdot 6$	530		370	1.8	285		25
21.		100	0.4	35		600	2.45	480		400	$0 \cdot 3$	25
22.	0.9	100		35		600		540		540		30
23.		90	0.4	35	$3 \cdot 0$	660	$2 \cdot 8$	595	$3 \cdot 0$	660	$0 \cdot 4$	35
4.	$0 \cdot 75$	77		35		550		700		550		50
25.		70		35	$2 \cdot 4$	460		800	$2 \cdot 55$	410	$0 \cdot 6$	57
26.	$0 \cdot 65$	63	$0 \cdot 4$	35		400	$3 \cdot 5$	820		600		70
7.		60		30	2.0	335		640	$3 \cdot 3$	760		80
28.		60	$0 \cdot 35$	30		300	$2 \cdot 4$	460		730	0.9	100
29.	$0 \cdot 6$	57		30		270		400		700		150
30.		60	$0 \cdot 35$	30	$1 \cdot 6$	240	$2 \cdot 0$	335	$2 \cdot 9$	630	$1 \cdot 4$	195
31.	0.65	63		35				500				250

Monthly Discharge of Silver Pitt Creek, two miles from mouth, for 1914.
(Drainage area, 70 square miles.)

Month.	Discharge in Second-Feet.				Run-Oyf.		Accuracy
	Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on Drainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$	
January	1,220	150	450	6.43	7-41	27.700	C
February...	1, 565	115	240	3.43	3.57	$13,300$	C
Mareh	580	145	335	4.79	$5 \cdot 52$	$20 \cdot 610$	C
April	530 630	$\begin{aligned} & 240 \\ & 250 \end{aligned}$	$\begin{aligned} & 310 \\ & 320 \end{aligned}$	$\begin{aligned} & 4 \cdot 43 \\ & 4 \cdot 56 \end{aligned}$	$\begin{aligned} & 4 \cdot 94 \\ & 5 \cdot 26 \end{aligned}$	18.400	i
May.	630 580	250	320	$\begin{aligned} & 4 \cdot 56 \\ & \hline \end{aligned}$	$5 \cdot 26$	19.7(K) 19.940	C
June	580 210	220 57	$\begin{array}{r} 335 \\ 1,95 \end{array}$	4.79	$5 \cdot 34$	19.964	C
July	210 77	57 30	125 50	1.78	$\begin{aligned} & 2 \cdot 05 \\ & 0 \cdot 22 \end{aligned}$	7.7(4)	C
Auguat.	77 660	30 30	50 300	$\begin{aligned} & 0.71 \\ & +.29 \end{aligned}$	$\begin{aligned} & 0.82 \\ & 4.79 \end{aligned}$	$3,100$	()
	660 890	30 125	300	$+29$	$\begin{aligned} & 4.79 \\ & 5 \end{aligned}$	17.900 20, 301	8
October.	890 910	125 125	330 +85	4.71 6.93	$5 \cdot 43$	20.3011	C
November Decembor	$\begin{aligned} & 910 \\ & 550 \end{aligned}$	$\begin{array}{r} 125 \\ 25 \end{array}$	$\begin{aligned} & 485 \\ & 110 \end{aligned}$		$\begin{aligned} & 7 \cdot 73 \\ & 1 \cdot 81 \end{aligned}$	$\begin{gathered} 25,904 \\ 6, \$ 90 \end{gathered}$	C
The yers ...	1,220	25	280	$4 \cdot 04$	$54 \cdot 67$	304.300	C

Slollicum Creek (1033).
Location.-Near the mouth, in section 19, township 5, range 28 west of the 6th meridian.

Records Available.-Two meter measurements; a few gauge readings have been taken since May, 1914, which will be available when the station has been more fully rated.

Gauge.-Vertical staff; readings irregular.
Channel.-Rocks and gravel.
Discharge Measurements.-Two meter measurements in 1914.
Winter Flow.-Open water all year.
Discharge Measurements of Slollicum Creek near mouth, 1914.

Date.	Hydrographer.	Meter No.	Width	Area of Section	Mean Velocity	Gauge Height	Discharge.
			Feet.	Sq.ft.	Ft. per sec.	Feet.	Sec.-ft.
May 23.	C. G. Cline	1521	22	20	$1 \cdot 9$	1.60	36.4
Aug. 26..		1933	17	8.5	$0 \cdot 3$	0.82	$2 \cdot 2$

South Lillooet River (1018).
Location.-At upper highway bridge, 8 miles from mouth in section 28 , township 12, east of Coast meridian.

Records Available.-Daily discharges continuous since October, 1911.
Drainage Area-One hundred square miles.
Gauge.-Chain gauge on bridge; readings daily.
Channel.-Permanent rocky channel.
Discharge Measurements.-Ten measurements during 1911, 1912, 1913 and 1914.

Winter Flow.-Open water all year.
Accuracy.-B.
Discharge Measurements of South Lillooet River 8 miles from mouth, 1911-12-13-14.

Date.	Hydrographer.	Meter	Width.	Area of Section.	Mean Velocity:	Gauge Height.	Discharge.
1911.			Feet.	Sq. ft.	Ft . per sec.	Feet.	Sec.-ft.
Oet 26.	Cline and Smith	1057	100	113	$2 \cdot 0$	1.18	226
Dee. 1312.	K. 11. Smith.	1057	120	316	4.3	$2 \cdot 80$	1360
July 4	C. G. Cline	1046	105	151	$2 \cdot 4$	1. 50	361
Aug. 17		1046	125	288	$3 \cdot 5$	$2 \cdot 70$	1010
Scpt. 10.	"	1046	115	234	$3 \cdot 3$	$2 \cdot 00$	767
Nov 13 1913.	"	1046	125	608	$8 \cdot 1$	$4 \cdot 60$	4950
May 22.	"	1044	125	266	$4 \cdot 4$	$2 \cdot 45$	1180
July 1014	Smith and Cline	1055	125	296	$3 \cdot 8$	$2 \cdot 40$	1120
Aug. 21.	C. G. Cline	1933	80	80	1.5	$0 \cdot 50$	113
Oct. 22.	H. C. Hughes	1933	125	371	$5 \cdot 5$	$3 \cdot 12$	2000

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of South Lillooet River eight miles from mouth, 1914.

Daily Gauge Height and Discharge of South Lillooet River eight miles

 from mouth, for 1914 -Con.| Day. | July. | | August. | | September. | | October. | | November. | | December. | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Gauge Height | Discharge. | Gauge Height. | Discharge. | Gauge Height. | Discharge. | Gauge
 Height. | Discharge. | Gauge
 Height. | Discharge. | Gauge Height. | Discharge. |
| | Feet. | Sec.-ft. |
| 1. | $1 \cdot 3$ | 270 | $0 \cdot 5$ | 110 | 0.45 | 105 | $2 \cdot 1$ | 790 | $3 \cdot 9$ | 3,400 | 2.9 | 1,710 |
| 2. | 1.2 | 230 | $0 \cdot 5$ | 110 | 0.45 | 105 | 2.0 | 700 | $4 \cdot 5$ | 4,700 | $2 \cdot 7$ | 1,440 |
| 3. | $1 \cdot 2$ | 230 | $0 \cdot 5$ | 110 | $0 \cdot 45$ | 105 | 1.9 | 620 | $4 \cdot 3$ | 4,250 | $2 \cdot 5$ | 1,200 |
| 4. | $1 \cdot 2$ | 230 | $0 \cdot 5$ | 110 | 0.45 | 105 | 1.8 | 550 | $4 \cdot 3$ | 4,250 | $2 \cdot 35$ | 1,030 |
| 5. | $1 \cdot 2$ | 230 | $0 \cdot 5$ | 110 | 0.45 | 105 | $1 \cdot 7$ | 480 | $4 \cdot 0$ | 3,600 | $2 \cdot 1$ | 790 |
| 6 | $1 \cdot 1$ | 200 | $0 \cdot 5$ | 110 | 0.45 | 105 | $1 \cdot 5$ | 370 | $3 \cdot 2$ | 2,150 | 1.9 | 620 |
| 7. | $1 \cdot 1$ | 200 | $0 \cdot 6$ | 120 | $0 \cdot 5$ | 110 | 1.4 | 320 | $3 \cdot 1$ | 2,000 | 1.8 | 550 |
| 8 | $1 \cdot 0$ | 170 | $0 \cdot 6$ | 120 | $0 \cdot 6$ | 120 | 1.4 | 320 | $3 \cdot 1$ | 2,000 | 1.7 | 480 |
| 9. | $1 \cdot 0$ | 170 | $0 \cdot 6$ | 120 | 0.8 | 140 | $1 \cdot 3$ | 270 | $3 \cdot 5$ | 2,640 | 1.5 | 370 |
| 10. | 1.0 | 170 | C. 5 | 110 | $0 \cdot 9$ | 150 | $1 \cdot 2$ | 230 | $3 \cdot 2$ | 2,150 | 1.4 | 320 |
| 11. | $0 \cdot 9$ | 150 | $0 \cdot 5$ | 110 | 0.95 | 160 | $1 \cdot 3$ | 270 | $3 \cdot 8$ | 3,200 | $1 \cdot 3$ | 270 |
| 12. | 0.9 | 150 | $0 \cdot 5$ | 110 | 1.0 | 170 | 1.5 | 370 | $3 \cdot 2$ | 2,150 | $1 \cdot 25$ | 250 |
| 13. | 0.9 | 150 | $0 \cdot 5$ | 110 | $1 \cdot 0$ | 170 | $2 \cdot 2$ | 880 | $3 \cdot 2$ | 2,150 | $1 \cdot 2$ | 230 |
| 14. | 0.9 | 150 | $0 \cdot 5$ | 110 | $1 \cdot 2$ | 230 | $2 \cdot 1$ | 790 | $2 \cdot 8$ | 1,570 | 1.1 | 200 |
| 15. | $1 \cdot 0$ | 170 | 0.4 | 100 | 1.8 | 550 | $2 \cdot 0$ | 700 | $2 \cdot 5$ | 1,200 | 1.0 | 170 |
| 16. | 0.9 | 150 | $0 \cdot 4$ | 100 | $1 \cdot 8$ | 550 | $2 \cdot 2$ | 880 | $2 \cdot 3$ | 980 | 0.95 | 160 |
| 17. | $0 \cdot 9$ | 150 | 0.4 | 100 | $2 \cdot 1$ | 790 | $3 \cdot 75$ | 3,100 | $2 \cdot 1$ | 790 | 0.9 | 150 |
| 18. | 0.9 | 150 | $0 \cdot 4$ | 100 | $2 \cdot 8$ | 1,570 | $4 \cdot 3$ | 4,250 | 1.7 | 480 | 0.9 | 150 |
| 19. | 0.8 | 140 | $0 \cdot 4$ | 100 | $3 \cdot 2$ | 2,150 | $4 \cdot 9$ | 5, 600 | $1 \cdot 8$ | 550 | 0.85 | 145 |
| 20. | 0.8 | 140 | 0.4 | 100 | $3 \cdot 2$ | 2,150 | $4 \cdot 4$ | 4,500 | $2 \cdot 0$ | 700 | 0.85 | 145 |
| 21. | $0 \cdot 8$ | 140 | $0 \cdot 3$ | 110 | $3 \cdot 0$ | 1,850 | $3 \cdot 8$ | 3,200 | $2 \cdot 1$ | 790 | 0.8 | 140 |
| 22. | $0 \cdot 7$ | 130 | $0 \cdot 5$ | 110 | $2 \cdot 7$ | 1,440 | $3 \cdot 1$ | 2,000 | $2 \cdot 2$ | 880 | 0.8 | 140 |
| 23. | $0 \cdot 7$ | 130 | $0 \cdot 5$ | 110 | $2 \cdot 3$ | 980 | $2 \cdot 6$ | 1,320 | $3 \cdot 0$ | 1,850 | 0.75 | 135 |
| 24. | $0 \cdot 7$ | 130 | $0 \cdot 5$ | 110 | $2 \cdot 0$ | 700 | $2 \cdot 3$ | 980 | $3 \cdot 3$ | 2,300 | 0.8 | 140 |
| 25. | $0 \cdot 7$ | 130 | 0.5 | 110 | $1 \cdot 8$ | 550 | $2 \cdot 1$ | 790 | $3 \cdot 6$ | 2,820 | 0.75 | 135 |
| 26. | $0 \cdot 7$ | 130 | $0 \cdot 5$ | 110 | 1.8 | 550 | 1.9 | 620 | $3 \cdot 9$ | 3,400 | 0.8 | 140 |
| 27. | $0 \cdot 6$ | 120 | $0 \cdot 45$ | 105 | $2 \cdot 0$ | 700 | $1 \cdot 7$ | 480 | $3 \cdot 4$ | 2,470 | $0 \cdot 85$ | 145 |
| 28. | $0 \cdot 6$ | 12 C | $0 \cdot 45$ | 165 | $2 \cdot 6$ | 1,320 | 1.5 | 370 | $4 \cdot 0$ | 3,600 | 0.9 | 150 |
| 29. | $0 \cdot 6$ | 120 | 0.45 | 105 | $2 \cdot 4$ | 1,080 | $1 \cdot 5$ | 370 | 3.8 | 3,200 | 0.9 | 150 |
| 30. | $0 \cdot 6$ | 120 | 0.45 | 105 | $2 \cdot 2$ | 880 | $1 \cdot 5$ | 370 | $3 \cdot 2$ | 2,150 | 0.9 | 150 |
| 31. | $0 \cdot 5$ | 110 | $0 \cdot 45$ | 105 | | | $2 \cdot 3$ | 980 | | | $1 \cdot 1$ | 200 |

Monthly Discharge of South Lillooet River eight miles from mouth, for 1914.
(Drainage area, 100 square miles.)

Month.	Discharge in Second-Feet.				Run-Off.		Accuracy.
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	Total in acre-feet.	
Janu ary .	8,350	230	1,450	14.50	$16 \cdot 70$	89,200	C
February	1,080	170	1,532	5-32	5.54	29,500	B
March...	2,000	320	1,040	$10 \cdot 40$	$12 \cdot 00$	63,900	B
April.	2,000	270	1,030	$10 \cdot 30$	11.50	61,300	B
May..	1,320	376	594	$5 \cdot 94$	$6 \cdot 85$	36,500	B
June..	550	270	367	$3 \cdot 67$	$4 \cdot 10$	21,800	B
July..	270	110	161	1.61	1.86	9,900	B
August.	120	100	108	1.08	$1 \cdot 24$	6,600	B
September.	2,150	105	656	$6 \cdot 56$	$7 \cdot 32$	39,000	B
October...	5,600	230	1,210	$12 \cdot 10$	13.95	74,400	B
November.	4,700	480	2,280	$22 \cdot 80$	25.44	135,700	B
December.	1,710	135	387	3.87	$4 \cdot 46$	23,800	B
The year..	8,350	100	818	$8 \cdot 18$	$110 \cdot 06$	591,600	B

Sumallo River (1056).
Location.-One mile from mouth and just south of the Railway Belt boundary.

Records Available.-Daily discharges beginning July, 1914.
Drainage Area.-Seventy square miles (above mouth).
Gauge.-Vertical Staff.
Channel.-Rocky.
Discharge Measurements.-Six meter measurements by the engineers of the British Columbia Hydrographic Survey and four by L. N. Jensen. One measurement under ice conditions.

Winter Flow.-Stream open all winter, but during very cold weather anchor ice may affect the ordinary relation between gauge height and discharge to some extent.

Co-operation.-Four meter measurements were made during 1913 and 1914 by L. N. Jenssen for MacKenzie \& Mann.

Sumallo River.

The Sumallo river rises in the mountains south west of Hope, and flows in ε general southeasterly direction to its junction with the Skagit river, some 15 miles north of the international boundary line, and 2 miles from the boundary

Installing metal-faced gauge at metering section on Sumallo river one mile from mouth.
of the Railway Belt. Some of the mometains in its watershed rise to am altitule of 5,000 feet. It has a drainage area of 70 square mikes. The precipitation is probably more than 90 inches per ammm. In the winter the smow fall is quite heavy.

The park trail from Hope to Princeton follows the sumallo river for a distance of 7 or 8 miles. It was proposed at one time to improve it into a wagon road, hat the phan was never completely carred through, and of hate years the trail has been merely kept in repair for pack horses. When the Pacitie highway is completed, it will improve the means of tramsportation in this part of the count ry.

There is very little settlement or development in the Sumallo river valley. What little farming land there is is not worked to any great extent. There are some mining prospects, and just recently one mine, near the mouth of the river, has shipped a small quantity of ore. This may lead to some further development.

There is a proposal to divert water from the upper part of the Sumallo river into the lakes which feed the Nicolum river. This would augment the flow of the Nicolum sufficiently to make a power development practicable, but would divert a certain amount of water from the plants which expect to use water from the Skagit river on the American side of the boundary.

This diversion, however, might lead to the most beneficial use of the water, since it could be utilized under a head of something like two thousand feet.

In connection with the above-mentioned plan of development, two gauging stations have been established on the streams. One of these is near the mouth and measures the total flow of the stream. Daily gauge readings are taken at this station. Measurements are made also at a point some 7 miles above the lower station, but gauge readings can be taken only occasionally. The flow at this upper station gives approximately the amount of water which can be diverted into the Nicolum lake and is considerably less than the flow measured at the lower station.

Discharge Measurements of Sumallo River at one mile from mouth, 1913-14-15.

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
1913.			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
Sept. 19. Nov. 11.	L. N. Jenssen do				$2 \cdot 3$ $2 \cdot 3$	$1 \cdot 60$ $1 \cdot 00$	175 175
June 11.	do			130	$3 \cdot 8$	$2 \cdot 40$	502
July ${ }_{4} 12$.	C. G. Cline.	1933 1933	44 44	108 100	$3 \cdot 4$ $3 \cdot 1$	2.60 1.72	355 299
" 18	L. N. Jenssen			93	$3 \cdot 1$	1.50	299 299
Dec. 16.	H. C. Hughes.		39	57	$1 \cdot 3$	$0 \cdot 74$	76^{1}
Mar. 11	Hughes \& Cline	1521	30	41	$1 \cdot 3$	$0 \cdot 22$	54
" 15.	H. do	1521	40	62	1.9	6. 77	118
" 29	H. C. Hughes.	1521	42	67	$2 \cdot 1$	1.00	143

[^12]
SESSIONAL PAPER No. 25e

Daily Gauge Height and Discharge of Sumallo River near mouth, for 1914.

DAy.	July		August		September.		October.		November.		December.	
	Gauge Height	Discharge.	Gauge Height.	Discharge	Gauge Height	Discharge.	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec. -ft .	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1.			0.9 0.9	135	$0 \cdot 5$	$8 \mathrm{8C}$	0.5	80	6.9	135	1.5	545
2			0.9	135	0.5	80	0.5	80	$1 \cdot 6$	265	1.5	245
3.			0.9	135	$0 \cdot 5$	80	$0 \cdot 5$	80	1.8	310	$1 \cdot 3$	205
4.			0.9 0.9	135	0.5 0.5	88	C. 4	70	1.7	297	$1 \cdot 3$	205
			$0 \cdot 9$	135	$0 \cdot 5$	89	C. 4	70	$1 \cdot 6$	265	$1 \cdot 3$	205
6.			0.9	135	$0 \cdot 4$	70	$0 \cdot 4$	70	1.7	290	$1 \cdot 2$	185
7			0.9	135	$0 \cdot 4$	7.3	0.4	7 C	1.7	29.	$1 \cdot 1$	165
8			0.9	135	$0 \cdot 6$	90	C. 4	70	1.6	265	1.0	150
9.			0.8	120	$0 \cdot 6$	90	$0 \cdot 5$	8	1.6	265	0.8	120
10.			0.8	120	0.7	105	0.5	8 \%	$1 \cdot 6$	265	$0 \cdot 6$	93
11			0.8 0.8	120	0.6 0.6	90 90	$0 \cdot 5$	89 80	1.6	265	$0 \cdot 6$	90
12.	$2 \cdot 0$	360	0.8 0.8	120	0.6 0.6	90 90	0.5 0.5	80	$1 \cdot 5$	245	$0 \cdot 6$	90
14.			0.8 0.8	120	0.6 0.6	90	$0 \cdot 5$	80	1.5	245	$0 \cdot 5$	80
15.	1.7	290	0.8	12 C	$0 \cdot 6$	90	C. 5	8 8,	1.5	245	$0 \cdot 5$	80
16.	$1 \cdot 6$	265	$0 \cdot 8$	120	0.5	87	$0 \cdot 5$	s)	$1 \cdot 5$	245	$0 \cdot 5$	$8)$
17.	1.5	245	0.8	120	$0 \cdot 5$	80	$0 \cdot 5$	80	$1 \cdot 4$	225	$0 \cdot 5$	80
18.	1.5	245	0.7	105	C. 6	90	$0 \cdot 6$	90	$1 \cdot 3$	205	$0 \cdot 5$	80
19.	$1 \cdot 6$	265	0.7	105	$0 \cdot 7$	105	0.6	90	$1 \cdot 3$	205	$0 \cdot 5$	89
20.	$1 \cdot 6$	265	0.7	105	$0 \cdot 7$	105	0.6	90	$1 \cdot 3$	205	C. 5	A ${ }^{\text {c }}$
21.	1.7	290	0.6	90	0.7	105	0.7	105	$1 \cdot 3$	205	$0 \cdot 5$	so
22.	$1 \cdot 4$	225	C. 6	90	0.7	105	0.7	105	$1 \cdot 4$	225	$0 \cdot 5$	so
23.	$1 \cdot 3$	205	$0 \cdot 6$	90	0.6	90	$0 \cdot 6$	90	1.4	225	$0 \cdot 5$	80
24.	1.2	185	$0 \cdot 6$	90	$0 \cdot 6$	90	0.6	90	1.7	290	$0 \cdot 4$	70
25.	$1 \cdot 1$	165	$0 \cdot 6$	90.	$0 \cdot 6$	90	$0 \cdot 6$	90	$1+7$	290	$0 \cdot 4$	70
26.	$1 \cdot 1$	165	$0 \cdot 6$	90	$0 \cdot 6$	90	$0 \cdot 6$	90	1.7	291	$0 \cdot 4$	70
27.	$1 \cdot 1$	165	$0 \cdot 6$	90	$0 \cdot 6$	90	$0 \cdot 6$	90	1.7	290	$0 \cdot 4$	70
28.	$1 \cdot 0$	150	$0 \cdot 6$	90	0.6	90	$0 \cdot 6$	90	$1 \cdot 6$	265	$0 \cdot 4$	70
29.	$1 \cdot 0$	150	$0 \cdot 6$	90	$0 \cdot 6$	90	0.7	105	1.5	245	0.4	70
30.	0.9	135	$0 \cdot 6$	90	$0 \cdot 5$	80	$0 \cdot 7$	105	1.5	245	$0 \cdot 4$	71
31.	0.9	135	$0 \cdot 6$	90			$0 \cdot 7$	105		$=$	$0 \cdot 4$	70

Monthly Discharge of Sumallo River near mouth, for 1914.
(Drainage area, 70 square miles.)

Mosrif.	Discharge in Second-Feet.				Ren-(iyr.	
	Muximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { spuare } \\ & \text { mile } \end{aligned}$	1)epth in inches on 1)rainage нги.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { aere-fevet } \end{gathered}$
	135	00	112	17	2.11	6. 3: 4
Siptember	105	70	88	13	1.4	$\text { 3. } 240$
()etober	105	70	85	1!	1.1	5. 234
November	310	13.5	251	3-6	+1.0	14. 10.41
						8, 53, 1

Acruracy, "B".

Sumallo River (1057).

Location.-Eight miles from mouth in section 28, township 3, range 24, west of 6th meridian.

Records Available.-Irregular records beginning in July, 1914.
Gauge.-Vertical staff.
Channel.-Gravel.
Discharge Measurements.-Five meter measurements, one of them under ice conditions.

Winter Flow.-Station is somewhat affected by ice during very cold weather.

Discharge Meastrements of Sumallo River eight miles from mouth, 1914-15

Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
1914.			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
July Dec. 16. 16.	C. C. Cline... H. C. Hughes.	1933 1521	$\begin{aligned} & 40 \\ & 27 \end{aligned}$	$\begin{aligned} & 73 \\ & 15 \end{aligned}$	2.4 2.9	1.50 1.00	1677^{1} 44^{2}
$\begin{array}{cl} \text { Mar. } & 15 \ldots \\ & 30 . . \end{array}$	Hughes \& Cline H. C. Hughes.	$\begin{aligned} & 1521 \\ & 1521 \end{aligned}$	36 37	$\begin{aligned} & 43 \\ & 50 \end{aligned}$	${ }_{1}^{1.3}$	1.05 $1 \cdot 25$	59 80

[^13][^14]SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of sumallo River éght miles from mouth, for 1914.

Young Creek (1020).
Location.-At mouth, in section 10, township 7, range 7, west of 7th meridian.

Records Available.-Continuous since October 20, 1912, but gauge readings were not always taken very frequently.

Drainage Area.-Not known.
Gauge. Vertical staff.
Channel. Solid rock.
Discharge Measurements.- Eight meter measurements taken during 1913 and 1914.

Winter Flow. - Heavy snowfall but not much ice, so that open water conditions oltain practically all winter.

Accuracy.-(and D.
Co-operation. - Gange readings taken by Westminster Power Company-

Discharge Measlrements of Young Creek at mouth, 1913-14.

Date.	Hydrographer.	$\begin{gathered} \text { Meter } \\ \text { No. } \end{gathered}$	Width.	Area of Section.	$\begin{aligned} & \text { Mean } \\ & \text { Velocity: } \end{aligned}$	Gauge Height.	Discharge.
			Feet.	Sq.-ft.	Ft. per sec.	Feet.	Sec.-ft.
June 3.	H. C. Hughes...	1,673	18	21.8	2.5	1.80	$53 \cdot 6^{1}$
" 10		1,673	14	$15 \cdot 4$	$2 \cdot 0$	1.50	30.0
	"	1,673	13	16.4	2.3 0.5	1.65	37.0
$\begin{aligned} & \text { July } 31 \\ & \text { Sept. } 18 . \end{aligned}$	F. MacLachlan.	1,673 1,673	10	10.8	${ }_{0.8}^{0.8}$	1.01 1.01	${ }_{8 \cdot 6} 6$
1914.							
May 18...	F. MacLachlan.	1,521	15	15.4	$2 \cdot 0$	1. 48	29.0
July 31	C. G. Cline	1.933	8			${ }^{0.92}$	4.3
Nov. 14	H. C. Hughes...	1,933	12	10.9	1.0	1.18	10.9

${ }^{1}$ Several different sections used.

Daily Galge Height and Discharge of Young Creek at mouth, for 1914.

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Young Creek at mouth, for 1914 -Con.

Monthly Discharge of Young Creek at mouth, for 1914.

Big; Qualicua River (1032).
Location.-One thousamd feet upstream from Exquimatt and Namamo Railway bridge; 40 miles from Nanaimo.

Records Arailable.- (iange readings daily, May 21, 1911, to December 31, 1914.

Drainage Area. Sixty-two square miles.

Gauge.-Eighteen-foot wooden staff, located on left bank about one hundred feet above Esquimalt and Nanaimo Railway bridge.

Channel.-Gravel bed, very even, straight run for 500 feet on both sides of section.

Discharge Measurements.-One in 1913 by Provincial Water Rights Branch; four in 1914, covering all but high stages.

Winter Flow.-Open all winter.
Accuracy. - Between discharge of 30 and 300 cu . feet per second, accuracy B. Above discharge of 300 cubic feet, per second, accuracy C.

Co-operation.-Gauge installed ín 1913 by Provincial Water Rights Branch.

Big Qualicum River (1032).

The Big Qualicum river rises in Horne lake at an elevation of 380 feet, and is about 6 miles in length. It flows in an easterly direction, with a fairly even fall, to its mouth in the strait of Georgia, about 40 miles north from Nanaimo. The drainage area, which covers 62 square miles, is thickly wooded, although some timber has been taken off. The stream is metered about one mile and a half from its mouth. The precipitation varies from 40 to 50 inches. Horne lake covers an area of about 4 square miles, affording good storage possibilities.

For a power development, considerable water would have to be stored in the lake, due to the low flow during the summer months. A long pipeline would be the only possible development on this stream for a fair sized plant.

The Esquimalt and Nanaimo railway and the Island highway both cross the stream near its mouth, and quite a few settlers have recently come into the district.

Discharge Measurements of Big Qualicum River $1 \frac{1}{2}$ miles from mouth, 1914.

Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section.	Mean Velocity.	Gauge Height	Discharge.
			Feet.	Sq.-ft.	Ft. per see.	Feet.	Sec.-ft.
May 21.	Cotton \& Webb.	1,057	46	$105 \cdot 0$	1.33	$2 \cdot 20$	140^{1}
July 9 .	" ${ }^{\text {a }}$	1,057	44	$51 \cdot 3$	$1 \cdot 39$	1.80	$71 \cdot 3$
Aug. 30.	C. E. Webb.	1,057	38	$37 \cdot 5$	0.72	1.45	$26 \cdot 9$
Dec. 10.	"	1,933	61	92.9	2.87	$2 \cdot 60$	267

${ }^{1}$ Station established. Cable carricr installed at new section.
Monthly Discharge of Big Qualicum River near mouth, for 1914.

Month.	DISCHtR(iE IN SECOND-FEET.				RvN-OfF.		Accuracy.
	Maximum.	Minimum.	Mcan.	Per square mile.	Depth in inches on Drainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$	
June	140	100	114	1.8!	$2 \cdot \mathrm{C} 5$	6.780	B
July - . .	100	40	59	0.95	$1 \cdot 10$	3.630	I3
	40	30	31	(0.50.	0.58	1.910	B
Septernber. - . . .	120	30	5.5	0. 59	$0 \cdot 99$	3,270	B
October	1,660	St	572	$9 \cdot 22$	$10 \cdot 63$	35.200	C
November	1,310	420	730	$11 \cdot 77$	$13 \cdot 14$	43.400	C
December... .	690	100	229	$3 \cdot 70$	$4 \cdot 2 \overline{7}$	14,100)	C:

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Big Qualicum River near mouth, fo1914.

DAY.	May.		June.		July :		August.		September.		October.	
	Gauge Height	Discharge	Gauge Height.	Discharge	Gauge Height.	Discharge.	Gauge Height	Discharge	Gauge Height.	Discharge	Gauge Height	Discharge.
	Fect.	Sec.-ft.		Sec.-ft.	Feet.	Sec,-ft.	Feet.	Spe.-ft.	Feet.	Sec.-ft.	Feet.	spe.-ft.
$\begin{aligned} & 1 . \\ & 2 . \end{aligned}$			$2 \cdot 1$ $2 \cdot 1$		2.0 2.0	100 100	1.6	44^{4}	1.5	30	$2 \cdot 1$	120
3.			$2 \cdot 1$ $2 \cdot 1$	120 120	2.0 2.0	100 100	1.6 1.6	49 40	$1 \cdot 5$	30	$2 \cdot 1$	120
4.			$2 \cdot 2$	120 140 120	1.9	89	1.6 1.6	40 40	$1 \cdot 5$	30 30	$2 \cdot 1$ 2.1	120
5.			$2 \cdot 1$	120	1.9	80	1.5	30	$1 \cdot 5$	30 30	$\stackrel{2}{2 \cdot 1}$	120
6.			$2 \cdot 1$	120	$1 \cdot 9$	80	$1 \cdot 5$	30	$1 \cdot 5$	30	$2 \cdot 1$	
7.			$2 \cdot \frac{2}{2}$	140	1.8	65	1.5	30	$1 \cdot 5$	30	$2 \cdot 9$	100
8.			$2 \cdot 2$	140	1.8	65	1.5	30	$1 \cdot 5$	30	$2 \cdot 0$	100
10.			$\stackrel{2 \cdot 2}{2 \cdot 1}$	140	1.8	65	$1 \cdot 5$	30	1.3	30	1.9	e)
			$2 \cdot 1$	120	1.8	65	$1 \cdot 3$	30	1.5	30	1.9	*
11.	.	.	$2 \cdot 1$	120	1.8	65	$1 \cdot 5$	30	$1 \cdot 5$	30	1.9	30
$12 .$.			$2 \cdot 1$ $2 \cdot 1$	120 120	1.8	65	$1 \cdot 5$	30	$1 \cdot 5$	30	$2 \cdot 3$	170
14.			2.1 2.1	120	1.5	65	$1 \cdot 5$	30	1.5	30	$5 \cdot 2$	1,664
15.			$2 \cdot 1$	120	1.8	65	1.5	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$1 \cdot 5$	30 30	$4 \cdot 6$ $4 \cdot 0$	1.240
16..			$2 \cdot 1$	120	1.7	50	$1 \cdot 5$	30	$1 \cdot 6$			
17.	...-		$2 \cdot 1$	120	1.7	50	1.5	30	1.6 1.6	40	$4 \cdot 3$	1060 1.3×0
18.		-	$2 \cdot 0$	100	1.7	50	1.5	33	1.6	40	$4 \cdot 3$	1.350
19.		\ldots	$2 \cdot 0$	100	1.7	50	1.5	30	$1 \cdot 9$	-	$4 \cdot 5$	1.389
			$2 \cdot 0$	100	1.7	50	1.5	30	1.9	(4)	$4 \cdot 8$	1,39)
21.	$2 \cdot 4$	200	$2 \cdot 0$	100	1.7	30	1.5	30	1.9	80		
22.	$2 \cdot 3$	170	$2 \cdot 0$	100	1.6	40	1.5	30	1.9	s)	4.7 3.9	1.120
23.	$2 \cdot 2$	149	$2 \cdot 0$	100	1.6	40	1.5	30	1.9	*)	$3 \cdot 6$	690
25.	$2 \cdot 2$	140	$2 \cdot 0$	100	1.6	40	1.5	30	1.9	80)	$3 \cdot 5$	640
25.	2,2	140	$2 \cdot 0$	100	$1 \cdot 6$	40	$1 \cdot 5$	30	1.9	80	3-2	$3 ¢ 0$
26.	$2 \cdot 2$	140	$2 \cdot 0$		$1 \cdot 6$	$4{ }^{4}$	1.5	30	1.9	80		
27.	$2 \cdot 3$	170	2.0	100	1.6	41	1.3	30	$2 \cdot 0$	100	$3 \cdot 1$ $3 \cdot 0$	460 420
29.	$2 \cdot 2$	140	$2 \cdot 0$	160	1.6	40	1.5	30	2.0	100	$2 \cdot 8$	341
$30 .$.	2.2	140	$2 \cdot 0$	100	$1 \cdot 6$	411	1.5	30	$2 \cdot 1$	120	$3 \cdot 7$	300
, ..	$2 \cdot 2$	140	$2 \cdot 0$	100	$1 \cdot 6$	40	$1 \cdot 5$	30	$2 \cdot 1$	120	$2 \cdot 7$	300
31..	$2 \cdot 1$	120			$1 \cdot 6$	40	$1 \cdot 5$	30			$3 \cdot 0$	420

Daily Gauge Height and Discharge of Big Qualicum River near mouth, for 1914-Con.

Day.	November.		December.	
	Gauge Height	Discharge	Gauge Height	Discharge
	Feet.	$\mathrm{Sec} . \mathrm{ft}$.	Feet.	Sec.-ft.
1.	3.3	540	$3 \cdot 6$	690 590
$\frac{2}{3} \ldots \ldots \ldots$	3.7 3.9	740 840	3.4 $3 \cdot 1$	590 460
4	$3 \cdot 9$ $4 \cdot 2$	1,000	3.1 3.0	$4{ }_{420}$
5............	4.0	890	2.8	340
6.	3.7	740	2.7	300
7.	3.7	740	2.7	300
8 8. - ${ }_{9}$	$3 \cdot 7$ $3 \cdot 8$	740 790	${ }_{2}^{2 \cdot 6}$	260 260
10.	3.8 3.8	790 790	2.6 2.6	260 260
11.	3.8	790	2.5	230
12.	3.7	740	2.5	230
13. 14.	$3 \cdot 7$ $3 \cdot 3$	740 540	2.4 2.4	${ }_{200}^{200}$
+14.	$3 \cdot 3$ $3 \cdot 1$	540 460	$\stackrel{3}{2 \cdot 4}$	200 200
${ }_{17}^{16 .}$	3.0 3.0	420		170 170
18.	$3 \cdot 0$	420	$2 \cdot 3$	170
19.	3.0	420	$2 \cdot 3$	170
20.	$3 \cdot 1$	460	$2 \cdot 3$	170
21.	$3 \cdot 1$	460	$2 \cdot 2$	140
22.	3.7	740	$2 \cdot 2$	140
23.	3.9	840	$2 \cdot 1$	120
24	3.9	840	$2 \cdot 1$	120
25.	4.7	1,310	$2 \cdot 0$	100
26.	$4 \cdot 5$	1,180	$2 \cdot 0$	100
27.	$4 \cdot 1$	940	$2 \cdot 0$	100
28.	$4 \cdot 0$	890	$2 \cdot 1$	120
${ }_{30}^{29 \ldots \ldots \ldots \ldots}$	3.8 3.6	790 690	2.1 2.1	120 120
$30 \ldots$	$3 \cdot 6$	690	$2 \cdot 1$	120
31.			$2 \cdot 1$	120

Campbell River, Vancouver Island (1042).

Location.-At outlet from Campbell lake.
Records Available.-Gauge readings twice daily; June 2-December 31, 1914; Campbell River Power Company have also done work during 1913 and 1914.

Drainage Area.-Seven hundred and eighty square miles.
Gauge.-Twelve-foot enamel staff-in sections located 1,000 feet above measuring section.

Channel.-Gravel and boulder bed; channel straight for 300 feet above section; rapids 100 feet below.

Discharge Measurements.-Four in 1914 covering all stages.
IVinter Flow.-Open all winter.
Accuracy.-Between discharge of 1,000 and 12,000 cubic feet per second accuracy B. above discharge 12,000 cubic feet per second, accuracy D.

Campbell River (1042).
Campbell river flows from Campbell lake to the sea in Discovery passage, a distance of about 9 miles. It is the outlet of a chain of lakes which extend from the interior of the island amongst a large group of mountains. Buttles

S'ESSIONAL PAPER No. 25e
lake at the upper end drains into Upper Campbell lake, which in turn drains into Campbell lake. The stream is metered at the outlet from Campbell lake, and the drainage area above the metering section is some 780 square miles. The precipitation is high, varying from 80 inches at mouth of river to 130 inches at headwaters. Due to the presence of snow and ice on the mountains, the flow in summer is kept up much better than the streams in the southern parts of the island. The altitude of Campbell lake is about 500 feet.

The river is fast, and the fall fairly even for about 2 miles from Campbell lake. The river then narrows in and falls about 20 feet. With rapids for a quarter of a mile below, it drops another 30 feet, and finally has a sheer fall of 90 feet over a solid rock cliff into a deep, narrow canyon. This makes a good location for a power development. A head of 140 feet may be obtained in less than half a mile.

Another development, which would greatly increase the head, would be a tunnel from McIvor lake to a point below the falls, a distance of approximately 2 miles. McIvor lake is about one-quarter of a mile below Campbell lake, and is practically a bay on the river. It is well situated for the storage of water but the grade of the government road, which runs along one side of this lake, would have to be raised.

The Government at present are constructing a road from the mouth of Campbell river to Strathcona park, which, when completed, will be one of the finest in the country.

The timber which lies in the drainage is excellent and practically none has been cut. There are few settlers at present except at the mouth where some very fine land is under cultivation.

The Campbell River Power Company hold water records on Campbell river, and it is believed they will develope power at the falls in the near future.

Discharge Measurements of Campbell River at Campbell Lake, 1914.

	Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section.	Mean Velocity:	Gauge Height	Discharge.
	1914.			Feet.	Sq. ft.	Ft. per sec.	Feet.	See - -ft .
June	2	Cotton \& Webb.	1.057	180	1,170	4.1	$2 \cdot 95$	4.7.501
July	6.	C. P. Webb	1.057 1.057	210	1.250	3.8	$3 \cdot 13$ 0.32 0.2	4.710
Nov.	$13 .$.		1,057	240	2,1600	6.1	6.55	12.200

'Station established. ${ }^{2}$ Partly estimated.
Monthly Discharge of ('amphell River at ('amphell lake, for 1914.
1)rainage area 7 x 0 square miles.

Montil.	Dimihathe: is Sizcund-vekt				120:-4ty		Aecuram
	Maximum.	Minimum.	Menil.	$\begin{aligned} & \text { l'er } \\ & \text { Munare } \\ & \text { mule. } \end{aligned}$	13.pels in incheve on Drumage nroll	$\begin{aligned} & \text { Tutal } \\ & \text { in } \\ & \text { nerefert } \end{aligned}$	
June	(1)59	3.99\%	3,414	$6{ }^{104}$	7-7	322.1601	11
July	(6, (164)	2,4111	4.761	6. 4.3	(3) 135	240, 18×1	11
Aupure ${ }^{\text {den }}$	3, 370	1,3041	1.090	24	2-43	130.401	11
Aippteraber	2.8211	St11	1, 350	1141	$2 \cdot 20$	13, 2×1	11
(lictober	21.761	1, 164)	7.820	(11) (x)	11.31	tyic ink	11
November matraty	17, (15\%)	4. 410	10, $3: 311$	1.3123	14.11	tif 5 , (4)	II
	9,5411	selu	2, 6141	34	$4(0)$	165, 064	11

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Campbell River at Campbell Lake, for 1914.

Day.	June.		July.		August.		September.		October.		Nove mber.	
	$\begin{aligned} & \text { Gauge } \\ & \text { Height. } \end{aligned}$	Discharge	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge } \end{aligned}$	Gauge Height.	$\begin{aligned} & \text { Dis- } \\ & \text { charge } \end{aligned}$	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge } \end{aligned}$	Gauge Height	Dis-
	Feet.	Sec.-ft.	Feet.	Sec-ft.	Feet.	Sec.-ft.	Feet.	See.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
$\frac{1}{2}$	2.95	4,500 4,570	${ }_{3.65}^{3.4}$	5,330 5,500	1.4	2,300 2,270	${ }_{0}^{0.58}$	1,250 1,160	1.35	2,200 2,230	${ }_{5.07}^{4.6}$	7,710 8,710
3.	$3 \cdot 2$	4,990	3.85	6,200	1.4	2,270	${ }_{0} 0 \cdot 45$	1,100	1.27	2,100	$5 \cdot 33$	9,280
4	$3 \cdot 45$	5,420	4.05	6.600	1.4	2,270	$0 \cdot 43$	1,080	1.1	1,880	5.67	10,000
5	$3 \cdot 35$	5,250	4.08	6,660	1.4	2,270	$0 \cdot 4$	1,050	0.98	1,730	$5 \cdot 65$	9.980
6.	$3 \cdot 15$	4,900	4.02	6,540	1.4	2,270	0.35	990	0.87	1,600	$5 \cdot 33$	9. 280
7		4,490	$3 \cdot 82$				0.30	940		1,510	$4 \cdot 8$	8,130
	2.75	4,250	3.58	5,660	1.48	2.370	$0 \cdot 30$	940	0.75	1,450	4.75	
9.	$2 \cdot 63$	4,060	$3 \cdot 35$	5,250	1.4	2,270	$0 \cdot 30$	940	$0 \cdot 62$	1,290	$7 \cdot 15$	13,800
10.	2.58	3,990	$3 \cdot 2$	4,990	1.4	2,270	0.25	890	0.52	1,180	8.57	17,600
11.	2.58	3,990	3.13	4, 870	1.48	$\stackrel{2}{2,370}$	$0 \cdot 25$	890	0.5	1,160	8.55	17,600
12	${ }^{2} \cdot 68$	4,150	3.08 3.08	4,790	1.45	2,340	0.25	890	${ }_{2}^{0 \cdot 6}$	1,270 3,480	7.62 6.83	15,000 13
13	$2 \cdot 92$	4,520	3.08	4,790	$1 \cdot 4$	$\stackrel{270}{ }$	0.25	890	2.25	3,480	6.83	13,000
14.	3.2	+,990	$3 \cdot 22$	5,030	$1 \cdot 4$	2,270	0.25	890	5.5	9,650	4.82	8,170
15	$3 \cdot 68$	5,860	3.25	5,070	$1 \cdot 4$	2,270	$0 \cdot 25$	890	6.98	13,300	$4 \cdot 37$	7,240
16.	4.1	6,700	$3 \cdot 23$	5.050	1.4	2,270	0.3	940	9.17	19,000	4.07	6,640
17.	4. 52	7,540	$3 \cdot 2$	4,990	1.33	2,180	0.4	1,050	9.77	21,000	3.45	5,420
18	4.72	7,960	$3 \cdot 13$	4,870	$1 \cdot 23$	2,050	0.7	1,390	10.02	21,700	$3 \cdot 0$	4,650
19.	$4 \cdot 72$	7,960	$3 \cdot 13$	4.870	$1 \cdot 13$	1,910	1.08	1,850	9.62	20,600	$2 \cdot 87$	4,440
20.	$4 \cdot 57$	7,650	$3 \cdot 12$	4,850	1.08	1,850	$1 \cdot 4$	2,270	8.93	18,700	$3 \cdot 1$	4,820
21.	$4 \cdot 3$	7,100	3.05	4,740	1.0	1,750	$1 \cdot 62$	2,570	8.35	17,000	$3 \cdot 47$	5,450
23	3.92	6,340	$2 \cdot 85$	4,410	0.95	1,690	1.8	2,820	7.4	14,400	$4 \cdot 22$	6,940
23	$3 \cdot 58$	5,660	$2 \cdot 62$	4,040	0.93	1,660	1.8	2,820	6.5	12,100	$5 \cdot 07$	8,700
24	$3 \cdot 15$	4,900	$2 \cdot 35$	3,620	$0 \cdot 9$	1,630	1.73	2,720	5.6	9,870	$5 \cdot 9$	10,600
25.	$3 \cdot 17$	4,930	2.23	3,450	0.85	1,570	1.53	2,440	5.05	8,660	7.05	13,500
26	$3 \cdot 22$	5,030	${ }_{2}^{2 \cdot 12}$	3,280	0.83	1,540	$1 \cdot 37$	2,230	4.45	7,400	$8 \cdot 32$	17,000
27	$3 \cdot 30$	5,160	2.02	3,130	0.8	1,510	$1 \cdot 3$	2, 140	$3 \cdot 65$	5,800	8.37	17,100
28	3.30	5,160	1.93	3,000	0.75	1,450	$1 \cdot 25$	2,080	3.38	5,300	7.92	15,900
29.	3.25	5,080	1.78	2,790	0.72	1,420	$1 \cdot 3$	2. 140	$2 \cdot 9$	4,490	$7 \cdot 12$	13,700
30	3.28	5,130	1.65	2,610	0.7	1,390	$1 \cdot 35$	2,200	$2 \cdot 82$	4,360	$6 \cdot 22$	11,400
31.			1.53	2,440	$0 \cdot 63$	1,300			3.6	5,700		

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Campbell River at Campbell Lake, for 1914-Con.

Chemainus River (1027).
Location.-Upstream side of Esquimalt and Nanaimo Railway bridge. except for low water stage.

Records Available.-Gauge readings daily, May 13 to December 31, 1914.
Drainage Area.-One hundred and twenty square miles.
Gauge.-Eighteen-foot wooden staff located on left bank 100 feet below railway bridge.

Channel.-Straight for 50 feet above and 300 feet below section: gravel and sand bed.

Discharge Measurements.-Six in 1914 covering all but high stage: one in 1911 and one in 1913 by Provincial Water Rights Branch.

Winter Flow.-Open all winter.
Accuracy. - Between discharge of 10 and bote cubice feet per second, acemracy A. Between discharge of 600 and 2,000 cubie feet per second, aecuracy R . Above discharge of 2,000 cubic feet per second acemacy 8 .

Co-operation. Provincial Water Rights Branch installed gange in 1911.

Chemainus River (1027).

Chemainus river rises in the mountains to the north of Cowichan lake, at an altitude of between four and five thousand feet. It is approximately 30 miles in length, and flows in an easterly direction to its mouth at the sea in Stuart channel.

The drainage area is 120 square miles. The precipitation varies from about 30 inches at mouth to 20 inches in the mountains at source. There are no lakes to control the flow of Chemainus river. The upper reaches of the drainage area are mostly solid rock, hence the stream is very flashy. This is specially noticeable in the fall when warm rains often cause the river to rise several feet in a few hours. The flow data on this stream is of particular importance in the construction of bridges to span it. The stream, being flashy, has a very low flow during most of the summer months.

In the vicinity of the lower part of Chemainus river, the soil is very rich and is practically all under cultivation. This district is especially noted for its dairy products.

Discharge Measurements of Chemainus River at E. \& N. Ry. Bridge, 1914.

Date.	Hydrographer.	Meter No.	Width.	Area of seetion.	$\begin{aligned} & \text { Mean } \\ & \text { Veloeity: } \end{aligned}$	Gauge Height	Diseharge.
			Feet.	Sq. ft .	Ft. per see.	Feet.	Sec.-ft.
May 13.	C. E. Webb	1.057	107	530	1.1	3.79	$555{ }^{1}$
July ${ }^{6}$	Cotton and Webb	1,057 1,057	94 41	402 37	${ }_{0}^{0.2}$	2.58 2.58 2.5	$93 \cdot 66^{2}$ 88.3
July 6		1,057	41	37	$2 \cdot 4$	$2 \cdot 58$	88.33
Aug. 11	C. P. Cotton	1,057	30	19	1.4	${ }^{2} \cdot 16$	$26 \cdot 2$
Aug. 28	C. E. Webb	1,057	31	16	1.0	$2 \cdot 03$	$16 \cdot 3$
Nov. 26	"	1,933	122	711	2.7	$5 \cdot 20$	1,890

${ }^{1}$ Station established. ${ }^{2}$ Several sections used. ${ }^{3}$ Good measurement.

Monthly Discharge of Chemainus River near mouth, for 1914.
(Drainage area, 120 square miles.)

Month.	Discharge in Second-peet.				Rex-Off.		Aceuraey
	Maximum.	Minimum	Mean.	Per square mile.	Depth in inches on Drainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$	
June.	340	140	200	1.67	1.86	11,900	A
July	140	35	75	$0 \cdot 62$	0.72	4,600	A
August	35	15	25	$0 \cdot 21$	0.24	1,500	A
September.		14	110	0.92	$1 \cdot 03$	6,500	A
October	5,850	120	1,320	$11 \cdot 00$	$12 \cdot 68$	81,200	C
November	4,560	520	2,200	18.33	20.45	131,000	C
December.	1,760	190	435	3-62	$4 \cdot 17$	26,700	B

SESSIONAL PAPER No. 25e

Daily Gauge Height and Discharge of Chemainus River near mouth, for 1914.

6 GEORGE V, A. 1916
Daily Gatge Height and Discharge of Chemainus River near mouth, for 1914 -Con.

Cowichan River (1054).

Location.-Near outlet from Cowichan lake, 1,000 feet below Canadian Northern Pacific Railway bridge.

Records Available.-Gauge readings twice daily, January 31, 1913, to December 31, 1913, Provincial Water Rights Branch; January 1, 1914, to December 31, 1914.

Drainage Area.-Two hundred and thirty-five square miles.
Gauge.-Twelve-foot wooden staff, nailed to sixth bent on left down stream side of highway bridge.

Channel.-Gravel and small boulder bed, channel straight 300 feet above and 100 feet below section, one channel at all stages.

Discharge Measurements.-Four in 1914, covering all but highest stage; five in 1913, by Provincial Water Rights Branch.

Winter Flow.-Open all winter.
Accuracy.-Between discharge of 40 and 1,200 cubic feet per second, accuracy
A. Above discharge of 1,200 cubic feet per second, accuracy B.

Co-operation.-Provincial Water Rights Branch established station in 1913.

SESSIONAL PAPER No. 25e
Cowichan River (1054).
Cowichan river rises in Cowichan lake at an altitude of 550 feet. It flows in an easterly direction for 20 miles to the sea in Cowichan bay. The drainage area of Cowichan river is 235 square miles above the metering section, which is located near the outlet from lake. Cowichan lake covers an area of 24 square miles, and is fed by many mountain streams. The precipitation is between 60 and 80 inches.

There are falls on this stream about 10 miles from its mouth from which a fair sized development might be obtained, but in 1914 the river was reserved by the Provincial Government for the preservation of the fish. Near Cowichan lake the Government has a fish hatchery which has been most successful in stocking the river with trout.

The timber in this drainage is exceptionally fine.
The Esquimalt and Nanaimo Railway have a branch line to Cowichan lake from Duncan and the Canadian Northern railway is under construction around the lake. Timber at present is towed by tugs to the railway from different parts of the lake.

Discharge Measurements of Cowichan River near Cowichan Lake, 1914.

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	$\begin{gathered} \text { Mean } \\ \text { Velocity: } \end{gathered}$	Gauge Height.	Discharge.
1914.			Feet.				
June 24.	Cotton \& Webb	1057	183	824	$0 \cdot 8$	2.08	6671
Aug. 26	C. E. Webb.	1057	176	533	$0 \cdot 2$	0.70	117
Aug. 27.	do	1057	84 198	. 104	1.1	0.72	$113{ }^{2}$
Nov. 25	do	1933	198	1,670	$2 \cdot 6$		4,300

${ }^{1}$ Station established.
${ }^{2}$ Lew-water section.

Monthly Discharge of Cowichan River at Cowichan lake, for 1914.
(Drainage area, 235 square miles.)

Month.		Discharge in Second-Feet.				RUN-ityr.		Accuracy
		Maximum.	Minimun.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage нгеа.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$	
January		10, 0100	2,150	5,700	2420	27.90	350, (64)	13
February		3,680)	1,540	2,130	$9 \cdot 06$	9.43	115, (kx)	13
March.	1908\%	4, 166	2,330	3, 400	14.50	16.70	$210 .(m x)$	13
April...	0 发	3.270	2,150	2,630	11.20	12.50	$157 .(54)$	II
May		2,060	410)	1,391	5. 102	6.83	85, 5(4)	13
June	1	900	(6)6)	753	3.21	3.5s	$4 \pm .946$	1
Juty		(6)K)	240	115	177	$2 \cdot 14$	25.544	1
Auguat		261	711	151	(1).64	0.74	9.220)	1
Soptemiser		4110	51	175	(1).74	(1).83	10. (16)	1
Getober.		7.170	(114)	2, (1ヶ\%)	12.30	$14 \cdot 20$	175. (xh)	11
November	\%	6,300	3, S011	4. 1 ¢41	20.85	23 -30	292. (ma)	11
Ineenmber	moxim	4,160	1, (190)	-2,231	4. 30	11.95	137, 1441	11
The yenr		10, (\%M)	50	2,230	(1).54	129-(6)	1,617, 520	13

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Cowichan River at Cowichan lake for 1914.

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Cowichan River at Cowichan lake, for 1914-Con.

Englishman River (1030).
Location.-One-half mile from mouth ; 1,000 feet upstream from Island Highway bridge; 2 miles from Parksville.

Records available.-Gange readings daily; Fehsuary 15, 1913, to Decomber 31, 1913, Provincial Water Rights Branch; May 19, 1914, to soptember 21, 1914; December 9, 1914, to December 31. 1914.

Drainage area.-One hundred and eleven squate miles.
Gouge. - Twelve feet of enamel staff, in two 6 foot lengtlis, loeated on right bank, 100 feet upstream from measuring section.

Channel. - Even gravel bed, chamel straight for 500 feet above and below section, one chantel at all stages.

Discharge meosurements. Five in 1911, covering low and mediunn stages; four in 1913, Provincial Wator Rights Branch.

Hinter flow. Opera all winter.
Accurocy. - Between discharge of 20 and 100 cubic feet per secomb, aterarmey
B. Above discharge of 400 cubbe feet per seeond, acearsey ©

Co-operetion. - Provincial Water Kights Branch estahlished stati in in 1913.

Englishman River (1030).

Englishman river is approximately 20 miles in length. It rises in the mountains at an elevation of some 5,000 feet, and flows in an easterly direction to its mouth in the straits of Georgia near the town of Parksville. The precipitation varies from about 30 inches at mouth to 60 inches in mountains. Having no natural storage, this stream is very flashy. During the summer months the flow is generally small. If artificial storage could be obtained at a reasonable expense, a small development might be made at falls.

The Giant Powder Co., which is located at Powder point, a short distance from the mouth of Englishman river, made surveys in 1912 and 1913 in view of developing power for their works, but gave up the project.

The Esquimalt and Nanaimo railway and the Government highway both cross this stream near its mouth. The district has many settlers, several of whom obtain their domestic supply from the river. The town of Parksville is on the Government highway about 2 miles distant.

The gauging station on Englishman river is located about one-half mile from mouth.

Discharge Measurement of Englishman River near mouth, for 1914.

	Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
	1914.			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
May	19.	Cotton \& Webb.	1057	129	160	1.9	2.50	3041
July	19.	C. F ¢ ${ }_{\text {do }}$	1057	110	156	0.8	2.00 1.47	
Aug.	29 29	C. E. Webb	1057 1057	${ }_{106}^{26}$	16 110	1.5 0.2	$1 \cdot 47$ 1.47	21.0 19.9
Dec.		do	1933	114	${ }_{227}^{110}$	$1 \cdot 2$	1.47 2.50	266

${ }^{1}$ Station established.
${ }_{3}$ Cable carrier established.
${ }^{3}$ Low water section.

Monthly Discharge of Englishman River at mouth, for 1914.
(Drainage area, 111 square miles.)

Month.	Discharge in Second-Feet.				Run-Off.		Accuracy.
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	Total in acre-feet.	
June.	320	220	254	$2 \cdot 29$	$2 \cdot 56$	5,100	B
July .	220	48	103	0.93	$1 \cdot 07$	6,330	B
August.....	48	13	37	$0 \cdot 33$	$0 \cdot 38$	2,280	B

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Englishman River near mouth, for 1914.

Haslam Creek (1029).
Location.-Low-water section, 500 feet below Canadian Collieries railway bridge; 6 miles from Ladysmith.

High-water section, downstream side of bridge.
Records available.-Gauge readings twice a week. July 3, 1914, to December 31, 1914.

Drainage area.-Twenty-seven square miles.
Gauge.-Six-foot enamel staff, on piling of railway bridge, downstrenm side near left bank.

Channel.-Low-water section, gravel bed, chamnel straight jol feet above and below seetion, banks overflow in extreme high water.

High-water section, stream flows at smatl angle to bridge, bed of stream is gravel.

Discharge measurements:-Four in 1914, covering all but high stagn; wne in 1913, Provincial Water Rights Branch.

Winter flow.-Open all year.
Accuracy.-Between discharge of 0 and 160 cubie feet per second, aceuracy
B. Above discharge of 160 eubie feet per second, aceuracy (?

Co-operation. Provincial Water Rights Branch installed gatge in 1913.

Haslam Creek (1029).
Haslam creek is part of the Nanaimo river drainage. It rises in the mountains between the Chemainus and Nanaimo rivers at an elevation of about 4,000 feet. The metering section is located at the Canadian Collieries railway bridge, about 2 miles above mouth of creek. The drainage area, above metering section, is 27 square miles. A large part of the drainage area is covered with second-growth timber.

The precipitation varies from 30 to 50 inches, being most in the higher altitudes. The stream has no natural storage and is flashy.

This stream is of little importance at present, except in effect of the total flow of Nanaimo river which it enters about 4 miles from the sea.

Discharge Measurements of Haslam Creek near Canadian Collieries railway bridge, for 1914.

Date.	Hydrographer.	Meter. No.	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
May 1914.	C. E. Webb	1057	58	89	0.9	1.30	83. 58
July 7	Cotton \& Webb	1057	60	58	$0 \cdot 2$	$0 \cdot 47$	13.30
Aug. 10.	C. P. Cotton	1057	62	43	$0 \cdot 1$	$0 \cdot 20$	4.70
Nov. 27.	C. E. Webb	1933	170	238	$2 \cdot 1$	$2 \cdot 20$	473 -00

Monthly Discharge of Haslam Creek near mouth, for 1914.
(Drainage area, 27 square miles.).

Month.	Discharge in Second-Feet.				Run-Off.		Accuracy
	Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on Drainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$	
June .	68	24	47	1.74	1.94	2,800	B
July	22	4	10	$0 \cdot 37$	$0 \cdot 43$	610	B
August	4	3	4	0.15	$0 \cdot 17$	250	B
September	50	3	16	0.59	$0 \cdot 66$	950	B
October...	1,360	18	357	$13 \cdot 20$	15.20	22,000	C
November	1,420	88	530	$19 \cdot 60$	28.90 4.70	31,500	C
December.	480	32	110	$4 \cdot 08$	$4 \cdot 70$	6,760	C

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Haslam Creek near mouth, for 1914.

Daily Gauge Height and Discharge of Haslam Creek near mouth, for 1914 -Con.

Koksilah River (1026).

Location.-Two miles from mouth, upstream side of Esquimalt and Nanaimo railway bridge, 2 miles south from Duncan.

Records available.-Gauge readings daily, May 12, 1914, to December 31, 1914.

Drainage area.-One hundred and twenty-four square miles.
Gauge.-Fourteen foot staff on left bank, 600 feet above bridge.
Channel.-Gravel bed, two channels in low water, channel straight for 100 feet above section and for 300 feet below, good control.

Discharge measurements.-Six in 1914, covering all but highest stage; one in 1911 and one in 1913, by Provincial Water Rights Branch.

Winter flow.-Open all year.
Accuracy.-B.
Co-operation.-Provincial Water Rights Branch installed gauge in 1911.

Koksilaif River (1026).

Koksilah river rises in the mountains at an altitude of about 3,000 feet, and flows in an easterly direction to the sea, in Cowichan bay. It is approximately 20 miles in length, and has a drainage area of 124 square miles above

SESSIONAL PAPER No. 25e

gauging station. The gauging station is located about 2 miles from mouth. The precipitation varies from 30 inches at mouth to about 70 inches at headwaters. There is no natural storage on this stream, and hence its flow is very irregular. In the summer months the flow is small.

There are some very fine farms in this district. The town of Duncan is located about 2 miles from Koksilah river on the Esquimalt and Nanaimo railway.

Discharge Measurements of Koksilah River near E. \& N.. Ry. bridge, for 1914.

	Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of section.	Mean Velocity.	Gauge Height.	Discharge.
	1914.			Feet.	sq. ft.	Ft. per sec.	Feet.	Sec.-tt.
May	12	C. E. Webb	1057	95	87	1.3	1.73	110.61 3.00^{1}
July	12.	Webb \& Cotton. C. P. Cottor	${ }_{1057}^{1057}$	71	18	1.8 0.2	1.23 1.00	33.92
Aug.	12.	C. P. Cottor	1057	71	94 14	${ }_{1}^{0 \cdot 1}$	1.00 1.15	14.4 16.2
.		C. E. Webb.	1057	30	12	0.9	1-00	$10 \cdot 1$
Nov.	25.		1933	122	462	$3 \cdot 6$	+.92	1.650-0

${ }^{1}$ Station established. $\quad{ }^{2}$ Different sactions use 1.
Monthly Discharge of Koksilah River near mouth, for 1914.
(Drainage area, 124 square miles.)

2	Month.		Discharge in Second-Feet.				Ren-Ofy.	
			Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$
June			140	40	59	0.45	$0 \cdot 54$	3, 5 (4)
July .			38	25	28	0.23	(1).27	1,720
August		P-1 x^{1}	25	10	14	$0 \cdot 11$	0.13	\%60
September.	-	(-ixation)	115	10	40	$0 \cdot 32$	(1.36	2,3>0
October			2. 2220	40	375	3.03	3.49	23, 1100
November			2.310	290	780	$6 \cdot 28$	7-41	(6, 4(0)
December.	1	IF -1	790	115	2 col	$2 \cdot 20$	$2 \cdot 61$	17.200

Accuracy "B".

Daily Gauge Height and Discharge of Koksilah River near mouth, for 1914.

Day.	May.		June.		July,		August.		September.		October.	
	Gauge Height	Discharge.	Gauge Height	Discharge.	Gauge Height	Discharge.	Gauge Height	Discharge.	Gauge Height	Discharge.	Gauge Height	Discbarge.
	Feet.	Sec.-ft.	Feet.	Sec--tt.	Feet.	Sec.-ft.	Feet.	Sec-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1.			1.4	50 50	1.28	38 35	1.15 1.15	25	1.0	10	1.4	50
3.			1.4 1.4	50 50	1.25 1.23	35 33 35	1.15 1.12	25	1.0 1.0	10 10	1.4 1.4	50 50
4			1.38	48	1.23	33	$1+1$	20	$1 \cdot 0$	10	$1 \cdot 4$	50
5.			$1 \cdot 35$	45	1.2	30	$1 \cdot 1$	20	1.0	10	$1 \cdot 37$	47
6.			1.32	42	$1 \cdot 2$	30 30	1.08	18	$1 \cdot 0$	10	1.35 1.35	45
8.			1.4	50 115	1.2	30 30	1.08 1.08	18 18	1.05 1.1 1.15	15	1.35 1.35	45
9.			1.8	140	$1 \cdot 2$	30	1.08	18	$1 \cdot 15$	25	$1 \cdot 35$ 1.32	42
10.			1.7	115	$1 \cdot 2$	30	1.05	15	$1 \cdot 2$	30	$1 \cdot 3$	40
11.			1.6	90	$1 \cdot 2$	30	1.05	15	$1 \cdot 15$	25	1.4	50
12.	1.7	115	1.5	70	$1 \cdot 2$	30	1.05	15	1.1	20	$1 \cdot 6$	90
13.	$1 \cdot 7$	115	1.5	70	1.2	30	1.05	15	$1 \cdot 2$	30	1.7	115
14	1.65	105	1.5	70	$1 \cdot 2$	30	1.05	15	1.4	50	$1 \cdot 9$	165
15.	$1 \cdot 63$	100	1.48	65	$1 \cdot 18$	28	$1 \cdot 05$	15	$1 \cdot 6$	90	$2 \cdot 0$	190
16.	1.6	90	1.45	60	1.15	25	$1 \cdot 0$	10	$1 \cdot 7$	115	$2 \cdot 4$	290
17.	$1 \cdot 6$	90	1.4	50	1.15	25	$1 \cdot 0$	10	1.7	115	$3 \cdot 0$, 500
18.	1.57	85	1.4	50	1.15	25	$1 \cdot 0$	10	1.5	70	$4 \cdot 0$	1,000
19.	1.55	80	1.4	50	1.15	25	$1 \cdot 0$	10	$1 \cdot 5$	70	$5 \cdot 5$	2,220
20.	1.52	75	$1 \cdot 4$	50	1.15	25	$1 \cdot 0$	10	1.45	60	$4 \cdot 5$	1,32 0
21.	1.5	70	1.37	47	$1 \cdot 15$	25	$1 \cdot 0$	10	$1 \cdot 4$	50	$3 \cdot 6$	790
22.	1.45	60	$1 \cdot 35$	45	1.15	25	$1 \cdot 0$	10	$1 \cdot 3$	40	$3 \cdot 0$	500
23.	$1+4$	50	1.35	45	$1 \cdot 15$	25	1.0	10	$1 \cdot 3$	40	$2 \cdot 8$	420
24.	1.4	50	1.35	45	$1 \cdot 15$	25	$1 \cdot 0$	10	$1 \cdot 3$	40	$2 \cdot 6$	350
25	1.45	60	$1 \cdot 35$	45	$1 \cdot 15$	25	$1 \cdot 0$	10	$1 \cdot 3$	40	$2 \cdot 4$	290
26.	$1 \cdot 5$	70	$1 \cdot 35$	45	$1 \cdot 15$	25	$1 \cdot 0$	10	$1 \cdot 3$	40	$2 \cdot 4$	290
27.	1.55	80	$1 \cdot 35$	45	1.15	25	$1 \cdot 0$	10	$1 \cdot 3$	40	$2 \cdot 4$	290
28.	1.55	80	1.32	42	1.15	25	$1 \cdot 0$	10	$1 \cdot 3$	40	$2 \cdot 4$	290
29.	$1 \cdot 5$	70	1.32	42	1.15	25	$1 \cdot 0$	10	$1 \cdot 3$	40	$2 \cdot 6$	350
30.	1.45	60	$1 \cdot 3$	40	1.15	25	$1 \cdot 0$	10	$1 \cdot 35$	45	$2 \cdot 7$	380
31.	1.43	55			$1 \cdot 15$	25	$1 \cdot 0$	10			$4 \cdot 4$	1,250

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Koksilah River near mouth, for 1914. -Con.

Little Qualicum River (1031).
Location.-At outlet from Cameron lake, downstream side of highway bridge.

Records available.-Gauge readings daily, February 27, 1913, to December 31, 1913. Provincial Water Rights Branch, January 1, 1914, to December 31, 1914.

Drainage area.-Fifty-four square miles.
Giauge. -Twelve-foot wooden staff nailed to crib on shore of lake, 500 feet from head of river.

Channel.-Straight on both sides of section for 100 feet, gravel and small boulder bed, confined by bridge abotments in high water, one chanmel at all stages.

Discharge measur ments. Six in 1913 by Provincial Water Rights Branch, and five in 1914.

Winter flow. Open all winter.
Accuracy. Between diseharge of 30 and 400 cubie feet per second, accuracy
A. Below diseharge of 30 abd abowe 100 eubic feet per seeond, aceuracy 13.

Co-operation, Station established by Provincial Water Rights Brameh in 1913.

Little Qualicum River (1031).
Little Qualicum river is approximately 6 miles in length. Rising in Cameron lake at an altitude of 600 feet, it flows in an easterly direction to its mouth in the strait of Georgia near Qualicum beach.

The drainage area above the metering section, which is located at the outlet from Cameron lake, is 54 square miles. The Cameron river, which flows into Cameron lake, is about 16 miles long and rises in Labour Day lake.

The precipitation varies from about 40 inches on the coast to 60 inches at the headwaters. Considerable snow falls in the mountains of this drainage.

There is a good location for a hydro-electric development on Little Qualicum river at the falls, about 3 miles below Cameron lake. At this point the river drops some 100 feet in a series of three falls into a solid rock box canyon.

Owing to the low flow during the summer months, it would be necessary to store water for that period. Cameron lake offers good storage possibilities but the grade of the government road around the south side of the lake would have to be raised, as at present it is not far above high water.

The district has been opened up considerably for settlement in the last few years. At Qualicum beach a considerable amount of capital has been invested clearing a large tract of land. A fine tourist hotel has been built near the sea. At Cameron lake the Canadian Pacific Railway Company have a delightful chalet for the accommodation of tourist traffic.

Discharge Measurements of Little Quaticum River near Cameron Lake, 1914.

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	$\begin{aligned} & \text { Mean } \\ & \text { Velocity. } \end{aligned}$	Gauge Height.	Discharge.
1914.			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
May 20	Webb \& Cotton	1057	58	143	$2 \cdot 4$	$2 \cdot 40$	340^{1}
July 10 .	C. P. Cotton	1057	53 46	80 33	1.9 1.1	1.40 0.49	149
Sept. $\frac{1}{2}$	C. E. Webb	1057	46 46	33 32	$1 \cdot 1$	0.49 0.47	$35 \cdot 3$ $33 \cdot 5$
Dec. 16	do	1933	58	116	$2 \cdot 3$	$2 \cdot 05$	269

${ }^{1}$ Station established.
Monthly Discharge of Little Qualicum River at Cameron Lake, for 1914.
(Drainaqe area, 54 square miles.

Month.	Discharge in Second-Feet.				Run-Off.		Accuracy.
	Maximum.	Minimum,	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on drainage area.	Total in acre-fect.	
January	1,910	215	632	11.70	$13 \cdot 49$	38,860	B
February	535	165	242	4.48	4.67	13,400	A
March...	8.55	290	498	$9 \cdot 23$	$10 \cdot 64$	30,600	B
April	840	255	495	$9 \cdot 17$	$10 \cdot 30$	29,540	B
May.	445	315	382	7.08	8.16	23,509	A
June.	375	235	278	$5 \cdot 15$	$5 \cdot 75$	16,500	A
July	230	68	134	2.48	2.86	8,240	A
August	68	45	54	1.00	$1 \cdot 15$	3,320	1
September	192	38	91	$1 \cdot 69$	1. 89	5,400	A
October	2,030	150	655	$12 \cdot 13$	13.99	40,300	B
November.	1,300	375	824	$15 \cdot 25$	17.02	49,000	${ }^{\text {B }}$
December.	650	130	259	4.80	$5 \cdot 53$	16,000	B
The year.	2,030	38	379	$7 \cdot 01$	$95 \cdot 45$	274, 660	

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Little Qualicum River at Cameron lake, for 1914.

Day.	January.		February.		March.		April.		May.		June,	
	Gauge Height.	Discharge.	Gauge Height.	Discharge	Gauge Height.	Discharge.	Crauge Height	Discharge.	Gauge Height	Discharge	Gauge Height.	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet	Sec.-ft.	Feet.	Sec. -ft .	Feet.	Sec, ft.	Feet.	Sec-ft.
1	1.79	215	$2 \cdot 3$	315	4.02	735 855	$2 \cdot 07$	270	$2 \cdot 69$	400	$2 \cdot 29$	310
2.	1.88	230	$2 \cdot 25$	305	4.41	855	$2 \cdot 0$	255	$2 \cdot 84$	430	2.29	315
3.	$2 \cdot 34$	325	2.19	295	$4 \cdot 12$	765	$2 \cdot 0$	255	2.89	445	2.28	310
4.	$4 \cdot 33$	830	$2 \cdot 11$	275	$3 \cdot 57$	690	$\frac{2}{2} \cdot 15$	285	2.89	445	$2 \cdot 3$	315
5.	6.71	1,600	2.66	265	$3 \cdot 54$	595	$3 \cdot 1$	490	2.84	430	$2 \cdot 28$	310
6.	7-51	1,910	1.99	255	$3 \cdot 20$	510	$3 \cdot 27$	530	$2 \cdot 61$	375	2.2	295
7.	6.79	1,630	$1 \cdot 89$	235	3.03	475	$5 \cdot 16$	505	$2 \cdot 69$	400	$2 \cdot 6$	375
8.	$5 \cdot 75$	1,270	1.82	220	2.79	420	$3 \cdot 0$	470	2.6	375	$2 \cdot 16$	245
9.	$4 \cdot 85$	-985	1.73	205	$2 \cdot 66$	390	$2 \cdot 89$	445	$2 \cdot 64$	385	$2 \cdot 12$	280
10.	$4 \cdot 26$	810	$1 \cdot 69$	200	$2 \cdot 56$	365	2.83	425	$2 \cdot 62$	380	$2 \cdot 14$	285
11.	$4 \cdot 11$	765	$1 \cdot 65$	190	$2 \cdot 46$	345	$2 \cdot 8$	420	$2 \cdot 68$	395	2.09	275
12.	$4 \cdot 47$	870	1.59	185	$2 \cdot 4$	335	$2 \cdot 8$	420	$2 \cdot 68$	395	2.08	270
13.	$4 \cdot 26$	810	1.57	180	$2 \cdot 49$	355	2.86	4.30	$2 \cdot 68$	395	2.08	270
14.	3.99	730	$1 \cdot 51$	170	$2 \cdot 75$	410	3.84	680	$2 \cdot 7$	400	$2 \cdot 16$	285
15.	$3 \cdot 67$	63 C	$1 \cdot 5$	170	$4 \cdot 09$	755	$4 \cdot 35$	840	$2 \cdot 73$	405	$2 \cdot 18$	290
16.	3.44	570	1.49	170	$3 \cdot 85$	685	4.29	820	$2 \cdot 69$	4 CO	$\frac{2}{2} \cdot 18$	290
17.	$3 \cdot 23$	520	1.48	165	$3 \cdot 62$	645	3.95	715	$2 \cdot 6$	375	$2 \cdot 17$	245
18.	$3 \cdot 60$	610	1.48	165	3-44	576	$3 \cdot 68$	635	$2 \cdot 51$	355	$2 \cdot 11$	275
19.	2.94	455	$1+48$	165	$3 \cdot 3$	535	3.95	715	$2 \cdot 48$	350	2.08	270
20.	$2 \cdot 8$	420	1.48	165	$3 \cdot 3$	535	$4 \cdot 02$	735	$2 \cdot 46$	345	2.08	270
21.	$2 \cdot 66$	390	1.56	180	$3 \cdot 3$	535	3.8	670	2.48	350	1.98	250
22.	$2 \cdot 55$	365	1.73	205	$3 \cdot 3$	535	$3 \cdot 39$	560	2.55	365	1.99	255
23.	2.41	335	$1+88$	230	$3 \cdot 23$	520	3.08	485	$2 \cdot 59$	375	1.99	255
24.	$2 \cdot 3$	315	$2 \cdot 07$	270	$2 \cdot 97$	465	2.93	450	$2 \cdot 66$	390	1.98	250
25.	$2 \cdot 23$	300	$2 \cdot 17$	290	2.89	445	2-73	405	$2 \cdot 65$	385	1.98	250
26.	$2 \cdot 17$	290	$2 \cdot 28$	310	2.72	405	$2 \cdot 57$	370	$2 \cdot 71$	400	1.98	250
27.	$2 \cdot 08$	270	$2 \cdot 97$	465	$2 \cdot 55$	365	$2 \cdot 63$	380	$2 \cdot 63$	380	1.95	250
28.	$2 \cdot 0$	255	$3 \cdot 29$	535	$2 \cdot 44$	345	$2 \cdot 69$	400	$2 \cdot 5$	355	1.96	245
29.	2.05	265			2.28	310	2-68	395	2. 43	340	1. 59	235
30.	$2 \cdot 23$	300			$2 \cdot 23$	300	$2 \cdot 68$	395	$2 \cdot 3$	315	1. 89	235
31.	$2 \cdot 3$	315			$2 \cdot 17$	290			$2 \cdot 29$	315		.

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Little Qualicum River at Cameron lake, for 1914-Con.

Day.	July.		August.		September.		October		November.		December.	
	Gauge Height	Discharge	Gauge Heiglit	Discharge	Gauge Height.	Discharge	Gauge Height	Discharge	Gauge Height.	Discharge	Gauge Height.	Discharge
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec. -ft .	Feet	Sec.-ft.	Feet.	$\mathrm{Sec}-\mathrm{ft}$.	Feet	Sec.-ft.
1.	1.88	230	$0 \cdot 78$	68	0.54	44	1.82	220	$3 \cdot 48$	580	$3 \cdot 74$	650
$\frac{2}{3}$	1.81	215	0.75	65	$0 \cdot 52$	42	1.88	230	$4 \cdot 78$	965	$3 \cdot 44$	570
3.	1.8	215	$0 \cdot 71$	61	0.5 0.49	40 39	1.86	225	4.35	8.5	$3 \cdot 17$	505
5...	1.72	205	0.73	63	0.48	38	1.74	205	$5 \cdot 4$	1,150	2.81	420
6.	1.7	200	$0 \cdot 71$	61	$0 \cdot 48$	38	1-66	190	$4 \cdot 9$	1, 000	$2 \cdot 63$	385
7.	1.67	195	0.71	61	$0 \cdot 49$	39	1.58	180	$5 \cdot 15$	1,075	2.48	3.30
8.	1.51	170	$0 \cdot 70$	60	0.50	40	1.49	170	$5 \cdot 0$	1,13C	$2 \cdot 39$	33.5
9.	1.48	170	0.70	69	0.51	41	1.42	160	$4 \cdot 72$	94.5	$2 \cdot 33$	320
10.	1.46	165	$0 \cdot 70$	60	0.51	41	1.37	150	4.49	875	$2 \cdot 14$	285
11.	1.4	155	$0 \cdot 69$	59	$0 \cdot 56$	46	$1 \cdot 37$	150	4.44	860	$2 \cdot 3$	315
12.	$1 \cdot 37$	150	0.68	58	0.55	45	$1 \cdot 6$	185	$4 \cdot 15$	775	1.97	250
13.	$1 \cdot 34$	145	$0 \cdot 68$	58	0.55	45	$4 \cdot 7$	940	$3 \cdot 84$	680	1.89	235
14.	1.29	140	0-67	57	0.57	47	$5 \cdot 84$	1,290	$3 \cdot 52$	590	1. 52	220
15.	1.25	135	$0 \cdot 66$	56	$0 \cdot 61$	51	$5 \cdot 13$	1,070	$3 \cdot 24$	520	1.75	210
16.	1.19	125	$0 \cdot 65$	55	0.66	56	$5 \cdot 18$	1,080	2.99	470	1.7	200
17.	1.18	120	$0 \cdot 6$	50	0.69	59	$6 \cdot 4$	1,50G	$2 \cdot 76$	410	1.67	19.5
18.	1.15	115	$0 \cdot 59$	49	0.70	69	7.8	2,030	$2 \cdot 61$	375	1.59	185
19.	1.13	115	$0 \cdot 60$	50	1.15	117	7.2	1,790	$2 \cdot 68$	395	1.55	180
20.	$1 \cdot 10$	110	0.60	50	1.48	167	6.98	1,700	$3 \cdot 1$	490	1.49	170
21.	1.03	103	0.59	49	$1 \cdot 60$	185	6.05	1,370	$3 \cdot 35$	545	1.46	165
22.	1.0	100	$0 \cdot 59$	49	1.58	189	$5 \cdot 03$	1.04.	$3 \cdot 38$	555	$1 \cdot 39$	155
23.	0.89	\$3	0.58	48	1.52	173	$4 \cdot 3$	820	$4 \cdot 54$	890	$1 \cdot 39$	155
24.	0.85	78	$0 \cdot 58$	48	1.43	160	3.64	620	$5 \cdot 5$	1,180	1.37	150
25	0.82	73	$0 \cdot 57$	47	1.31	140	$3 \cdot 32$	540	$5 \cdot 74$	1,26)	1.32	145
26	0.82	73	$0 \cdot 56$	46	$1 \cdot 3$	140	2.97	460	$5 \cdot 7$	1,250	1-31	140
27.	0.82	73	$0 \cdot 55$	4.5	$1 \cdot 3$	140	$2 \cdot 7$	490	$5 \cdot 11$	1,060	1.29	140
28.	0.85	78	$0 \cdot 55$	45	1.42	158	2.48	380	4.95	1,015	$1 \cdot 28$	135
29.	$0 \cdot 81$	71	$0 \cdot 55$	45	1.49	170	2.19	295	$4 \cdot 51$	880	1.25	130
30.	$0 \cdot 79$	69	C. 55	45	1.65	192	$2 \cdot 26$	305	$4 \cdot 1$	760	1.29	140
31...-	0.78	68	$0 \cdot 55$	45			3.04	450			$1 \cdot 3$	140

Nanaimo River (1028).

Location.-Six miles from mouth; 800 feet upstream from Canadian Collieries railway bridge; 8 miles from Ladysmith.

Records available.-Gauge readings daily, February 11, 1913, to December 31, 1913, Provincial Water Rights Branch; January 1, 1914, to March 31, 1914, Provincial Water Rights Branch; April 1, 1914, to December 31, 1914.

Drainage area.-Two hundred and forty-nine square miles.
Gauge.-Twelve-foot wooden staff nailed to tree, left bank, 50 feet upstream from section.

Channel.-Straight 200 feet on each side of section, even gravel bed, good control 400 feet downstream.

Discharge measurements.-One in 1911, four in 1913 by Provincial Water Rights Branch; two in 1914, covering all but high stages.

Winter flow.-Open all winter.
Accuracy.-Between discharge of 20 and 3,000 cubic feet per second accuracy B. Above discharge of 3,000 cubic feet per second, accuracy C.

Co-operation.-Provincial Water Rights Branch established station in 1913.

The Nanaimo river rises in the mountains at an altitude of some 5.000 feet, and flow : in an easterly direction to its mouth, about 2 miles south of Nanaimo, in the strait of Georgia. Nanaimo river is some 3.5 miles in length. It is fed by many streams, the larger of which are Jump creek, which enters near the Nanaimo lakes, and Haslam creek which enters about 4 miles from the mouth.

The gauging station is located near the Canadian Collieries railway bridge, about 6 miles from mouth. The drainage area above gauging station is 249 square miles. There are two lakes, covering an area of 2 square miles, known as the Nanaimo lakes, at an altitude of 700 feet on the Nanaimo river about 12 miles above gauging station.

The precipitation varies from 30 inches at mouth of river to about 60 inches at headwaters.

The power possibilities of the Nanaimo river were investigated during 1914 by the engineers of the Provincial Water Rights Branch.

The following is taken from the Water Rights Branch report for 1914:-
"There do not appear to be any concentrated falls, but apparently with storage in the two lakes, four power sites might be developed namely,-

The Nanaimo river flows through a large coal mining district. The towns of Ladysmith and Nanaimo are also both within a reasonable distance. These should offer a good market for hydro-electric power.

Discharge Meastrements of Nanamo River near Canatian Collieries Ry. bridge, for 1914.

Bate.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No } \end{aligned}$	Wislth	Area of siection.	$\begin{aligned} & \text { Mowan } \\ & \text { Veloerty } \end{aligned}$	Cisuse Height	1).scharge.
1914.			Firet.	$\mathrm{Sif}_{4} \mathrm{ft}$	F't per were	Fevel	Ne-ft
July N	W chb and Cotton	1057	12.3	II1)	0.3	1 (6)	31 F
Aug. 10.	C. P 'otton	1057	120	139	117	11.31	21

[^15]Monthly Discuarge of Nanaimo River six miles from mouth, for 1914.

Month.	Discharge in Second-Feet.				Ren-Off.		A ccuracy.
	Maximum.	Minimum.	Mean.	$\begin{gathered} \text { Per } \\ \text { square } \\ \text { mile. } \end{gathered}$	Depth. in inches on Drainage area.	Tota! in acre-feet.	
January	25,3C0	770	3,840	$15 \cdot 40$	17.80	236,000	C
February	4,980	570	1,240	$4 \cdot 98$	5.19	68,900	B
March...	8.320	980	2,520	$10 \cdot 10$	$11 \cdot 60$	155,000	C
April.	6,510	980	2,430	9.75	10.90	145,0¢0	C
May..	1,650	690	1,070	$4 \cdot 30$	$4 \cdot 96$	65,600	B
June.	840	500	650	$2 \cdot 61$	$2 \cdot 91$	38,700	B
July .	485	130	265	1.06	1.22	16.300	B
August.	130	70	93	$0 \cdot 37$	0.43	5,700	B
September.	1,220	68	335	1.35	1.51	19.900	B
October...	11,600	360	3,290	$13 \cdot 20$	$15 \cdot 20$	202,000	C
November.	10,650	880	4.390	$17 \cdot 60$ 2.08	$19 \cdot 60$	261,000	C
December..	3,140	330	740	$2 \cdot 98$	$3 \cdot 44$	45,500	B
The year.	25,30¢	68	1,739	6.98	94.76	1,259,600	C

Daily Gauge Height and Discharge of Namaimo River six miles from mouth, for 1914.

Day.	January.		February,		March.		April.		May.		June.	
	Gauge Height	Discharge.	Gauge Height	Discharge.	Gauge Height	Discharge	Gauge Height	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge.
	Feet.	Sec.-ft.										
1.	$3 \cdot 01$	1,210	$3 \cdot 2$	1,400	$6 \cdot 64$	8,320	$2 \cdot 77$	1,010	$3 \cdot 09$	1,290	$2 \cdot 42$	770
2.	3.91	2,275	3.01	1,210	$5 \cdot 64$	6,020	$2 \cdot 8$	1,040	$3 \cdot 44$	1,650	$2 \cdot 53$	840
3	$5 \cdot 3$	5,250	2.8	1,040	$4 \cdot 94$	4,440	$3 \cdot 54$	1,770	$3 \cdot 39$	1,590	$2 \cdot 5$	820
4	$13 \cdot 8$	25,300	$2 \cdot 68$	950	$4 \cdot 43$	3,300	4.58	3,630	3.09	1,290	$2 \cdot 33$	720
5.	9.29	14,500	$2 \cdot 51$	830	$3 \cdot 92$	2,290	$5 \cdot 4$	5,480	$2 \cdot 89$	1,110	$2 \cdot 15$	610
6	8.99	13,800	$2 \cdot 39$	750	$3 \cdot 52$	1,750	$4 \cdot 61$	3,690	$2 \cdot 78$	1,020	$2 \cdot 03$	540
7.	6.77	8,620	$2 \cdot 29$	690	$3 \cdot 25$	1,450	$4 \cdot 01$	2,420	$2 \cdot 77$	1,010	$2 \cdot 07$	560
8	$5 \cdot 25$	5,140	2.21	650	$3 \cdot 2$	1,400	$3 \cdot 69$	1,970	$2 \cdot 9$	1,120	$2 \cdot 31$	710
9.	$4 \cdot 35$	3,135	$2 \cdot 12$	590	$3 \cdot 19$	1,390	$3 \cdot 58$	1,820	$2 \cdot 93$	1,140	$2 \cdot 36$	740
10.	3.93	2,300	$2 \cdot 11$	590	3.09	1,290	$3 \cdot 62$	1,880	$2 \cdot 94$	1,150	$2 \cdot 38$	750
11.	4.79	4,130	$2 \cdot 1$	580	$2 \cdot 93$	1,140	$3 \cdot 6$	1,850	$2 \cdot 96$	1,160	$2 \cdot 27$	680
12.	4.72	3,940	$2 \cdot 09$	570	1.93	485	$3 \cdot 48$	1,700	$2 \cdot 93$	1,140	$2 \cdot 26$	670
13.	$4 \cdot 6$	3,670	$2 \cdot 16$	620	$3 \cdot 81$	2.130	$3 \cdot 78$	2,090	$2 \cdot 98$	1,180	$2 \cdot 29$	690
14.	$4 \cdot 19$	2,800	$2 \cdot 22$	650	$6 \cdot 36$	7,680	5-17	4,960	$3 \cdot 03$	1,230	$2 \cdot 34$	720
15.	$3 \cdot 55$	1,790	$2 \cdot 3$	700	$5 \cdot 25$	5,140	5.85	6,510	$2 \cdot 99$	1,190	$2 \cdot 41$	770
16	3.98	2,230	$2 \cdot 35$	730	$4 \cdot 44$	3,320	4.85	4,240	2.82	1,060	$2 \cdot 43$	780
17.	$3 \cdot 59$	1,840	$2 \cdot 41$	770	$4 \cdot 22$	2,860	$4 \cdot 04$	2,480	$2 \cdot 69$	950	$2 \cdot 36$	740
18	$3 \cdot 41$	1,610	$2 \cdot 48$	810	$4 \cdot 03$	2,460	$4 \cdot 33$	3,090	$2 \cdot 59$	880	$2 \cdot 27$	680
19	$3 \cdot 42$	1,620	$2 \cdot 51$	830	3.94	2,320	$5 \cdot 04$	4,660	2.56	860	$2 \cdot 23$	660
20.	$3 \cdot 32$	1,520	2.54	850	$4 \cdot 09$	2,590	$4 \cdot 58$	3,630	$2 \cdot 59$	880	$2 \cdot 03$	540
21.	$3 \cdot 24$	1,440	$2 \cdot 73$	980	$4 \cdot 06$	2,520	$3 \cdot 89$	2,250	$2 \cdot 7$	960	1.98	500
22	3.08	1,250	$3 \cdot 28$	1,480	3.99	2,380	$3 \cdot 41$	1,610	$2 \cdot 84$	1,070	2.01	530
23.	2.98	1,180	$3 \cdot 43$	1,640	$3 \cdot 69$	1,970	$3 \cdot 14$	1,340	$2 \cdot 9$	1,120	2.03	540
24	$2 \cdot 75$	1,000	$3 \cdot 83$	2,160	$3 \cdot 4$	1,600	$2 \cdot 94$	1,150	$2 \cdot 85$	1,080	$2 \cdot 04$	540
25	$2 \cdot 69$	950	$3 \cdot 69$	1,970	$3 \cdot 19$	1,390	$2 \cdot 81$	1,050	2.8	1,040	$2 \cdot 14$	620
26.	2.68	940	3.48	1,700	2.93	1,140	$2 \cdot 72$	980	$2 \cdot 82$	1,060	$2 \cdot 2$	640
27.	$2 \cdot 59$	880	$5 \cdot 18$	4,980	$2 \cdot 79$	1,030	2.92	1,140	$2 \cdot 79$	1,030	$2 \cdot 13$	600
28	2.42	770	$4 \cdot 75$	4,000	$2 \cdot 74$	990	2.94	1,150	$2 \cdot 58$	880	$2 \cdot 07$	560
29.	2.59	880			2.72	980	$2 \cdot 88$	1,100	$2 \cdot 36$	740	$2 \cdot 0$	520
30	$3 \cdot 31$	1,510			2.83	1,060	$2 \cdot 84$	1,070	$2 \cdot 28$	690	2.01	530
31.	3-33	1,530			$2 \cdot 84$	1,070			$2 \cdot 31$	710		

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Nanaimo River six miles from mouth, for 1914-Con.

Dax.	July.		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gruge Height	Discharge.	Gauge Height.	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec. -ft .	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1	1.93	485	0.88	130	$0 \cdot 50$	70	$2 \cdot 43$	780	$6 \cdot 6$	8,230	4.35	3,140
2	1.91	475	0.85	120	0.50	70	2.61	900	$7 \cdot 65$	10,650	3.79	2,110
3.	1.88	460	0.83	115	0.51	71	$2 \cdot 51$	830	$6 \cdot 47$	7,930	$3 \cdot 47$	1,680
4	1.8	420	0.82	115	0.49	69	$2 \cdot 38$	750	6.55	8,120	$3 \cdot 23$	1,430
5	1.73	390	0.8	110	0.48	68	$2 \cdot 15$	610	$5 \cdot 7$	6,160	$3 \cdot 05$	1,250
6	1.65	360	0.78	105	0.49	69	$2 \cdot 0$	520	$4 \cdot 35$	3,140	2.84	1,070
7	$1 \cdot 6$	340	0.76	100	0.58	78	1.87	455	3.85	2,190	$2 \cdot 68$	950
8	$1 \cdot 6$	340	0.78	105	0.62	82	1.74	395	$4 \cdot 65$	3.780	$2 \cdot 57$	870
9.	1.51	305	0.79	110	0.65	85	$1 \cdot 65$	360	$5 \cdot 44$	5,570	$2 \cdot 42$	770
10.	$1 \cdot 5$	300	0.8	110	$0 \cdot 64$	84	1.75	400	$4 \cdot 65$	3,780	$2 \cdot 31$	710
11.	1.49	295	0.76	100	$0 \cdot 67$	87	1.71	380	$4 \cdot 8$	4,120	$2 \cdot 22$	650
12.	1.47	290	0.75	100	0.67	87	$3 \cdot 83$	-. 160	$4 \cdot 22$	2,860	$2 \cdot 13$	600
13.	1.44	280	0.74	100	0.69	89	$7 \cdot 97$	11,500	3.83	2,160	2.05	550
14	1.43	280	0.72	95	0.7	$9)$	$6 \cdot 15$	7,200	$3 \cdot 41$	1.610	1.99	510
15.	1.39	265	0.71	90	$0 \cdot 74$	100	$4 \cdot 7$	3,890	$3 \cdot 26$	1.460	1.94	490
16.	1.34	250	0.67	87	0.8	110	$7 \cdot 5$	10,300	2.91	1.130	1.88	460
17.	$1 \cdot 31$	245	0.69	89	1.01	155	$7 \cdot 86$	11,200	2.73	980	1.8	420
18.	1.3	240	$0 \cdot 67$	87	1.56	325	8.05	11,600	2. 58	880	1.75	400
19.	1.29	235	0.65	85	2.75	1,000	$7 \cdot 73$	10,960	3.88	2,230	1.77	400
20.	$1 \cdot 2$	210	0.64	84	3.02	1.220	$6 \cdot 55$	8,120	$4 \cdot 54$	3,540	1.69	375
21.	1.16	200	0.64	84	$2 \cdot 68$	950	$5 \cdot 13$	4,870	$4 \cdot 64$	3,760	$1 \cdot 69$	375
22.	$1 \cdot 12$	185	0.62	82	$2 \cdot 28$	690	$4 \cdot 19$	2,800	$5 \cdot 15$	4.920	1.64	360
23.	$1 \cdot 1$	180	$0 \cdot 6$	80	$2 \cdot 0$	520	$3 \cdot 6$	1,850	$5 \cdot 95$	6,730	1.6	340
24	1.09	175	$0 \cdot 59$	79	1.78	410	$3 \cdot 18$	1,380	$6 \cdot 28$	7.490	1.59	335
25.	1.07	170	0.58	78	$1 \cdot 6$	340	$2 \cdot 91$	1,130	6.98	9,100	1.55	330
26.	$1 \cdot 04$	160	0.56	76	$1 \cdot 68$	370	$2 \cdot 66$	930	$5 \cdot 45$	5,650	1.6	340
27.	1.01	155	0.55	75	1.86	450	2.45	810	$4 \cdot 85$	4.230	1.6	340
28	0.99	150	0.54	74	$2 \cdot 33$	720	$2 \cdot 32$	710	4.84	4,210	1.61	345
29.	0.96	149	0. 52	72	$2 \cdot 4$	760	$2 \cdot 2$	640	4.25	2,930	1.63	3511
30.	0.92	135	0.52	72	2. 53	840	$2 \cdot 63$	910	$3 \cdot 82$	2.150	1.71	3×5
31	0.9	130	$0 \cdot 5$	70			4.06	2,520			$2 \cdot 16$	620

Oyster River Vancouver Island (1040).
Location. - One mile from mouth, upstream side of Island highway bridge. 18 miles from Courtenay.

Records available.-Gauge readings twiee daily, June 1, 1914, to December 31, 1914.

Drainage area.-Seventy square miles.
Gauge.-Twelve-foot enamel staff, mated to cribhing on right bank, 20 feet downstream from bridge.
('hannel.-Straight for 150 feet upstream and 100 foet downstream, gravel bed, good control.
lixtreme low water measurements taken 1,000 feet upst ream from hridge.
Discharge measurements.- Four in 1914, covering all but high stage
Winter flow. Open all year.
Accuracy. - Between diselarge of so and 1,400 cubie feet per seoond, aerorary B. Above discharge of 1,400 cubic feet per seeomed, aceuracy (?

Oyster River (1040).
Oyster river rises in the mountains at an elevation of over 4,000 feet, and flows in an easterly direction to its mouth in the strait of Georgia, about 12 miles south of Campbell river. Oyster river is some 18 miles in length. Many branches from the mountains make up the main stream.

The river is fast and flashy. In the summer months the flow is small, as there is no natural storage. The valleys are still thickly wooded, although considerable timber has been taken out. There are several fine farms near its mouth.

Installing metal faced gauge at metering section on Oyster river, Vancouver Island.
The metering station is at the Island highway bridge. This highway crosses the river about 1 mile from mouth.

The precipitation is heavy, varying from 80 inches at the mouth of river to over 100 inches at headwaters. The power possibilities on this stream as yet have not been investigated by this survey.

Discharge Measurements of Oyster River near mouth, for 1914.

Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
			Feet.	Sq.-ft.	Ft, per sec.	Feet.	Sec.-ft.
June 1..	Webb \& Cotton.	1,057	135	298	$3 \cdot 5$	2. 70	1,040 ${ }^{1}$
July 18	C. P. Cotton...	1,057	137	262	$2 \cdot 6$	$2 \cdot 10$	689
Sept. 5	C. E. Webb...	1,057	67 134	66 358	$1 \cdot 3$ 3.9	0.92 3.50	1.380 ${ }^{86 \cdot f^{2}}$
Nov. 11.		1,057	134	358	$3 \cdot 9$	3.50	1,380

[^16]
SESSIONAL PAPER No. 25e

Monthly Discharge of Oyster River one mile from mouth, for 1914.
(Drainage area, 70 square miles.)

Month.	Discharge in Second-Feet.				Rus-Off.		Acceracy.
	Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on Drainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$	
June.	1,330	710	950	$13 \cdot 60$	$15 \cdot 20$	36,500	B
July...	1,080	340	700	$10 \cdot 00$	11.50	43,000	B
August	+ 410	140	275	3.93	$4 \cdot 53$	16,900	B
September.	1,470	90	350	5.00	$5 \cdot 58$	20,800	B
October	3,000	270	1,040	$14 \cdot 80$	17.06	64,000	C
November.	2,170	540	1,280	18.30	$20 \cdot 40$	76.200	C
December.	1,030	140	460	$6 \cdot 57$	$7 \cdot 56$	28,300	B

Daily Gauge Height and Discharge of Oyster River one mile from mouth. for 1914 .

Day.	June.		July		August		September		October		November	
	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height.	Discharge	Gauge Height	Discharge	Gauge Height	Discharge
	Feet.	See.-ft.	Feet.	See.-ft	Feet.	Sec.-ft.	Feet.	Nec.-ft.	Feet.	Sec. -ft	Feet.	See.-it
1.	2.7	$\begin{array}{r}980 \\ \hline 080\end{array}$	2.8	1,030	1.4	340	1.0	140	1.7	490	3.52	1.390
2.	$2 \cdot 9$	1.080	$2 \cdot 9$	1,080	1.48	380	1.0	140	1.7	490	$3 \cdot 6$	1.420
3.	2.85	1,050	$2 \cdot 85$	1,050	1.5	390	1.0	140	1.65	470	3. 55	1.400
4.	2.65	960	$2 \cdot 7$	980	1.5	390	1.0	140	1.6	440	$3 \cdot 65$	1.450
5.	$2 \cdot 35$	800	$2 \cdot 5$	880	1.45	360	0.95	115	$1 \cdot 55$	$411)$	3.4	1.330
6	$2 \cdot 15$	710	$2 \cdot 35$	810	1.47	370	0.9	9.1	1.45	370	$2 \cdot 85$	1.050
7	$2 \cdot 2$	730	$2 \cdot 25$	750	1. 52	4100	$0 \cdot 9$	90	$1+35$	310	$2 \cdot 6$	930
8	$2 \cdot 5$	880	$2 \cdot 3$	780	1.53	410	0.9	90	$1 \cdot 3$	290	4.8	2.020
9	$2 \cdot 4$	830	$2 \cdot 25$	760	1.5	390	0.9	99	$1 \cdot 25$	270	$4 \cdot 8$	2.120
10.	$2 \cdot 55$	9040	$2 \cdot 3$	780	1.4	340	$0 \cdot 9$	90	1.4	340	$3 \cdot 55$	1.400
11	$2 \cdot 55$	920	$2 \cdot 4$	830	1.4	340	$0 \cdot 9$	90	1.58	430	3. 5	1.3×0
12	$2 \cdot 65$	950	$2 \cdot 35$	810	1.4	340	0.9	9)	$2 \cdot 55$	960	$3 \cdot 11$	1.130
13	2.8	1,030	2.35	800	1.4	341	0.9	90	$6 \cdot 4$	2,820	2.66	950
14	$3 \cdot 0$	1.130	$2 \cdot 35$	810	1.35	310	0.9	9.$)$	$5 \cdot 1)$	2,120	$2 \cdot 45$	Stio)
15.	$3 \cdot 25$	1,250	$2 \cdot 25$	750	$1 \cdot 33$	300	0.9	93	$3 \cdot 45$	1.350)	2. 25	750
16.	$3 \cdot 4$	1,330	$2 \cdot 2$	730	1.3	290	1.13	205	6.75	3,1000	$2 \cdot 0$	$6+10$
17	$3 \cdot 15$	1,210	2.25	750	1.25	270	1.33	305	$5 \cdot 45$	2.350	1.9	391
18.	$3 \cdot 1$	1,180	$2 \cdot 2$	730	$1 \cdot 2$	240	1.35	315	4.45	1.340	1 s	5410
19.	$2 \cdot 75$	1,000	$2 \cdot 2$	730	$1 \cdot 2$	240	3. 7.	1,470	4.6	1.920		N(0)
20.	$2 \cdot 55$	910	$2 \cdot 2$	730	1.15	220	$2 \cdot 05$	1,100	$3 \cdot 65$	1.450		1.400)
21.	$2 \cdot 35$	800	1.95	620	1.15	210	$2 \cdot 25$	760	$3 \cdot 8.5$	1,540	$3 \cdot 3$	1.280
22	$2 \cdot 25$	7510	1.75	510	1.1	190	2.05	640	$3 \cdot 85$	1,550	4.1	1.670
23.	2.25	760	1.7	490	$1 \cdot 1$	190	1.85	570	3.0	1,130	+1	1,670
24	$2 \cdot 25$	750	1.75	520	1.1	190	1.73	500	$2 \cdot 35$	Nut	4.8	2,020
25.	$2 \cdot 85$	1,050	1.7	400	$1 \cdot 0$	190	1.6	410	$2 \cdot 05$	(6i4)	$5 \cdot 1$	2.180
26	2.7	980		490		160		440	1.85	$5(\mathrm{k})$	3.73	1.50m
27	$2 \cdot 55$	310	$1 \cdot 65$	470	1.05	170	1.75	510	1.9	596	3.6	1.430
28.	$2 \cdot 45$	850	1.55	410	1.05	164	1.8	541	1.8	5411	3.6	1.4:31
29.	$2 \cdot 5$	881	1.5	390	1.05	170	1.8	540	1.7	4914	$3 \cdot 15$	1.150
30 .	$2 \cdot 65$	960	1.48	360	$1 \cdot 10$	140	1.7	1190	2.75	1, (10)	2.8	1.0301
31			1.1	340	1.0	140			$3 \cdot 5$	1,380		

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Oyster River one mile from mouth, for 1914 -Con.

Puntledge River, Vancouver Island (1036).
Location.-One mile from mouth, downstream side of highway bridge, 1 mile from Courtenay.

Records available.-Gauge readings t wice a day, May 30 1914, to December 31, 1914.

Drainage area.-Two hundred square miles.
Gauge.-Fourteen-foot wooden staff nailed to piling of right abutment of trussed span of railway bridge, downstream side.

Channel.-Straight for 800 feet upstream, and 200 feet downstream, even gravel bed; good control; one channel, except in extreme high water when there is one small side channel.

Discharge Measurements.-Four in 1914, covering all but highest stage.
Winter flow.-Open all year.
Accuracy.-Between discharge of 400 and 4,000 cubic feet per second, accuracy B. Below discharge of 400 and above 4.000 cubic feet per second, accuracy C .

> Pentledge River (1036).

The Puntledge river flows from Comox lake to the sea in Comox harbour, a distance of about 8 miles. Comox lake covers an area of about 9 square miles, and lies at an altitude of some 430 feet. The lake is fed from the mountains by several large creeks, the most important of which are the Cruikshank river and Trout creek. The drainage area of Puntledge river is 200 square miles.

SESSIONAL PAPER No. 25e
The precipitation is heavy, varying from 70 inches at mouth to over 100 inches at headwaters.

The Canadian Collieries (Dunsmuir), Limited, have installed a hydroelectric development for 25,000 horse-power on this river about 5 miles below Comox lake. A brief description of this development may be found under the heading of "Hydro-Electric Developments in Operation."

Brown river, a tributary entering the Puntledge river from the north, is being investigated with a view of obtaining a water supply for the town of Courtenay.

Another small development may be made on the Puntledge river, about half a mile below the power-house of the Canadian Collieries plant, by the erection of a dam.

Discharge Measurements of Puntledge River near mouth, for 1914.

Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section	Mean Velocity:	Gauge Height	Discharye
1914.			Feet.	Siq. ft	Ft, per see.	Feet.	Sec.-ft.
May . 30.	Webb \& Cotton.	1057	186	463	5.3	3.58	2.450*
July ${ }^{\text {Sept. }}$	C. E. Webb	1057	${ }_{127}^{146}$	159	+.8 2.9	3.50 1.80	1.820
Nov. 10.		1057	324	6.31	5.5	$4 \cdot 68$	$3 .+40$

*Station established.
Monthly Discharge of Puntledge River one mile from mouth, for 1914.
(Drainsge area, 200 square miles.)

Month.	Discharge in Second-Feet				Run-Off.		Accuracy
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$	
June:	2,250	1,570	1,840	9.20	$10 \cdot 30$	109,040)	B
July ...	2,310	800	1,400	$7 \cdot 00$	$8 \cdot 07$	86,100	13
August ...	840	480	610	3.05	3.52	37.5014	${ }_{13}$
September	2,550	450	750	3.75	4. 18	+4.6(4)	13
October	13,000	680	3,950	19.75	2275	243, 0160	(
November.	3,810	2,550	3,220	$16 \cdot 10$	15.100	192.(64)	B
December...	3,180	510	1,380	6.90)	\$. 00	A4.901	13

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Puntledge River one mile from mouth, for 1914.

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Puntledge River one mile from mouth, for 1914-Con.

Day.		November.		December.	
		Gauge Height-	Discharge	Gauge Height	Discharge
		Feet.	Sec.-ft.	Feet.	Sec.ft.
2		4.5	3,250	4.45	3,180 3
2		$4 \cdot 57$ 4.6	3,350 3,400	$\begin{array}{r}4.37 \\ 3.27 \\ \hline\end{array}$	3,180 2,930
4		4.52	3,280	$4 \cdot 17$	2,790
5.		4.5	3,250	$4 \cdot 07$	2,650
6.		4.57	3,350	4.0	2.550
7.		4.67	3,500	3.9	2,430
8		4.77	3,650	3.82	2,330
10		4.8	3.700	3.65	$\stackrel{2.130}{1}$
10.		4.72	3,580	$3 \cdot 45$	1.900
11.		4.72	3.580	3.32	1,770
12.					
13.		$4 \cdot 42$	3.140	2.95	1.400
14.		$4 \cdot 27$	2,930	2.75	1,230
15.		$4 \cdot 17$	2,800	2.58	1.070
16.		$4 \cdot 12$	2.720	2.4	920
17.		$4 \cdot 1$	2.690	$2 \cdot 12$	700
18.		4.02	2,550	$2 \cdot 1$	6×0
19.		4.0	2.550	$2 \cdot 1$	6×0
20.		$4 \cdot 0$	2,550	$2 \cdot 05$	640
21.		$4 \cdot 12$	2,720	2.0	600
22.		$4 \cdot 22$	2.860	$2 \cdot 0$	610
23.		4.37	3.070	2.0	600
24		4.52	3.250	1.95	53.0
25.		4.62	3.430	1.9	540
27.		4.87	3,510	1.85	510
28.		4.85	3.780	$1 \cdot 85$	510
29.		4.75	3.620	1.9	540
30.		4.55	3,330	$1 \cdot 92$	530
31.				$2 \cdot 05$	640

Puntledge River (1063) at Diversion Dam.

Location.-At diversion dam of Puntledge river, hydro-electric installation. Canadian Collieries (Dunsmuir), Limited.

Records available.-June 7 to December 31, 1913; January 1 to Deeember 31, 1914.

Drainage area.- 175 square miles.
Gruge.-Wooden staff located on right bank fifty feet above diversion dam Channel.-Very even flow.
Discharge measurements.-Daily diseharge obtained by weir measurements over diversion dam plus water to flume.

Winter flow.-Open all year.
Co-operation.- All data on this station supplied through the kindness of Mr. L. Netland, resident Emgineer for C'anadian Collieries (I)umsmuir) Ltd.
 Electrie Instahlatos.

The diversion dam of the Puntledge river hydro-electrie installation is located about 22_{2} miles below Comox hake. The dramage area above dam is 175 square miles.

The station was established in June, 1913, by the Canadian Collieries (Dunsmuir), Limited, and daily discharges are obtained by gauge readings at crest of weir at diversion dam. The flow into flume to intake is added to the discharge over dam.

Mr. L. Netland, resident engineer of the Canadian Collieries Company has kindly supplied all the data on this station.

For climatic conditions, etc., see description of Puntledge river, No. 1036, near mouth.

Monthly Discharge of Puntledge River at Diversion dam for Power plant, for 1914.
(Drainage area, 175 square miles.)

Month.	Discharge in Second-Feet.				Run-Off.	
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	Total in acre-feet.
January	3,200	380	1,890	$10 \cdot 8$	$12 \cdot 5$	116,000
February	860	440	540	$3 \cdot 1$	$3 \cdot 2$	30,000
March.	1,850	700	770	$4 \cdot 4$	$5 \cdot 1$	47,000
April	2,900	1,850	2,420	13.8	$15 \cdot 4$	144,000
May.	2,080	1,440	1,700	9.7	$11 \cdot 2$	105,000
June.	4,640	800	2,390	$13 \cdot 7$	$15 \cdot 3$	142,000
July	2,300	400	880	$5 \cdot 0$	$5 \cdot 8$	54, 100
August	400	240	330	$1 \cdot 9$	$2 \cdot 2$	20,300
September	1,650	240	510	$2 \cdot 9$	$3 \cdot 2$	30,300
October	5,780	360	2,740	15.7	18.1	168,000
November.	2,160	2,200	2,660	$25 \cdot 2$	28.1	158,000
December..	2,600	340	1,060	$6 \cdot 1$	$7 \cdot 0$	65,200
The year	5,780	240	1,490	$9 \cdot 4$	$127 \cdot 1$	1,079,900

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Puntledge River at Diversion Dam, Puntledge River Hydro-electric Installation, for 1914.

Day.	January.		February.		March.		April.		May.		June.	
	Gauge Height	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge	Gauge Height.	Discharge	Gauge Height,	Discharge.
	Feet.	See.-ft.	Feet.	Sec.-ft.								
1.		380		560		860		1,850		2,080		3. 500
2		600 800		600		860		1,850		1,440		5.490
3.		800		560		800		1,850		1,840		5,100
4.		.960		560		800		2,000		1.840		4.640
5.		1,200		560		760		2,000		1,760		4.480
6.		1,480		560		700		2,050		1,760		4.200
7		2,200		480		700		2,050		1,750		4. 160
8.		3,200		480		700		2,300		1,650		3. 960
9.		2,200		500		700		2,300		1,650		3.400
10.		3,000		500		700		2,300		1,650		3. 100
11.		3,000		500		700		2,300		1,650		2,750
12.		3, 200		500		760		2,380		1,520		2,640
13.		3,180		440		760		2,480		1,520		2,520
14.		3,000		440		800		2,750		1,650		2,320
15.		2,900		440		800		2,900		1,750		1,850
16.		2,800		460		800		2,760		1,740		920
17.		2, 600		460		760		2,600		1,740		800
18.		2,500		460		1,200		2,600		1,740		1,2s0
19.		2,400		460		800		3, 100		1,740		1,300
20.		2,200		460		800		3,100		1,740		1,240
21.		2,100		460		800		2,740		1,740		1.240
22.		1,960 1,760		460 500		880 1.800		2,800		1,740		1,240
23.		1,760 1,650		520 650		1,800		2,730		1,730		1,240
24.		1,650 1,480		650 700		1,800 1,850		$\stackrel{2}{2}, 600$		1,730		1,160
25.		1,480		700		1,850		2,600		1,730		1,240
26.		1,300		700		1,850		2,500		1,730		1,240
27.		1,150 1,000		780		1,850		2,400		1,730		1,240
28.		1,000 680		860		1.850 1.850		2,300		1,720 1,650		1,240
39.		660 400				1,850 1.850		2,200		1,650		1,240
30.		400				1,850		2,200		1,560		1,240
31.		460			1,850				1,560	\ldots	- . .

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Puntledge River at Diversion Dam Puntledge River Hydro-electric Installation, for 1914-Con.

Shawnigan Creek (1025).
Location.-Five hundred feet from outlet of Shawnigan lake, upstream side of Esquimalt and Nanaimo Railway bridge, 300 yards from Koenigs station.

Records Available.-Gauge readings daily, May 11, 1914 to December 31. 1914.

Drainage Area.-Twenty-two square miles.
Gauge.-Six-foot enamel staff nailed to piling on left downstream side of highway bridge at outlet from lake.

Channel.-Straight for 50 feet on both sides of section; gravel and sand bed; one channel only.

Discharge Measurements.-One in 1913, Provincial Water Rights Branch; four in 1914, covering all stages.

Winter Flow.--Open all year.
Accuracy.-Between discharge of 0 and 280 cubic feet per second, accuracy
A. Above discharge of 280 cubic feet per second, accuracy B.

Co-operation.-Provincial Water Rights Branch.

Shawnigan creek is the outlet of Shawnigan lake to the sea in Mill bay on Saanich inlet. It is some 4 miles in length. The drainage area above the metering section, which is located at the outlet of Shawnigan lake, is 22 square miles.

Shawnigan lake lies at an altitude of 381 feet and covers an area of 3 square miles. The Esquimalt and Nanaimo railway is located along the east shore, and the Canadian Northern railway along the west shore. There are several large sawmills located on Shawnigan lake. The lake is popular with the tourists, there being two hotels, and many fine summer homes along its shores.

The precipitation averages about 40 inches. July and August are dry months, and the water goes very low. In the summer of 1914 Shawnigan creek had no flow for several weeks.

The principal use for the water of this lake would be for municipal supply; with an impounding dam at its outlet, considerable water could be stored.

Discharge Measurements of Shawnigan River near Shawnigan Lake, 1914.

Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section.	Mean Velocity.	Gauge Height	Discharge.
1914.			Feet.	Sq. ft.	Ft. per sec	Feet.	Sec.-ft.
May 11.	C. E. Webb.	1057	19	41		${ }_{1} .71$	
July ${ }^{\text {d }}$.	Webb and Cotton C. P. Cotton	1057 1057	18 3	11 1	0.3 0.3	$1 \cdot 05$ 0.43	$3 \cdot 3^{2}$ 0.3
Sept 16.	C. E. Webb.	1057				0.00	0.3 0.0
Nov 24		1933	32	98	2.5	4.33	$245 \cdot 0$

${ }^{2}$ Station established. ${ }^{2}$ Several different sections used.
Moxthly Discharge of Shawnigan Creek near Shawnigan Lake, for 1914.
(Drainage area, 22 square miles.)

[^17]6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Shawnigan Creek at Shawnigan lake, for 1914.

Day.	May.		June.		July .		August.		September.		October.	
	Gauge Height	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge	Gauge Height	Discharge.
	Feet	See.-ft.	Feet.	Sec.-ft.	Feet	Sec. -ft .	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1			1-3	10	$1 \cdot 1$	$5 \cdot 0$	$0 \cdot 65$	$1 \cdot 2$		$0 \cdot 0$	0.0	$0 \cdot 0$
2			$1 \cdot 3$	10	$1 \cdot 1$	$5 \cdot 0$	$0 \cdot 5$	$0 \cdot 6$		$0 \cdot 0$	$0 \cdot 0$	0.0
3			1.3	10	1.1	$5 \cdot 0$	$0 \cdot 5$	$0 \cdot 6$		$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$
4			1.3	10	$1 \cdot 1$	$5 \cdot 0$	0.5	$0 \cdot 6$		$0 \cdot 0$		$0 \cdot 0$
5.			$1 \cdot 3$	10	$1 \cdot 1$	$5 \cdot 0$	$0 \cdot 55$	$0 \cdot 8$		$0 \cdot 0$		$0 \cdot 0$
6.			$1 \cdot 3$	10	1.05	$4 \cdot 0$	$0 \cdot 45$	$0 \cdot 5$		$0 \cdot 0$		$0 \cdot 0$
7.			$1 \cdot 3$	10	1.05	$4 \cdot 0$	$0 \cdot 4$	$0 \cdot 3$		$0 \cdot 0$		$0 \cdot 0$
8			$1 \cdot 3$	10	1.05	$4 \cdot 0$	$0 \cdot 4$	$0 \cdot 3$		$0 \cdot 0$	0.0	$0 \cdot 0$
9			$1 \cdot 3$	10	1.0	$3 \cdot 0$	$0 \cdot 4$	$0 \cdot 3$	$0 \cdot 0$	$0 \cdot 0$	0.05	$0 \cdot 0$
10			$1 \cdot 3$	10	$1 \cdot 0$	$3 \cdot 0$	$0 \cdot 4$	$0 \cdot 3$	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 10$	$0 \cdot 0$
11	1.7	24	1.3	10	1.0	$3 \cdot 0$	$0 \cdot 35$	$0 \cdot 2$	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 20$	0.1
12.	1.7	24	$1 \cdot 3$	10	1.0	$3 \cdot 0$	$0 \cdot 30$	$0 \cdot 2$		$0 \cdot 0$	$0 \cdot 40$	$0 \cdot 3$
13.	1.7	24	$1 \cdot 3$	10	1.0	$3 \cdot 0$	$0 \cdot 25$	0.2		$0 \cdot 0$	$0 \cdot 4$	$0 \cdot 3$
14.	$1 \cdot 65$	22	1-25	9	$1 \cdot 0$	$3 \cdot 0$	$0 \cdot 2$	$0 \cdot 1$		$0 \cdot 0$	$0 \cdot 4$	$0 \cdot 3$
15.	$1 \cdot 65$	22	1.25	9	$1 \cdot 0$	$3 \cdot 0$	$0 \cdot 15$	$0 \cdot 1$		$0 \cdot 0$	$0 \cdot 5$	$0 \cdot 6$
16.	$1 \cdot 6$	20	1.25		1.05	$4 \cdot 0$ $4 \cdot 0$	0.15 0.10	0.1 0.0	$0 \cdot 0$	$0 \cdot 0$ $0 \cdot 0$	0.6 0.8	$1 \cdot 0$ $2 \cdot 0$
17.	1.6 1.6	20 20	1.2 1.2	7	1.05 1.05	$4 \cdot 0$ $4 \cdot 0$	$0 \cdot 10$ $0 \cdot 10$	0.0 0.0		0.0 0.0	0.8 1.0 1.0	$2 \cdot 0$ $3 \cdot 0$
18.	${ }_{1}^{1 \cdot 6}$	20 18	$1 \cdot 2$ $1 \cdot 2$	7	1.05 0.9	$4 \cdot 0$ $2 \cdot 5$	$0 \cdot 10$ 0.05	0.0 0.0		0.0 0.0	1.00	3.0 7.0
19. 20.	$1 \cdot 55$ $1 \cdot 55$	18	$1 \cdot 2$ $1 \cdot 15$	7 6	0.9 0.9	$2 \cdot 5$ $2 \cdot 5$	0.05 0.0	0.0 0.0		$0 \cdot 0$ $0 \cdot 0$	1.2 1.4	7.0 13.0
21.	$1 \cdot 5$	16	$1 \cdot 15$	6	0.85	$2 \cdot 3$		$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	$1 \cdot 5$	16.0
22.	$1 \cdot 5$	16	$1 \cdot 1$	5	$0 \cdot 85$	$2 \cdot 3$		$0 \cdot 0$		$0 \cdot 0$	$1 \cdot 55$	18.0
23.	$1 \cdot 5$	16	$1 \cdot 1$	5	0.8	$2 \cdot 0$		$0 \cdot 0$		$0 \cdot 0$	$1 \cdot 6$	$20 \cdot 0$
24.	$1 \cdot 45$	15	$1 \cdot 1$	5	0.8	$2 \cdot 0$		$0 \cdot 0$		$0 \cdot 0$	$1 \cdot 6$	$20 \cdot 0$
25.	1.45	15	$1 \cdot 1$	5	0.8	$2 \cdot 0$		$0 \cdot 0$		$0 \cdot 0$	$1 \cdot 6$	$20 \cdot 0$
26.	1.45	15	$1 \cdot 1$	5	0.75	1.8		$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	$1 \cdot 6$	$20 \cdot 0$
27.	$1+4$	13	$1 \cdot 1$	5	0.75	1.8		$0 \cdot 0$		$0 \cdot 0$	$1 \cdot 6$	$20 \cdot 0$
28.	$1 \cdot 4$	13	$1 \cdot 1$	5	0.7	1.5		$0 \cdot 0$	$0 \cdot 0$	1.6	$20 \cdot 0$
29.	$1 \cdot 35$	12	$1 \cdot 1$	5	0.7	$1 \cdot 5$		$0 \cdot 0$		$0 \cdot 0$	1.6	$20 \cdot 0$
30.	$1 \cdot 35$	11	$1 \cdot 1$	5	$0 \cdot 65$	$1 \cdot 3$		$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	$1 \cdot 6$	$20 \cdot 0$
31.	$1 \cdot 3$	10			$0 \cdot 65$	$1 \cdot 2$		$0 \cdot 0$			1.65	$22 \cdot 0$

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Shawnigan Creek at Shawnigan lake, for 1914.-Con.

Sproat River, Vancouver Island, (1051).
Location.-Eight hundred feet below outlet from Sproat lake, 8 miles from Alberni.

Records Available.-Gauge readings four times it week: March 1, 1913, to December 31, 1913, Provincial Water Rights Branch; Jamuary 1, 1914, to May 31, 1914, Provincial Water Rights Branch; June 1, 1914, to December 31, 1914.

Drainage Aren.- One hundred and twenty-eight square miles.
Gange.-Twelve-foot wooden staff mailed to crib on lake shore, 300 feet to right of outlet

Chamel.-Slight curve at section, straight for 500 feet above and below, gratvel and boulder bed, solid rock on left side, good eontrol, rapids and falls below section.

Discharge Measurements. Six in 1913 hy Provincial Water Rights Branch; four in 1914, eovering all but highest stage.

Hinter Plow. (Open all winter.
Accuracy. Between disehat ge of 700 and 2.100 coblice feet per seeomd, acemacy A . Below diseharge of 700 and above 2,100 cubbe feet per secomet, acouracy B.

Co-operation.-Station established in 1913 by Provincial 11 ater Rights Branch.

Sproat River (1051).
Sproat river is the outlet of Sproat lake, which lies at an altitude of about 80 feet. Sproat river flows in an easterly direction, and is some 3 miles in length. At its mouth it joins the Stamp river. The combined flow of these two streams is known as the Somass river, and is about 4 miles in length. The Somass river empties into the Alberni canal at Alberni.

Wooden Staff Gauge on Sproat lake near outlet, attached to rock filled crib.

The gauging station on Sproat river is located near the outlet from Sproat lake. The drainage area above station is 128 square miles. Sproat lake itself covers an area of 17 square miles.

This drainage is thickly timbered except, of course, in the highest altitudes. The precipitation is heavy in this district. It varies from about 70 inches at mouth of Sproat river to 110 inches in mountains at headwaters in Clayoquot divide.

SESSIONAL PAPER No. 25e

Sproat river offers good possibilities for a hydro-electric development at falls, about half a mile from lake. The river drops 44 feet at this point, and in rapids below it drops another 15 feet in half a mile. It would be feasible to build an impounding dam at outlet from lake to raise water level of lake some 40 feet. By this means a head of nearly 100 feet might be obtained in a distance of 1 mile, and the regulation of the flow of stream.

Metering Section on Sproat river near outlet from Sproat lake.

Another larger development would be to bring water from Creat Central lake, a distance of some $3 \frac{1}{2}$ miles, by means of a tunnel and pipe line. A head of about 170 feet may be obtained.

Discharge Meastrements of Sproat River near sproat Lake, 1914.

[^18]6 GEORGE V, A. 1916
Monthly Discharge of Sproat River at Sproat lake, for 1914.
(Drainage area, 128 square miles.)

Month.	Discharge in Second Feet.				Run-Off.		Accuracy:
	Maximum.	Minimum.	Mean.	$\begin{gathered} \text { Per } \\ \text { square } \\ \text { mile. } \end{gathered}$	Depth in inches on Drainage area.	Total in acre-feet.	
January	5,900	1,750	3,470	27-10	$31 \cdot 20$	213,000	B
February	1,840	960	1,260	9.85	$10 \cdot 26$	70,000	B
March...	3,370	1,750	2,360	18.40	$21 \cdot 20$	145,000	B
April.	4,560	1.720	2,950	23.02	$25 \cdot 68$	176,000	B
May..	2,100	1,200	1,540	12.05	13.89	94,700	B
June..	1,200	830	985	7-69	$8 \cdot 58$	58,600	B
July	820	440	625	4. 88	5.63	38,400	B
August	420	200	295	2.30	$2 \cdot 65$	18,100	B
September	-680	160	355	2.77	3.09	21, 100	B
Oetober...	8, 100	-610	3,440	26.90	$31 \cdot 00$	212,000	C
November	5,600	2,440	4,120	$32 \cdot 20$	$35 \cdot 90$	245,000	B
December.	4,230	740	1,650	$12 \cdot 90$	$14 \cdot 90$	101,000	B
The year....	8,100	160	1,920	$15 \cdot 00$	203.98	1,392,900	B

Daily Gauge Height and Discharge of Sproat River at Sproat Lake, for 1914.

SESSIONAL PAPER No. 25 e
Daily Gauge Height and Discharge of Sproat River at Sproat Lake, for 1914 -Con.

Day.	January.		February.		March.		April.		May:		June.	
	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge. } \end{aligned}$	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height.	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height	Dis- charge	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge. } \end{aligned}$	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge. } \end{aligned}$
	Feet.	Sec.-ft.	Feet.	Sec.ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1.		2,000	5.5	1,780	6.9	2,820	5.4	1,720	6.0	2,100	$4 \cdot 5$	1,200
${ }_{3}^{2}$		2,100 2,500	$5 \cdot 47$ $5 \cdot 25$	1,750		2,860	5.4 5.8	1,720	${ }_{5}^{5 \cdot 8}$	1,960		1,190
4	7.1	3,000	$5 \cdot 25$	1,550	7.5	3,370	6.2	2,240	5.78	1,950	$4 \cdot 4$	1.170 1.150
5	$8 \cdot 42$	4,350	$5 \cdot 0$	1,480	$7 \cdot 1$	3,000	6.9	2,820	5.52	1,800	$4 \cdot 35$	1,130
6	9.75	5,900	4.85	1,400	6.85	2,770		2,800		1,780	4.31	1,110
7		5,550	4.79	1,350	6.7	${ }^{2}, 640$	6.85	2,770	5.48	1,760		1,080
8.	9.2	5,220	$4 \cdot 65$	1,270		${ }^{2}, 400$		${ }_{2}, 600$	$5 \cdot 48$	1,760	4. 25	1.070
10	8.6	4,560	$4 \cdot 57$	1,230		2,300	6.5	2.480		1,710	$4 \cdot 2$	1.050
10.		4,700	4.5	1,200	6.1	2,170	$6 \cdot 4$	2, 400	$5 \cdot 3$	1,660		1.030
11.	8.89	4,980	$4 \cdot 42$	1,160		2,050		$\stackrel{2}{2} 300$		1.630	4.1	1,000
12	9. 54	5,640	$4 \cdot 36$	1,130	5.8	1,960	$6 \cdot 2$	2,240	$5 \cdot 2$	1,600	$4 \cdot 1$	1,000
13.		5,300	4.28	1,090)	$6 \cdot 1$	2,170	$6 \cdot 6$	2,560		1,570	$4 \cdot 0$	960
14	9.01	5,000	$4 \cdot 22$	1,060	6.8	2,730	$7 \cdot 6$	3,470	$5 \cdot 1$	1,540		960
15	8.75	4,700		1,040	6.8	2,730		3,570		1.500	$4 \cdot 0$	960
16	8.4	4,340		1,000	6.7	2,640	7.8	3,680	$5 \cdot 0$	1.480		960
17.	7.99	3,900		1,000	6.65	2,600		3,720	$4 \cdot 8$	1.360		970
18		3,600		1,000	$6 \cdot 6$	2,560	7.9	3,790		1,360	$4 \cdot 05$	980
19.	7.52	3,400		1,000	$6 \cdot 5$	${ }^{2,480}$	8.6	4,560	4.8	1,360	4.0 .	960
20.		3,150		1,000	$6 \cdot 5$	2,480	8.4	4,340		1,360	3.95	940
21.	$7 \cdot 0$	2,900		980	$6 \cdot 4$	2,400	8.0	3,900	$4 \cdot 8$	1.360		930
22.	6. 68	2,600		980	6.3	2,320		3,600		1,360	3.88	910
23	6.41	2,400	$4 \cdot 0$	960	$6 \cdot 1$	2,170	7.5	3,370	4.8	1,360	3.85	900
24	6. 29	${ }^{2}, 300$		1,100	$5 \cdot 85$	2,000		3,470		1,360		
25.	6.1	2,170	4.6	1,250	$5 \cdot 75$	1,930	7.7	3,570	4.8	1.360	3.8	280
26	5.98	2,100	$5 \cdot 0$	1,480	$5 \cdot 7$	1,900	7.7	3,570	4.8	1,360	3.77	60
27.	$5 \cdot 75$	1,930	$5 \cdot 3$	1,660	$5 \cdot 7$	1,900	6.98	2,820		1.330		850
28.		1,800	$5 \cdot 6$	1,8t0	$5 \cdot 5$	1,780	6.35	2,360	4.7	1.300	3.7	840
29.	$5 \cdot 42$	1,750				1,760	6.05	2,130	4.65	1,270	3.7	840
30	5.75	1,930		..	$5 \cdot 45$	1,750		2,110	$4 \cdot 6$	1,250	$3 \cdot 68$	830
31.		1,850	..			1,730			$4 \cdot 5$	1,200		

Stamp River, Vancouver Island (1052) at Great Central Lake.
Location.-Three hundred feet below outlet from Creat Central lake. 16 miles from Alberni.

Records Available-Gauge readings twiee daily; February 20, 1913, to December 31, 1913, Provincial Water Rights Branch; January 1, 1914, to May 31, 1914, Provincial Water Rights Branch; June 1, 1914, to December 31, 1914.

Drainage Area.- One hundred and seventy-seven square miles.
Gauge. -Twelve-foot wooden staff maled to erib in lake, 300 feet to right of outlet, near the "Ark."

Chamel.-Straight for 300 feet above and 100 feet below; rocky bed, some boukders; one chamel at all stages; at extreme high stage there is a diseharge from slough 1,000 feet to right of stream.

Discharge Measurements. Seven in 191:3, Provincial Water Rights Brameh: four in 1914, covering all but highest stages.

Winter filow. Open all winter.
Accuracy. - Between discharge of 90 and 6,000 enbie feet per seeond, aceuracy
B. Above discharge of 6,000 eubic feet per second, wewtacy C.

Co-operation.-Station established by Provincial Witer Rights Branch.
$25 \mathrm{~s}-12$

Stamp River (1052) at Great Central Lake.

Stamp river is the outlet from Great Central lake, It flows in a northerly direction for a distance of about 3 miles, where it is entered on the left by the Ash river. From this point Stamp river flows south till it enters the Somass river, 4 miles from the Alberni Canal.

This gauging station is located on the river at outlet from Great Central lake. The gauge is situated in the lake close to head of river. The drainage area above gauging station is 177 square miles. Great Central lake covers an area of 19 square miles. It is about 270 feet above sea-level. Two goodsized mountain-fed streams-McBride creek and Drinkwater creek-enter the lake at the western end.

A hydro-electric development, giving a head of some 170 feet, is possible by the construction of a short tunnel through the divide between Great Central lake and Sproat lake, feeding a pipeline to a power-house located at Sproat lake. The total distance is about $3 \frac{1}{2}$ miles.

The precipitation is high, varying from about 80 inches at head of river to over 120 inches in mountains at head of lake.

The drainage is thickly timbered except on the higher mountains.

Discharge Measurements of Stamp River near Great Central Lake, for 1914.

	Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section	Mean Velocity.	Gauge Height	Discharge.
	1914.			Feet.	Sq. ft .	Ft. per sec.	Feet.	Sec.-ft.
June	19	Webb \& Cotton.	1057	140	680	2.9	4.00	1980^{1}
July	30.	C. P. Cotton	1057	130	502	1.8	$2 \cdot 32$	919
Sept.	10.	C. E. Webb.	1057	107	333	1.2	$1 \cdot 28$	410
Dec.			1057	136				1,770

${ }^{1}$ Station established.

Monthly Discharge of Stamp River at Great Central Lake, for 1914.
(Drainage area, 177 square miles.)

Month.	Discharge in Second-Feet.				Run-Off.		Accuracy
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	Total in acre-feet.	
January	4,850	1,820	3,208	18.12	$20 \cdot 90$	197,000	B
February	1,870	. 900	1,240	7.01	$7 \cdot 30$	68,900	A
March.	2,760	1,900	2,436	13.75	$15 \cdot 85$	150,000	B
April.	4.820	2,030	3,316	18.72	20.90	197,000	B
May.	2,540	2,050	2,317	$13 \cdot 08$	$15 \cdot 08$	143,000	B
June.	2,070	1,700	1,848	$10 \cdot 44$	11.65	110,000	A
July	1,750	880	1,368	$7 \cdot 73$	$8 \cdot 91$	84, 200	A
August	. 850	450	437	3-60	$4 \cdot 15$	39,200	B
September	1,310	340	707	$4 \cdot 60$	4.46	42, 100	B
October	8,300	1,010	3,793	21.42	$24 \cdot 70$	233,000	B
November	5,370	2,570	4,113	$23 \cdot 24$	$25 \cdot 95$	245,000	B
December	4,200	720	1,731	9.78	$11 \cdot 28$	106,000	B
The year	8,300	340	2,230	$12 \cdot 60$	$171 \cdot 13$	$1,615,400$	B

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Stamp River at Great Central Lake, for 1914.

Day.	January.		February.		March.		April.		May.		June.	
	Gauge Height.	Discharge	Gauge Height	Discharge.	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height.	Dizcharge.
	Feet.	Sec.-ft.										
a	3.76 3.8	1,820	3.74	1,800	$4 \cdot 20$	2,130	$4 \cdot 27$	2,180	$4 \cdot 61$	2,460	$4 \cdot 04$	2.020
2.	$3 \cdot 8$	1,850	$3 \cdot 62$	1,750	$4 \cdot 60$	2,450	$4 \cdot 06$	2,030	$4 \cdot 71$	2,540	$4 \cdot 1$	2,060
3.	$4 \cdot 24$	2,170	3.51	1,650	$4 \cdot 76$	2.570	$4 \cdot 24$	$\frac{2,160}{}$	$4 \cdot 7$	2,530	$4 \cdot 1$	2,070
4	$5 \cdot 39$	3, 100	$3 \cdot 39$	1,560	$4 \cdot 87$	2, 660	$4 \cdot 58$	2,430	$4 \cdot 67$	2,500	$4 \cdot 09$	2.050
5.	6.24	3,900	3-28	1,480	$4 \cdot 78$	2,600	$4 \cdot 83$	2,640	4-54	2,400	3.99	1,980
6	6.91	4,600	$3 \cdot 12$	1,380	$4 \cdot 6$	2,450	$5 \cdot 35$	3,070	$4 \cdot 41$	2.300	3.89	1.910
7	6.87	4,550	$3 \cdot 0$	1,300	$4 \cdot 49$	2,360	$5 \cdot 47$	3,180	$4 \cdot 39$	2.280	$3 \cdot 79$	1. 840
8.	$6 \cdot 67$	4,330	2.92	1,250	$4 \cdot 36$	2,270	$5 \cdot 38$	3,100	$4 \cdot 46$	2,330	3.75	1. 800
9.	$6 \cdot 35$	4,000	3.83	1,870	$4 \cdot 28$	2,200	5-29	3,020	$4 \cdot 49$	2,360	3.69	1.720
10.	$6 \cdot 13$	3,800	2.78	1,150	$4 \cdot 08$	2,050	$5 \cdot 24$	2,980	$4 \cdot 49$	2,360	$3 \cdot 66$	1,750
11.	6. 58	4,200	$2 \cdot 7$	1,120	$3 \cdot 97$	1,970	$5 \cdot 2$	2,940	4-48	2,350	3.62	1.720
12.	$7 \cdot 13$	4,850	$2 \cdot 66$	1,100	$3 \cdot 88$	1,900	5.19	2,930	$4 \cdot 5$	2,370	$3 \cdot 61$	1.710
13.	7.05	4,750	$2 \cdot 54$	1,030	3.95	1,960	$5 \cdot 38$	3,100	$4 \cdot 49$	2,360	$3 \cdot 66$	1,750
14	6.76	4,400	$2 \cdot 49$	1,000	$4 \cdot 68$	2,50¢	$6 \cdot 2$	3,850	$4 \cdot 48$	2,350	$3 \cdot 75$	1. 800
15.	6:79	4,140	$2 \cdot 49$	1,000	4.98	2,750	6.86	4,550	$4 \cdot 48$	2,350	$3 \cdot 86$	1.890
16.	6.29	3,900	2.45	970	4.99	2,760	6.86	4,550	$4 \cdot 42$	2,300	$3 \cdot 9$	1,920
17.	5.95	3,600	$2 \cdot 42$	950	$4 \cdot 94$	2,730	$6 \cdot 66$	4,320	$4 \cdot 38$	2,270	3.94	1,950
18.	$5 \cdot 78$	3,450	$2 \cdot 4$	940	4.93	2,720	6.73	4,400	$4 \cdot 3$	2,210	3.99	1,980
19.	$5 \cdot 52$	3,250	$\stackrel{2}{2} 38$	930	4.88	2,670	$7 \cdot 1$	4,820	$4 \cdot 26$	2,170	$4-01$	2,000
20.	$5 \cdot 3$	3,030	$2 \cdot 34$	900	$4 \cdot 88$	2,670	6.98	4,680	$4 \cdot 22$	2,150	3.98	1,970
21.	5.06	2,800	$2 \cdot 39$	930	$4 \cdot 92$	2,620	6.79	4,470	$4 \cdot 27$	2,190	$3 \cdot 88$	1,900
22.	$5 \cdot 85$	3,500	$2 \cdot 4$	940	$4 \cdot 97$	2,750	6.38	4,030	$4 \cdot 3$	2,210	$3 \cdot 76$	1. 800
23.	$5 \cdot 57$	3,300	$2 \cdot 53$	1,020	$4 \cdot 96$	2.750	$5 \cdot 95$	3,600	$4 \cdot 4$	2,290	$3 \cdot 67$	1.750
24	$4 \cdot 38$	2,250	$2 \cdot 73$	1,140	$4 \cdot 88$	2,670	$5 \cdot 67$	3,370	$4 \cdot 52$	2,400	$3 \cdot 65$	1.740
25.	$4 \cdot 28$	2,200	$2 \cdot 8$	1,180	$4 \cdot 78$	2,600	$5 \cdot 44$	3,160	$4 \cdot 58$	2,430	$3 \cdot 64$	1,730
26.	$4 \cdot 27$	2,200	$2 \cdot 93$	1,250	$4 \cdot 71$	2.540	$5 \cdot 23$	2,970	$4 \cdot 6$	2,450	$3 \cdot 62$	1,720
27.	4.03	2,000	$3 \cdot 25$	1,460	4.58	2,430	$5 \cdot 22$	2,960	$4 \cdot 5$	2,370	$3 \cdot 65$	1,740
28.	3.87	1,900	$3 \cdot 53$	1,670	$4 \cdot 39$	2,280	$5 \cdot 02$	2,800	$4 \cdot 32$	2,230	$3 \cdot 61$	1,720
29.	3.83	1,880			4-24	2,170	$4 \cdot 83$	2.640	$4 \cdot 26$	2.170	$3 \cdot 58$	1.700
30.	3.81	1,860			$4 \cdot 25$	2,160	$4 \cdot 73$	2,550	$4 \cdot 18$	2,110	$3 \cdot 6$	1.710
31.	3.8	1,850			$4 \cdot 29$	2,200			$4 \cdot 08$	2,050		

Daily Gauge Height and Discharge of Stamp River at Great Central Lake, for 1914-Con.

Day.	July.		August.		September		October.		November.		December.	
	Gauge Height.	Discharge.	Gauge Heigth.	Discharge	Gauge Height	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge.	Gauge Height	Discharge.
	Feet.	Sec.-ft.	Feet.	Sice. -ft .	Feet.	Sec. -ft .	Fect.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1.	3.58	1,700	$2 \cdot 25$	850	$1 \cdot 37$	440	$2 \cdot 96$	1,270	$6 \cdot 0$	3,660	$6 \cdot 54$	4,200
2.	$3 \cdot 61$	1,720	2.19	820	$1 \cdot 32$	420	$3 \cdot 00$	1,300	$6 \cdot 14$	3,800	$6 \cdot 19$	3,840
3.	$3 \cdot 67$	1,750	$2 \cdot 13$	800	$1 \cdot 3$	410	$2 \cdot 96$	1,270	$6 \cdot 31$	3,960	$5 \cdot 89$	3,560
4	$3 \cdot 67$	1,750	$2 \cdot 1$	780	$1 \cdot 26$	390	$2 \cdot 88$	1,230	$6 \cdot 58$	4,240	5.56	3,260
5.	$3 \cdot 67$	1,750	$2 \cdot 07$	750	1.22	380	2.83	1,200	$6 \cdot 51$	4,160	$5 \cdot 23$	2,970
6.	$3 \cdot 64$	1,750	$2 \cdot 1$	780	$1 \cdot 2$	370	$2 \cdot 72$	1,130	$6 \cdot 28$	3,920	$5 \cdot 0$	2,770
7.	$3 \cdot 54$	1,670	$2 \cdot 07$	750	1.22	380	${ }^{2} \cdot 66$	1,100	6.01	3,670	$4 \cdot 76$	2,580
8	$3 \cdot 43$	1,600	$2 \cdot 06$	750	1.26	390	$2 \cdot 59$	1,050	$7 \cdot 19$	4,930	$4 \cdot 56$	2,400
9.	$3 \cdot 32$	1.520	$2 \cdot 07$	750	1.21	370	$2 \cdot 54$	1,020	7.57	5,370	$4 \cdot 28$	2,200
10.	$3 \cdot 35$	1,530	$2 \cdot 01$	740	1.22	380	$2 \cdot 51$	1,010	$7 \cdot 53$	5,340	$4 \cdot 1$	2,060
11.	3-31	1,510	1.99	720	$1 \cdot 25$	390	$2 \cdot 51$	1,010	$7 \cdot 42$	5,200	3.93	1,950
12.	$3 \cdot 24$	1.470	1.97	710	1.19	370	$3 \cdot 1$	1,360	$7 \cdot 05$	4,760	$3 \cdot 74$	1,820
13	3-19	1,420	1.95	700	$1 \cdot 17$	360	5.98	3,650	6.71	4,380	$3 \cdot 54$	1,670
14.	$3 \cdot 1$	1,360	1.9	680	1.09	340	7.51	5,300	$6 \cdot 34$	4,000	$3 \cdot 4$	1,570
15.	$3 \cdot 17$	1,400	1.87	660	$1 \cdot 10$	340	$7 \cdot 44$	5,210	$5 \cdot 9$	3,570	$3 \cdot 23$	1,450
16.	$3 \cdot 15$	1.390	1.83	650	$1 \cdot 14$	350	8.48	6,630	$5 \cdot 55$	3,250	$3 \cdot 13$	1,380
17.	$3 \cdot 10$	1,360	1.8	630	$1 \cdot 18$	370	$9 \cdot 42$	7,960	$5 \cdot 39$	3,110	$3 \cdot 0$	1,300
18.	3.09	1.350	1.78	610	1.39	440	9.67	8,300	$4 \cdot 74$	2,570	$2 \cdot 83$	1,200
19	3.07	1,340	1.76	600	$2 \cdot 32$	900	9.56	8.150	$4 \cdot 82$	2,630	$2 \cdot 78$	1,170
20.	3.04	1.330	1.71	590	$2 \cdot 9$	1,240	$9 \cdot 56$	8,150	4.86	2,660	$2 \cdot 71$	1,130
21.	2.99	1,300	1.69	580	$2 \cdot 94$	1,260	$9 \cdot 1$	7,500	$4 \cdot 86$	2,660	$2 \cdot 6$	1,060
22.	2.92	1,250	1.61	540	$2 \cdot 9$	1,240	8.51	6, 650	$5 \cdot 58$	3,280	$2 \cdot 58$	1,050
23.	$2 \cdot 83$	1,200	1.58	510	$2 \cdot 86$	1,200	7.86	5,760	$5 \cdot 91$	3,580	$2 \cdot 44$	960
24.	2.76	1,150	$1 \cdot 58$	510	$2 \cdot 8$	1,180	7.28	5,000	$6 \cdot 72$	4,400	$2 \cdot 3$	8×0
25.	2.71	1,130	$1 \cdot 52$	500	$2 \cdot 76$	1,150	6.76	4,440	$7 \cdot 41$	5,200	$2 \cdot 1$	7 s 0
26.	$2 \cdot 6$	1,060	$1 \cdot 5$	490	$2 \cdot 7$	1,120	$6 \cdot 39$	4,040	$7 \cdot 54$	5,360	$2 \cdot 08$	770
27.	$2 \cdot 54$	1,020	1.48	480	$2 \cdot 82$	1,200	5.99	3,650	$7 \cdot 54$	5,360	$2 \cdot 08$	770
28.	$2 \cdot 44$	960	1.46	470	$2 \cdot 9$	1,240	$5 \cdot 63$	3,330	$7+36$	5,130	$2 \cdot 07$	760
29.	$2 \cdot 34$	900	1.41	450	$3 \cdot 02$	1,310	$5 \cdot 37$	3,100	7.09	4,800	1.99	720
30.	$2 \cdot 33$	900	1.43	460	$2 \cdot 98$	1,300	$5 \cdot 51$	3,220	6.78	4,450	$2 \cdot 09$	770
31.	$2 \cdot 3$	880	1.4	450			$5 \cdot 92$	3,600			$2 \cdot 11$	780

Stamp River, Vancouver Island (1053), at Stamp Falls.
Location.- One-quarter mile above falls; 8 miles from Alberni on Beaver Creek road.

Records available.-Gauge readings daily, March, 1913, to December 31, 1913, Messrs. Ritchie, Agnew Co., Engineers, Victoria; January 1, 1914, to May 31, 1914, Messrs. Ritchie, Agnew Co., Engincers, Victoria; June 1, 1914, to December 31, 1914.

Drainage area.-Three hundred and thirty-six square miles.
Gauge.-Fourteen-foot wooden staff on left bank 80 feet below measuring section.

Channel.-Straight for 600 feet above section and for 300 feet below. Rock bed with gravel. Good control.

Discharge measurements.-Measurements in 1913 by Messrs. Ritchie, Agnew Co.; measurements in 1914 by Messrs. Ritchie, Agnew Co.; three measurements in 1914 eovering all but high stage.

Hinter flow.-Open all winter.
Co-operation.-Station established in 1913 by Messrs. Ritchie, Agnew Co.

Stamp River (1053).

This metering station is located on Stamp river about a quarter of a mile above Stamp falls. Stamp falls are some 3 miles above the junction of the Stamp and Sproat rivers.

At Stamp falls the river has the combined flow of the Ash river and Stamp river from Great Central lake. The drainage area above metering section is 336 square miles. The precipitation varies from about 70 inches at falls to over 100 inches at headwaters.

The Ritchie Agnew Power Company have made extensive surveys and obtained considerable stream data in this locality. It is understood they intend to install a hydro-electric plant at Stamp falls to develop 35,000 horse-power. A head of 110 feet may be obtained by the erection of a dam above the falls.

The towns of Alberni and Port Alberni are about 10 and 12 miles distant respectively, from Stamp falls.

Discharge Measurements of Stamp River near Stamp Falls, for 1914.

Date.	Hydrographer.	Meter No.	Width.	Area of Nection	Mean Velocity:	Gauge Height.	Discharze.
			Feet.	Sq.-ft.	Ft. per sec.	Feet.	Sec.-ft.
June 22.	Webb \& Cotton	1,057	155	1. 130	2.3	2.48	2.630 E
July 31..	C. P. Cotton	1.057	150	$\stackrel{94}{40}$	$1 \cdot 2$	1.40	1. 130
Sept. 11..	C. E. Webb.	1.057	141	750	0.7	$0 \cdot 60$	500

${ }^{1}$ Station established.

Monthly Discharge of Stamp River at Stamp Falls, for 1914.
(Drainage area, 336 square miles.)

Month.	Discharge in second-reet.				Res-Orf.		Aecuracy
	Maximum.	Minimum.	Mean.	$\begin{gathered} \text { Per } \\ \text { square } \\ \text { mile. } \end{gathered}$	Depth in inches on Drainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$	
June.	3,190	2, 201)	2,630	$7 \cdot 8$	8.7	157.(40)	R
Juty	2,510	1,040	1. 540	$5 \cdot 5$	$6 \cdot 3$	113, (160)	1
Aukurt	1,040	569	880	2.5	2.9	51.1400	13
Kepternber.	1,930	410	1.070	3.2	3.6	63,700	H
	15,100)	1,349	5,980	17.8	20.5	355.060	C
November. 4 aranatat	14.400	1.930	7,440	22.1	24.7	$433,0 \mathrm{~km}$	C
December..	5,530	($\times 10$	2,100	$6 \cdot 3$	$7 \cdot 3$	$1: 9.6 \times 0$	13

[^19]6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Stamp River at Falls, for 1914.

Day.	June.		July.		August.		September.		October.		November.	
	Gauge Height	Discharge.	Gauge Height	Discharge	Gauge Height	Discharge.	Gauge Height.	Discharge	Gauge Height	Discharge.	Gauge Height	Discharge.
	Feet.	Sec. ft t	Feet.	Sec. -ft .	Feet.	Sec.-ft.	Feet.	See.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1	3.0	3, 190	$2 \cdot 6$	2,510	$1 \cdot 4$	1,040	$0 \cdot 7$	560	1.9	1,560	$4 \cdot 6$	7,540
2	3.0	3,190	$2 \cdot 6$	2,510	1.4	1,040	$0 \cdot 7$	560	1.8	1,450	$4 \cdot 6$	7,540
3	$2 \cdot 9$	3,020	$2 \cdot 6$	2,510	$1 \cdot 3$	960	$0 \cdot 6$	510	1.8	1,450	4.75	8,110
4	$2 \cdot 8$	2,850	$2 \cdot 5$	2,340	1.3	960	$0 \cdot 6$	510	$1 \cdot 9$	1,560	$5 \cdot 1$	9,520
5.	$2 \cdot 7$	2,680	$2 \cdot 5$	2,340	$1 \cdot 2$	880	0-5	460	1.9	1,560	$4 \cdot 7$	7,920
6	$2 \cdot 6$	2,510	$2 \cdot 5$	2,340	$1 \cdot 2$	880	0.4	410	1.9	1,560	$4 \cdot 1$	5,800
7.	$2 \cdot 6$	2,510	$2 \cdot 3$	2,060	1.2	880	0.4	410	1.8	1,450	$4 \cdot 0$	5,530
8	$2 \cdot 5$	2,340	$2 \cdot 3$	2,060	$1 \cdot 2$	880	$0 \cdot 4$	410	1.8	1,450	$5 \cdot 4$	10,800
9.	$2 \cdot 4$	2,200	$2 \cdot 3$	2,060	1.3	960	$0 \cdot 6$	510	1.7	1,340	6. 25	14,400
10.	$2 \cdot 4$	2,200	$2 \cdot 3$	2,060	1.4	1,040	$0 \cdot 6$	510	1.7	1,340	$5 \cdot 4$	10,800
11	$2 \cdot 5$	2,340	$2 \cdot 2$	1,930	$1 \cdot 3$	960	$0 \cdot 6$	510	$1 \cdot 7$	1,340	$5 \cdot 1$	9,520
12.	$2 \cdot 6$	2,510	$2 \cdot 2$	1,930	$1 \cdot 2$	880	$0 \cdot 6$	510	$3 \cdot 6$	4,490	$4 \cdot 6$	7,540
13.	$2 \cdot 6$	2,510	$2 \cdot 2$	1,930	1.2	880	0.9	660	$5 \cdot 1$	9.520	$4 \cdot 2$	6,100
14	$2 \cdot 6$	2,510	$2 \cdot 3$	2,060	1.2	880	$0 \cdot 9$	660	$6 \cdot 0$	13.400	$3 \cdot 75$	4,880
15.	$2 \cdot 8$	2,850	$2 \cdot 3$	2,060	1.2	880	$1 \cdot 0$	720	$6 \cdot 4$	15,100	$3 \cdot 5$	4,240
16	$2 \cdot 8$	2,850	$2 \cdot 2$	1,930	$1 \cdot 2$	880	$1 \cdot 3$	960	$6 \cdot 4$	15, 100	$3 \cdot 3$	3, 800
17	$2 \cdot 9$	3,020	$2 \cdot 1$	1,800	1.2	880	$1 \cdot 1$	800	$6 \cdot 1$	13, 800	$3 \cdot 1$	3,390
18	$3 \cdot 0$	3,190	$2 \cdot 1$	1,800	1.2	880	2.0	1,670	$5 \cdot 8$	12,500	$2 \cdot 2$	1,930
19.	$3 \cdot 0$	3, 190	$2 \cdot 1$	1,800	1.2	880	$2 \cdot 0$	1,670	$5 \cdot 6$	11,700	$2 \cdot 25$	2,000
20.	$2 \cdot 8$	2,850	$2 \cdot 0$	1,670	$1 \cdot 1$	800	$2 \cdot 0$	1,670	5.4	10,800	$3 \cdot 2$	3,590
21	$2 \cdot 7$	2,680	$2 \cdot 0$	1,670	$1 \cdot 1$	800	$2 \cdot 2$	1,930	$5 \cdot 3$	10,400	$3 \cdot 25$	3,700
22.	$2 \cdot 5$	2,340	$2 \cdot 0$	1,670	1.1	800	$2 \cdot 2$	1,930	4.8	8.320	$4 \cdot 2$	6,100
23.	$2 \cdot 5$	2,340	$1 \cdot 9$	1,560	1.1	800	2.1	1,800	$4 \cdot 7$	7,920	$4 \cdot 8$	8,320
24.	$2 \cdot 5$	2,340	1.8	1,450	$0 \cdot 9$	660	$2 \cdot 0$	1,670	$4 \cdot 5$	7,160	$5 \cdot 3$	10,400
25.	$2 \cdot 6$	2,510	1.8	1,450	0.9	660	$2 \cdot 0$	1,670	$4 \cdot 0$	5.530	$5 \cdot 6$	11,700
26.	$2 \cdot 6$	2,510	1.8	1,450	$0 \cdot 9$	660	$2 \cdot 0$	1,670	$3 \cdot 7$	4.750	$5 \cdot 8$	12,500
27	2.5	2,340	1.8	1,450	$0 \cdot 9$	660	$2 \cdot 0$	1,670	$3 \cdot 5$	4,240	5. 25	10,160
28.	$2 \cdot 5$	2,340 2,340	1.7	1,340	0.9	660	$2 \cdot 1$	1,800	$3 \cdot 25$	3,700	$5 \cdot 4$	10,800
29.	$2 \cdot 5$ $2 \cdot 6$	2,340 2,510	$1 \cdot 6$	1,230	0.8	610	$2 \cdot 1$	1, 800	3.05	3,290	4.75	8,110
30.	$2 \cdot 6$	2,510	$1 \cdot 5$	1,130	$0 \cdot 8$	610	$1 \cdot 9$	1,560	3-30	3,800	$4 \cdot 3$	6,430
31.			1.4	1,040	$0 \cdot 7$	560			$3 \cdot 30$	3,800		

SESSIONAL PAPER No. 25e

Daily Gauge Height and Discharge of Stamp River at Falls, for 1914—Con.

	Day.	December.	
		$\begin{aligned} & \text { Gauge } \\ & \text { Height. } \end{aligned}$	Discharge
		Feet.	Sec.-ft.
		4.0 3.8 3	5.530 5 5.010
		3.6	3.019 4.490
4.		3.4	4
5		$3 \cdot 2$	3. 590
6.		3.0	3.190
7		2.8	2,850
8		2.7	2. 680
10.		${ }_{2} \cdot 45$	${ }_{2}^{2}, 270$
11.			
12.		$2 \cdot 20$	1.930
13.	i=	2. 10	1.800
14	-	2.00	1,670
15.		1.8	1.450
16		1.8	1,450
17.		1.8	1.450
18		1.7	1.340
19		1.6	1.230
2)	1.	1.6	1,230
22		1.5	1,130
23.	1	1.5	1.130
24		1.4	1.040
25.		1.4	1.040
26	,	1.2	sa0
27		1.2	**
28		1.2	sa0
29		1.6	1.230
30.		1.8	1.450
$31 \ldots$		2.5	2.340

Tsolum River, Vancouver Island, (1039).
Location.-Upstream side of footbridge, 2 miles from Sandwick.
Records available.-Gauge readings twice daily, May 31, 1914, to December 31, 1914.

Drainage area.-One hundred and fifty square miles.
Gauge.-Twelve-foot enamel staff, 20 feet downstream from bridge, right bank.

Channel.-Straight for 500 feet above and 300 feet below section; gravel bed; good control; stream confined in cribhing, both banks, in high water.

Discharge measurements.- One in 1912, Provincial Water Rights Branch: one in 1913, Provincial Water Rights Branch; four in 1914, covering all but high stage.

Winter flow. Open all winter.
Accuracy.-13.
Cotoperation.- Gauge installed hy Provincial Water Rights Branch in 1912.

Tsobem Rwer (1039).

Tsolum river rises in the momatains on the east coast, and thows in a somthasterly direction to its month in Comox harbour at Comrtemy. It is some 20 mikes in length, and has a dramage area of 150 square mikes above the gatuging station, which is located about 2 miles from month.

The precipitation varies from about 70 inches at mouth to 90 inches in mountains at headwaters. Wolfe lake, covering an area of about 1 square mile, drains into the Tsolum river about 7 miles from mouth.

The flow of Tsolum river has a large range. Having practically no storage, it is very flashy. From the records available for 1914 it shows a minimum discharge of 3 cubic feet per second on September 4 to a maximum of 2,100 cubic feet per second on September 18. The gauge was washed out during a freshet in October, but was replaced at the first opportunity.

A large proportion of the lower valley of the river is under cultivation. Dairying has been encouraged by the installation of a cream condenser at Courtenay, which takes all the milk available.

Discharge Measurements of Tsolum River near Sandwick B.C., for 1914.

[^20]Monthly Discharge of Tsolum River three miles from mouth, for 1914.
(Drainage area, 150 square miles.)

Month.	Discharge in Second-Feet.				Ren-Off.	
	Maximum.	Minimum.	Mean.	$\begin{gathered} \text { Per } \\ \text { square } \\ \text { mile. } \end{gathered}$	Depth in inches on Drainage area.	Total in. acre-feet.
June.	520	95	230	$1 \cdot 53$	1.71	13,700
July	195	18	63	0.42	0.48	3,870
August	- 28	4	11	0.07	0.08	. 675
September.	2,100	3				18,400
October						
November December	1,330 900	280 115	875 375	5.83 $2 \cdot 50$	6.50 2.88	52,100 23,100

[^21]SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Tsolum River three miles from mouth, for 1914.

Day.	May.		June.		July:		August.		September.		October.	
	Gauge Height.	Discharge	Gauge Height.	Discharge	Gauge Height.	Discharge.						
	Feet.	Sec.-ft.	Feet.	Sec. ft .	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec,-ft.
1.			$4 \cdot 0$	260	3.85	195	$2 \cdot 9$	18	$2 \cdot 6$	4	$3 \cdot 65$	130
2			$4 \cdot 1$ 4.1	300 300	$\xrightarrow[3-75]{3.7}$	160	2.9	18	2.6	4	$3 \cdot 9$	$\bigcirc 15$
3.			${ }^{4.1}$	300	$3 \cdot 7$ 3.55	145	$2 \cdot 9$	18	$2 \cdot 6$	4	$3 \cdot 8$	175
5			$3 \cdot 95$ $3 \cdot 75$	160	$3 \cdot 5$ $3 \cdot 5$	105 95	2.85 2.8	18 12	$\frac{2 \cdot 55}{2 \cdot 5}$	3 3	$3 \cdot 7$ $3 \cdot 7$	145 145
6			$3 \cdot 65$	130	$3 \cdot 45$	85	2.8	12	$2 \cdot 5$	3	$3 \cdot 7$	145
7.			$3 \cdot 75$	160	$3 \cdot 4$	75	$2 \cdot 8$	12	$2 \cdot 65$	6	$3 \cdot 6$	115
8.			$4 \cdot 15$	320	$3 \cdot 4$	75	$3 \cdot 0$	28	$2 \cdot 7$	8	3.6	115
9			$3 \cdot 8$	175	$3 \cdot 4$	75	$2 \cdot 95$	23	$2 \cdot 8$	12	$3 \cdot 6$	115
10.	...t..		$4 \cdot 0$	260	$3 \cdot 4$	75	$2 \cdot 9$	15	$2 \cdot 8$	12	$3 \cdot 7$	145
11.			$4 \cdot 0$	260	$3 \cdot 4$	75	$2 \cdot 9$	18	$2 \cdot 8$	12	3.7	145
12.		$4 \cdot 0$	260	$3 \cdot 4$	75	$2 \cdot 85$	15	$2 \cdot 8$	12	$6 \cdot 45$	1,430
13.		171.	$4 \cdot 05$	280	$3 \cdot 4$	75	$2 \cdot 8$	12	$2 \cdot 8$	12		1,4...
14.			$4 \cdot 0$	260	3.35	68	$2 \cdot 8$	12	$2 \cdot 8$	12		\cdots
15			$4 \cdot 15$	320	$3 \cdot 25$	54	$2 \cdot 8$	12	$3 \cdot 15$	43		
16.			$4 \cdot 3$	400	$3 \cdot 2$	48	$2 \cdot 8$	12	$3 \cdot 75$	160		
17			$4 \cdot 15$	320	$3 \cdot 25$	54	$2 \cdot 75$	10	$4 \cdot 25$	370		
18.			$3 \cdot 85$	195	$3 \cdot 2$	48	$2 \cdot 7$	8	$7 \cdot 8$	2,100		
19.			$3 \cdot 65$	130	$3 \cdot 2$	48	$2 \cdot 7$	8	$7 \cdot 25$	1,820		
20.			$3 \cdot 6$	115	$3 \cdot 2$	48	$2 \cdot 7$	8	$6 \cdot 2$	1.310		
21.			3.65	130	$3 \cdot 1$	38	$2 \cdot 7$	8	$5 \cdot 8$	1,120		
22.			$3 \cdot 65$	130	$3 \cdot 0$	28	$2 \cdot 7$	8	$4 \cdot 9$	690	.	
23.			$3 \cdot 5$	95	$3 \cdot 0$	28	$2 \cdot 7$	8	+.25	370		-
24			3.75 4.55	160	$3 \cdot 0$ $3 \cdot 0$	28	${ }^{2} \cdot 7$	8	$4 \cdot 0$	260		
25.			$4 \cdot 55$	520	$3 \cdot 0$	28	$2 \cdot 7$	8	$3 \cdot 75$	160	4-3	(4)
26			$4 \cdot 1$	300	$3 \cdot 0$	28	$2 \cdot 6$	4	$3 \cdot 75$	160	4.2	350
27.			$4 \cdot 0$	260	$3 \cdot 0$	28	2-6	4	$3 \cdot 85$	195	$4 \cdot 1$	3 (0)
28.			3.85	195	2.95	23	$2 \cdot 6$	4	3.85	195	$4 \cdot 0$	260
29.			$3 \cdot 7$	145	2.9 2.9	18	$2 \cdot 6$	4	$3 \cdot 7$	145	$3 \cdot 9$	215
30.			$3 \cdot 7$	145	2.9	18	$2 \cdot 6$	4		140	$4 \cdot 0$	260
31.	$3 \cdot 8$	176			$2 \cdot 9$	18	$2 \cdot 6$	4		$4 \cdot 3$	400

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Tsolum River three miles from mouth, for 1914-Con.

Bridge River (1045).
Location. - Highway bridge on road to Bridge river from Mission on Seton lake. Ten miles from Mission.

Records available.-Daily discharges, October 7 to December 31, 1913; January 1 to December 31, 1914.

Drainage area.-The 1912 provincial map (scale 17.75 miles to 1 inch) shows a drainage area of 2,400 miles for the whole stream. About 1,900 miles of this is above the gauging station, which is near the site of the intake for the proposed hydro-electric plant.

Channel.-Wide and deep, sand and mud bottom, an excellent measuring section.

Discharge measurements.-Seven meter measurements were taken during 1913 and 1914. The rating curve is well defined.

Winter flow.-The stream is open all winter.
Accuracy.-A good rating curve and gauge readings twice a day, should give very accurate results, "A".

Co-operation.-Readings taken in co-operation with Bridge River Power Company.

SESSIONAL PAPER No. 25e
Discharge Measurements of Bridge River 30 miles from mouth, for 1914.

Date.	Hydrographer.	$\begin{gathered} \text { Meter } \\ \text { No. } \end{gathered}$	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec -ft .
Oct.	Cline \& Keys	1,057	156	1,050	1.8	$2 \cdot 38$	$1,890^{1}$
April 17.	H. J. E. Keys	1,046	156	912	$2 \cdot 05$	$2 \cdot 25$	1. 565
" 19.		1,046	156	932	$2 \cdot 25$	$2 \cdot 43$	2, 101
June 9 .	Keys \& Hughes.	1,046	156	1,422	$3 \cdot 56$	$4 \cdot 75$	5. 130
" 20.	H. C. Hughes..	1,046	156	2,120	$5 \cdot 54$	$8 \cdot 10$	11.750
Aug. 3.		1,046	156	1,826	4.83	6.80	8.820
Sept. 21.	"	1,046	156	1.044	1.97	$2 \cdot 55$	2.060

${ }^{1}$ Station established.

Monthly Discharge of Bridge River 30 miles from mouth, for 1914.
(Drainage area, 1,900 square miles.)

Montr.	Discharge in Second-Feet.				Res-Off.		Accuracy.
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	Total in acre-teet.	
January. .	860	520	667	0.35	$0 \cdot 40$	41,000	A
February..	580	580	550	$0 \cdot 30$	$0 \cdot 31$	32, 200	A
March...	1,110	580	766	$0 \cdot 10$	0.46	47,100	A
April..	2,140	790	1,620	0.85	0.95	96, 400	A
May.....	9,900	2,400	5,530	$2 \cdot 91$	$3 \cdot 36$	340,000	A
June..	18,800	5,100	9,180	$4 \cdot 83$	$5 \cdot 40$	546,000	C
July..	14.900	6, 400)	12,200	$6 \cdot 42$	$7 \cdot 10$	750,060	C
August.	-9,200	5,300	7.,760	4.08	4.70	477,000	A
September.	5,700	2,100	3,520	1.85	2.06	209,060	A
October.	11, 100	2,000	3,790	1.99	$2 \cdot 29$	233,014	A
November	3,650	1,570	2.010	1.06 0.93	1.18	120, (100	A
December..	2,970	720	1.770	0.93	1.07	109,1000	A
The year..	18,800	520	4.116	$2 \cdot 17$	29.5 s	3.00kı, 700	B

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Bridge River 30 miles from mouth, for 1914.

Day.	January .		February.		March.		April.		May.		June,	
	Gauge Height	Discharge.	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height.	Discharge.	Gauge Height.	Discharge	Gauge Height.	Discharge.
	Feet.	See.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	See. ft .	Feet.	Sec.-ft.
1.	$1 \cdot 1$	790	0.8	580	$0 \cdot 8$	580	$1 \cdot 1$	790	$2 \cdot 75$	2,400	4.75	5,100 6,800
2	$1 \cdot 1$	790	0.8 0.8	580 580	0.8 0.8	580 580	1.1 1.15	790 820	$3 \cdot 35$ $3 \cdot 95$	3,100 3,900	$5 \cdot 75$ $6 \cdot 75$	6,800 8,700
3.	$1 \cdot 1$	790	0.8 0.8	580 580	0.8 0.8	580 580	$1 \cdot 15$ $1 \cdot 15$	820 830	$3 \cdot 95$ $3 \cdot 7$	3,900 3,600	6.75 7.00	8,700 9,300
4.	$1 \cdot 1$ $1 \cdot 1$	790 790	0.8 0.8	580 580	0.8 0.8	580 580	$1 \cdot 15$ 1.25	830 900	$3 \cdot 7$ $3 \cdot 55$	3,600 3,400	7.00 6.0	9,300 7,300
6	$1 \cdot 1$	790	0.8	580	0.8	580	1.55	1,150	$3 \cdot 4$	3,200	$5 \cdot 35$	6,100
7	$1 \cdot 15$	820	0.8	580	$0 \cdot 8$	580	1.75	1,340	$3 \cdot 4$	3,200	$5 \cdot 15$	5,800
8	1.2	860	0.8	580	0.8	580	1.85	1,420	$3 \cdot 4$	3,200	$5 \cdot 0$	5. 500
9.	1.2	860	0.8	580	0.8	580	1. 90	1,470	$3 \cdot 45$	3,200	4.8	5,200
10...	$1 \cdot 2$	860	$0 \cdot 8$	580	0.8	580	$2 \cdot 1$	1,670	$3 \cdot 8$	3,700	$5 \cdot 05$	5,600
11	$1 \cdot 1$	790	0.8	580	0.8	580	$2 \cdot 15$	1,720	$4 \cdot 35$	4,500	$5 \cdot 55$	6,409
12	$1 \cdot 1$	790	0.8	580	0.8	580	2-20	1,770	4.95	5,400	$6 \cdot 1$	7,500
13.	1.1	790	0.8	580	0.8	580	$2 \cdot 25$	1,820	$5 \cdot 35$	6,100	$6 \cdot 95$	9,200
14	0.9	650	0.8	580	0.85	610 790	$2 \cdot 3$	1,870	$5 \cdot 9$	7,100	$7 \cdot 55$	10,500
15.	0.5	580	0.8	580	$1 \cdot 1$	790	$2 \cdot 35$	1,930	$6 \cdot 5$	8,200	$8 \cdot 5$	12,700
16	0.8	580	0.8	580	$1 \cdot 1$	790	$2 \cdot 4$	1,980	$6 \cdot 4$	8,000	$9 \cdot 15$	14,400
17.	0.8	580	0.8	580	$1 \cdot 1$	790	$2 \cdot 3$	1,870	$5 \cdot 8$	6,900	$9 \cdot 65$	15,800
18	0.8	580	0.8	580	$1 \cdot 15$	830	$2 \cdot 2$	1,770	$5 \cdot 5$	6,400	9.7	18, 800
19	0.8	580	0.8	580 580	1.3 1.45	940 1,060	$2 \cdot 4$ $2 \cdot 55$	1,980 2,140	$5 \cdot 35$ $5 \cdot 3$	6,100 6,000	$9 \cdot 2$ $8 \cdot 3$	14,500 12,300
20.	0.8	580	0.8	580	1.45	1,060	$2 \cdot 55$	2,140	$5 \cdot 3$	6,000	8.3	12,300
21.	0.8	580	0.8	580	1.5	1,110	$2 \cdot 45$	2,040	$5 \cdot 55$	6,400	$7 \cdot 35$	10,000
22.	0.8	580	0.8	580	$1 \cdot 5$	1,110	$2 \cdot 3$	1,870	$6 \cdot 1$	7,500	$6 \cdot 4$	8,000
23	0.8	580	0.8	580	1.5	1,110	$2 \cdot 35$	1,920	6.7	8,600	$5 \cdot 8$	6,900
24.	0.75	550	0.8	580	$1 \cdot 35$	980	$2 \cdot 3$	1,870	$7 \cdot 3$	9,900	$5 \cdot 7$	6,700
25.	$0 \cdot 7$	520	0.8	580	$1 \cdot 35$	980	$2 \cdot 25$	1,820	$7 \cdot 15$	9,600	$6 \cdot 05$	7,400
26.	$0 \cdot 7$	520	0.8	580	$1 \cdot 2$	860	$2 \cdot 2$	1,770	$6 \cdot 35$	7,900	$6 \cdot 65$	8,500
27.	0.7	520	0.8	580	$1 \cdot 2$	860	$2 \cdot 2$	1,770	$5 \cdot 45$	6,300	$7 \cdot 1$	9,500
28.	0.7	520	0.8	580	$1 \cdot 2$	860	$2 \cdot 2$	1,770	$4 \cdot 7$	5,000	7.2 7.45	9,700 10,300
29.	0.7	520			$1 \cdot 2$	860	$2 \cdot 2$	1,770	$4 \cdot 1$	4,100	7.45	10,300
30.	0.8	580			$1 \cdot 2$	860	$2 \cdot 35$	1,920	$4 \cdot 1$	4,100	$7 \cdot 7$	10,800
31.	0.8	580			$1 \cdot 15$	820			$4 \cdot 2$	4,300		

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Bridge River 30 miles from mouth, for 1914 -Con.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height	Discharge.	Gauge Height	Discharge	Gauge Height.	Discharge	Gauge Height	Discharge	Gauge Height	Discharge.	Gauge Height.	Discharge.
	Feet.	Sec.-1t.	Feet.	Sec-ft.	Feet.	Sec. ft .	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1	$8 \cdot 4$	12,500	$5 \cdot 8$	6,900	$5 \cdot 0$	5.500	$3 \cdot 35$	3,100	3.75	3,650	$2 \cdot 0$	1,570
2	8.95	13,300	$6 \cdot 6$	8.400	5,0	5, 500	$2 \cdot 95$	2,600	$3 \cdot 5$	3,300	$2 \cdot 0$	1,570
3	$9 \cdot 35$	14,900	6.75	8,700	$5 \cdot 1$	5,700	2.65	2,300	3. 25	2,970	$2 \cdot 0$	1,570
4	$9 \cdot 7$	18,800	$6 \cdot 8$	8,800	$4 \cdot 45$	4,600	$2 \cdot 50$	2,100	$2 \cdot 0$	1,570	$1 \cdot 9$	1,470
5	$9 \cdot 6$	15,600	6.85	8,900	$4 \cdot 6$	4,900	$2 \cdot 4$	2,000	$2 \cdot 0$	1,570	1.75	1,340
6	$9 \cdot 35$	14,900	$6 \cdot 9$	9,000	$4 \cdot 6$	4,900	$2 \cdot 4$	2,000	$2 \cdot 75$	2,370	1.7	1,290
7	$8 \cdot 7$	13,200	$6 \cdot 95$	9,200	$4 \cdot 75$	5,100	$2 \cdot 4$	2,000	$2 \cdot 7$	2,310	$1 \cdot 6$	1,200
8	$8 \cdot 5$	12,700	$6 \cdot 25$	7,700	$4 \cdot 8$	5,200	$2 \cdot 45$	2,000	$2 \cdot 7$	2,310	$1 \cdot 6$	1.200
9	$8 \cdot 25$	12,100	$5 \cdot 5$	6.400	$4 \cdot 4$	4,600	$2 \cdot 55$	2,100	2.8	2,430	$1 \cdot 45$	1,060
10	$8 \cdot 55$	12,900	5-35	6,100	$4 \cdot 0$	4,000	2.75	2,400	$2 \cdot 75$	2,370	1.35	980
11	$9 \cdot 0$	14,000	$5 \cdot 8$	6,900	$3 \cdot 65$	3,500	$2 \cdot 7$	2,300	$2 \cdot 65$	2,260	$0 \cdot 7$	520
12	$9 \cdot 35$	14,900	$6 \cdot 35$	7,900	3.85	3,800	$2 \cdot 55$	2,100	$2 \cdot 45$	2,030	1.0	720
13	9+35	14,900	$6 \cdot 2$	7,600	$3 \cdot 2$	2,900	$2 \cdot 8$	2,400	2.4	1,980	$1 \cdot 2$	560
14	$9 \cdot 25$	14,600	6.65	8,500	$3 \cdot 15$	2,800	$6 \cdot 6$	8,400	$2 \cdot 15$	1,720	1.5	1.110
15.	$9 \cdot 20$	14,500	6.9	9,000	$3 \cdot 1$	2,800	$7 \cdot 8$	11, 100	$2 \cdot 0$	1,570	$1 \cdot 6$	1,200
16	$9 \cdot 0$	14,000	$6 \cdot 75$	8,700	$3 \cdot 1$	2,800	$7 \cdot 02$	9,300	$2 \cdot 0$	1,570	$1 \cdot 65$	1.250
17.	$8 \cdot 65$	13, 100	$6 \cdot 55$	8,300	$2 \cdot 75$	2,400	$6 \cdot 95$	9,200	$2 \cdot 0$	1,570	1.65	1,250
18.	8.75	13,300	6.15	7,500	${ }^{2} \cdot 6$	2,200	$6 \cdot 25$	7,700	$2 \cdot 0$	1,570	1.95	1.520
19.	8.95	13,900	$6 \cdot 3$	7,800	2.7	2,300	$5 \cdot 0$	5,500	$2 \cdot 1$	1,670	2-35	1,930
20.	$9 \cdot 3$	14,800	$6 \cdot 5$	8,800	2.85	2,500	$4 \cdot 3$	4.400	2.25	1,820	$3 \cdot 0$	2,670
11.	8.85	13,600	$6 \cdot 65$	8,500	$2 \cdot 7$	2,300	$3 \cdot 8$	3,700	$2 \cdot 15$	1,720	3.25	2.970
22.	$7 \cdot 4$	10,100	$6 \cdot 55$	8.300	$2 \cdot 5$	2,100	$3 \cdot 45$	3,200	$2 \cdot 1$	1,670	$3 \cdot 2$	2,910
23	6.95	9,200	$6 \cdot 15$	7,500	$2 \cdot 6$	2,200	$3 \cdot 25$	3,000	$2 \cdot 1$	1,670	$3 \cdot 2$	2,910
4	$7 \cdot 0$	9,300	$5 \cdot 85$	6,800	$2 \cdot 75$	2,400	$3 \cdot 05$	2,700	$2 \cdot 0$	1,570	$3 \cdot 0$	2,670
25	$7 \cdot 0$	9,300	$5 \cdot 8$	6,900	$2 \cdot 9$	2,500	$3 \cdot 0$	2,700	$2 \cdot 2$	1,770	$3 \cdot 0$	2,670
26	6.95	9,200	$5 \cdot 85$	6, 800	$3 \cdot 35$	3,100	$2 \cdot 9$	$\frac{2}{2} .500$	$2 \cdot 6$	2,200	$3 \cdot 0$	2,670
27	$6 \cdot 75$	8,700	$6 \cdot 0$	7,300	$3 \cdot 55$	3,400	$2 \cdot 9$	2,500	$2 \cdot 45$	2,040	$3 \cdot 0$	2,670
28	$5 \cdot 8$	6,900	$6 \cdot 15$	7,500	$3 \cdot 4$	3,200	$2 \cdot 9$	2,500	$2 \cdot 3$	1,570	$3 \cdot 0$	2.670
29.	$5 \cdot 55$	6,400	$6 \cdot 0$	7,300	$3 \cdot 2$	2,900	$2 \cdot 9$	2,500	$2 \cdot 05$	1,620	$2 \cdot 8$	2,430
30.	$5 \cdot 55$	6,400	$5 \cdot 65$	6,600	$3 \cdot 6$	3,400	$3 \cdot 2$	2,900	$2 \cdot 0$	1,570	$2 \cdot 8$	2,430
31	$5 \cdot 7$	6,700	$5 \cdot 2$	5,800			$4 \cdot 26$	4,400			$2 \cdot 15$	1.720

Caydse Creek (1048).

Location.-At the Pacific Great Eastern Railway trestle, 2 miles from the mouth and $2 \frac{1}{2}$ miles from Lillooet.

Records Available. Daty discharges from April S, 1914, to Decomber 31. 1914.

Drainage Area. Three hundred and fifty square miles (measured from the provincial map of 1912 , scale 12 miles to 1 inch.)

Gauge. Vertical staff on pile in the trestle; refereneed to three benchmarks. Daily readings.

Channel. Wide and of moderate depth, strewn with boulders and coarse gravel. The current is very swift, especially at the higher stages. The metering section is a good one.

Discharge Measurements. Four discharge measurements in $191+$ define the rating eurve very well, exeept for extremely high and low stages of the water.

Vinter Flow. Open water conditions all winter.
Accuracy. - Daily gatuge readings combined with a well-defined rating eurve should insure a reasomable degree of aecuracy exeept possibly at extremely high stages.

Cayuse creek rises in Duffy lake and discharges into the Fraser river, 1 mile below Lillooet, at an elevation of about 740 feet. The drainage area is about 350 square miles.

The climate in the Cayuse creek watershed is much similar to that in the Lillooet district. The summers are quite hot, and the winters rather severe. At the mouth the mean annual precipitation is probably about 15 inches, and this may increase to 30 inches or more at the higher altitudes near the headwaters.

The discharge figures indicate that there is a considerable quantity of water flowing in Cayuse creek. This water could be made use of for irrigation or for water-power.

A very small fraction of the water is being used at present for irrigation purposes on a few ranches near the mouth. The water could be used very extensively on the Fraser River benches across from Lillooet. The water could be carried, in a flume, from the stream to a point on the Fraser river about 1 mile above Lillooet and taken across the river at this point. This would be a large undertaking, but would reclaim a large tract of first-class fruit-growing land.

The stream falls very rapidly and there is a large fall about 3 miles from the mouth. Water-power could be developed by running a pipe from the head of the falls to the flats below; or the water could be carried around the hill in a flume to a point above Seton lake, and the power-house located beside the lake. The second plan would give a little less head than the first. At present there is little or no market for power in the vicinity.

The main line of the Pacific Great Eastern railway crosses the stream about 2 miles from its mouth and follows it to the Fraser river.

Discharge Measurements of Cayuse Creek above Seton Creek, for 1914.

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
			Feet.	Sq. ft .	Ft. per sec.	Feet.	Sec.-ft.
April 8	H. J. E. Keys.	1,046	67	171	$2 \cdot 29$	$0 \cdot 70$	392^{1}
June 13...	Keys \& Hughes..	1,046	80	326	$6 \cdot 53$	$2 \cdot 30$	2,131
" 19.	H. C. Hughes...	1,046	90	410	$8 \cdot 30$	$2 \cdot 70$	3,410
Aug. 1		1,046	73	275	$3 \cdot 49$	1-60	957
Sept. 17.	4	1,046	70	213	1.93	0.79	412

[^22]SESSIONAL PAPER No. 25e
Monthly Discharge of Cayuse Creek above Seton Creek, for 1914.
(Drainage area, 350 square miles.)

Month.	Discharge in Second-Feet.				Ren-Off.		Accuracy.
	Maximum.	Minimum.	Mean.	$\begin{gathered} \text { Per } \\ \text { square } \\ \text { mile. } \end{gathered}$	Depth in inches on Drainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$	
May	3,400	480	1,616				
June.	6,550	1,350	2,833	8.1	9.0	168,600	B
July	6,000	- 850	2,915	$8 \cdot 3$	9.6	179,000	B
August...	1.050 780	640 420	$\begin{array}{r}818 \\ 548 \\ \hline\end{array}$	2.3 1.6 1.7	2.7 1.8	50,300 3200	B
September	780 1,000	420 470	548 603	1.6	1.8 2.0	32,600 37,100	B
November	${ }^{630}$	380	475	1.4	1.5	28,300	B
December	420	240	298	0.8	0.9	18,300	B

Daily Gauge Height and Discharge of Cayuse Creek above Seton Creek, for 1914.

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Cayuse Creek above Seton Creek, for 1914 -Con.

Chekamus River (1034).
Location.-Highway bridge about 1 mile from the mouth and 10 miles from Squamish.

Records Available.-Daily discharges from March 11 to December 31, 1914.
Drainage Area.-Measured from Provincial map dated 1912 (scale 17.75 miles to 1 inch). Area above measuring section is 250 square miles.

Gauge.-Chain gauge from highway bridge. Referenced to three benchmarks. Readings daily.

Channel.-Wide and shallow. The bed is rough and strewn with boulders.
Discharge Measurements.-Seven discharge measurements were taken during 1914 and the winter of 1915.

Winter Flow.- Open water conditions.
Accuracy.-B. and C.

SESSIONAL PAPER No. 25e
Discharge Measurements of Cheakamus River near mouth, for 1914.

Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
May $21 .$.	Keys and Hughes.	1046	140	555	7.87	$4 \cdot 30$	4,370
June 23...	C. G. Cline...	1933	140	490	$5 \cdot 80$	$3 \cdot 60$	2,840
Sept. 2	H. C. Hughes	1152	140 140	383 300	$5 \cdot 35$ 4.67	3.28 2.25	2,060
Oct. ${ }^{8}$	Dobbie and Hughes	1933 1056	140	300 473	$4 \cdot 67$ $2 \cdot 96$	$2 \cdot 35$ $3 \cdot 75$	1,400 2,410

* Channel may have changed during freshet in October.

Monthly Discharge of Cheakamus River at one mile from mouth, for 1914.
(Drainage area, 250 square miles.)

6 GEORGE V, A. 1916

Daily Gauge Height and Discharge of Cheakamus River at one mile from

 mouth, for 1914.| Day. | March. | | April. | | May. | | June. | | July. | | August. | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Gauge Height | $\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$ | Gauge | $\begin{gathered} \text { Dis- } \\ \text { charge. } \end{gathered}$ | Gauge Height | $\begin{aligned} & \text { Dis- } \\ & \text { charge. } \end{aligned}$ | Gauge
 Height | Dis- charge | Gauge
 Height | Dis- charge | Gauge Height | $\begin{gathered} \text { Dis- } \\ \text { charge. } \end{gathered}$ |
| | Feet. | Sec.-ft. | Feet. | Sec.-ft. | Feet. | Sec-ft. | Feet. | Sec.-ft. | Feet. | See.-ft. | Feet. | Sec.-ft. |
| ${ }_{2}^{1}$ | | | ${ }_{2}^{2.6}$ | 1,770 1,530 | $3 \cdot 4$ 4.0 | 2,600 3,750 | 4.55 4.55 | 4,960 4,960 | $5 \cdot 2$ 5.4 | 6,500 7,000 | $3 \cdot 3$ 3.4 | 2,450 2,600 |
| 3. | | | 2.4 | 1,330 | $4 \cdot 3$ | 4,400 | $4 \cdot 35$ | 4,520 | $5 \cdot 7$ | 7,750 | 3.4 3.9 | 2,600 3,550 |
| 4 | | | $2 \cdot 2$ | 1,150 | 3.8 | 3,350 | 3.95 | 3,650 | 5.9 | 8, 250 | $3 \cdot 9$ | 3,550 |
| 5. | | | $4 \cdot 4$ | 4,600 | $3 \cdot 8$ | 3,350 | $3 \cdot 55$ | 2,880 | $5 \cdot 4$ | 7,000 | 3.7 | 3,150 |
| 6. | | | $3 \cdot 8$ | 3,350 | $3 \cdot 6$ | 2,950 | $3 \cdot 45$ | 2,690 | $5 \cdot 4$ | 7,00C | | |
| 7 | | | $3 \cdot 1$ | 2,150 | $3 \cdot 5$ | 2,800 | $3 \cdot 45$ | 2,690 | $4 \cdot 9$ | 5,800 | 3.9 | 3,550 |
| 8 | | | $3 \cdot 1$ | 2,150 | $3 \cdot 5$ | 2.800 | 3.05 | 2,080 | 4.9 | 5,800 | $3 \cdot 9$ | 3,550 |
| 9. | | | $3 \cdot 1$ | ${ }_{2}^{2}, 150$ | $3 \cdot 6$ | 2,950 | 3.05 | 2,080 | $4 \cdot 5$ | 4,850 | 3.9 | 3,550 |
| 10. | | | $3 \cdot 1$ | 2,150 | $4 \cdot 0$ | 3,750 | 3.05 | 2,080 | 4.9 | 5,800 | $3 \cdot 9$ | 3,550 |
| 11. | 1.7 | 800 | $3 \cdot 1$ | 2,150 | 4.0 | 3,750 | $3 \cdot 25$ | 2,370 | $4 \cdot 9$ | 5,800 | 3.8 | 3,550 |
| 12 | 1.7 | 800 | $3 \cdot 0$ | 2,020 | | 4.600 | | 3,250 | | 5,800 | $4 \cdot 2$ | 4,150 |
| 13 | $2 \cdot 5$ | 1,430 | $3 \cdot 2$ | 2,300 | 4.7 | 5,300 | $4 \cdot 35$ | 4,520 | 4.9 | 5,800 | 4.4 | 4.600 |
| 14 | 4.2 | 4.150 | 4.8 4.8 | 5,550 5,550 | 4.9 5.3 | 3,800 6,750 | 4.75 5.05 | 5,420 6,170 | 4.9 | 5,800 4,600 | $4 \cdot 4$ | 4,600 |
| 15. | 3.0 | 2,020 | 4.8 | 5,550 | $5 \cdot 3$ | 6,750 | 5.05 | 6,170 | $4 \cdot 4$ | 4,600 | $4 \cdot 4$ | 4,600 |
| 16 | 3.5 | 2.800 | 4.0 | 3,750 | $5 \cdot 3$ | 6.750 | $5 \cdot 25$ | 6,630 | $4 \cdot 4$ | 4,600 | 3.9 | 3,550 |
| 17. | $\stackrel{2}{2.7}$ | 1, 650 | 3.7 3.0 | 3,150 | 4.4 | 4.600 | 5.85 | 8, 120 | 4.9 | 5,800 | $3 \cdot 9$ | 3,550 |
| 18 19 | 2.8 | 1.770 | 3.0 | 2.020 | 4.4 | 4,600 | 4.95 | 5,920 | 4.8 | 5,550 | $3 \cdot 7$ | 3,150 |
| 20 | $3 \cdot 0$ | 2,020 | 4.0 | 8,350 3,750 | $4 \cdot 4$ | 4,600 4,600 | 4.55 | 3,920 4,960 | $4 \cdot 3$ | 3,400 | ${ }_{3 \cdot 5}^{3 \cdot 7}$ | 3,150 2,800 |
| 21. | 3.0 | 2,020 | $3 \cdot 6$ | 2,950 | $4 \cdot 6$ | 5,100 | $4 \cdot 25$ | 4,260 | $4 \cdot 1$ | 3.950 | $3 \cdot 5$ | 2,800 |
| 22 | 3.0 | 2,020 | 3.0 | 2,020 | $4 \cdot 8$ | 5,550 | $3 \cdot 55$ | 2,850 | $3 \cdot 9$ | 3,550 | $3 \cdot 4$ | 2,600 |
| 23. | 3.0 | 2,020 | $2 \cdot 9$ | 1,890 | $5 \cdot 1$ | 6. 250 | $3 \cdot 55$ | 2,880 | 3.9 | 3,550 | $3 \cdot 4$ | 2,600 |
| 24. | $2 \cdot 7$ | 1,650 | $2 \cdot 5$ | 1,430 | $5 \cdot 0$ | 6,050 | $3 \cdot 65$ | 5,220 | 3.9 | 3,550 | $3 \cdot 4$ | 2,600 |
| 25. | $2 \cdot 5$ | 1,430 | $2 \cdot 4$ | 1,330 | $4 \cdot 6$ | 5,100 | $4 \cdot 25$ | 4,260 | $3 \cdot 9$ | 3,550 | $3 \cdot 5$ | 2,800 |
| 26 | $2 \cdot 4$ | 1,330 | $2 \cdot 3$ | 1,230 | | 4,150 | 3.95 | 3,650 | $4 \cdot 2$ | 4,150 | | |
| 27. | $2 \cdot 3$ | 1,230 | $2 \cdot 4$ | 1,330 | $4 \cdot 0$ | 3,750 | $4 \cdot 45$ | 4.720 | 3.9 | 3,550 | $3 \cdot 5$ | 2,800 |
| 28 | 2.0 | 990 | $2 \cdot 5$ | 1,430 | $3 \cdot 8$ | 3,350 | 4.75 | 5.420 | $3 \cdot 6$ | 2,950 | $3 \cdot 4$ | 2,600 |
| 29. | $2 \cdot 2$ | 1,150 | $2 \cdot 6$ | 1,530 | $3 \cdot 6$ | 2,950 | 4.75 | 5, 420 | $3 \cdot 4$ | 2,600 | 3.3 | 2,450 |
| 30. | $2 \cdot 2$ | 1,150 | $3 \cdot 2$ | 2,300 | $3 \cdot 3$ | 2,450 | $4 \cdot 75$ | 5,420 | $3 \cdot 3$ | 2,450 | $3 \cdot 3$ | 2,450 |
| 31. | 2.0 | 990 | | | $3 \cdot 6$ | 2,950 | | | $3 \cdot 3$ | 2.450 | $3 \cdot 2$ | 2,300 |

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Cheakamus River at one mile from mouth, for 1914-Con.

Fountain Creek (1047).
Location.-About 100 yards above irrigation ditches, $1 \frac{1}{2}$ miles from the mouth, and 10 miles from Lillooet.

Records Available.-Daily discharges from June 11, 1914, to October 10, 1914, (irrigation season).

Drainage Area.-Twenty square miles (measured from the provincial map of 1913 , scale 12 miles to 1 inch).

Gauge.-Vertical staff nailed to tree about 100 yards above ditches. Refereneed to three bench-marks. Readings daily.

Channel.-Wide and shallow, gravel bottom. The current is fairly fast. The metering section is a good one.

Discharge Measurements. Two discharge measurements in 1914 define the rating curve fairly well for the variations during the irrigation season.

Winter Flow.-Measurements made only during the irrigation season.
Accuracy.-D.

Fountain Creek (1047).
Fountain creek has its source in Fountain lake, and discharges into the Fraser river, about 9 miles above Lillooet, at an elevation of some 760 feet. The drainage area is about 20 square miles.

The climate in the Fountain Creek valley is much similar to that of the Lillooet district generally. The summers are hot and the winters rather severe. The mean annual precipitation in the watershed is about 10 inches.

The valley of Fountain creek and the adjacent benches on the Fraser river are well adapted to cultivation, when irrigated, and the water from the creek is used for this purpose. Some attempt has been made to regulate the normal flow to give sufficient water in the low-water season. A small timber dam was installed at the outlet of the lake. In this way the spring and early summer freshets are stored to be used in the late summer when the normal flow is very small. The dam has a sluice-gate in it, and when it is opened the water flows down the natural channel of the stream to the irrigation ditches. This storage scheme could be enlarged upon to a considerable extent.

There is a large ranch at the mouth of the creek called Fountain ranch. It is a splendid place, and a good example of the agricultural possibilities of the surrounding valley.

There is some good timber in the upper part of the valley. A small sawmill has been built on the lake.

The gauging station was established on June 11, 1914. The regulated flow of the stream is at it. Several water leases have been applied for to divert water from the stream above the gauge. These diversions, will in all probability, be made next spring, so the gauging station may have to be changed.

Discharge Measurements of Fountain Creek above intake on irrigation ditch, for 1914.

${ }^{1}$ Station established.
Monthly Discharge of Fountain Creek above irrigation ditches, for 1914.
(Drainage area, 20 square miles.)

Month.	Discharge in Second-Feet.				Run-Off.	
	Maximum.	Minimum.	Mean.	$\begin{gathered} \text { Per } \\ \text { square } \\ \text { mile. } \end{gathered}$	Depth in inches on Drainage area.	Total in acre-feet.
July.	20	4	$16 \cdot 6$	0.8	$0 \cdot 9$	1,020
August...	20	4	$10 \cdot 5$	0.5	$0 \cdot 6$	650
September.	8	1		$0 \cdot 3$	$0 \cdot 3$	360

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Fountain Creek above irrigation ditches, for 1914.

Day.	June.		July.		August.		September.		October.	
	Gauge Height.	$\begin{gathered} \text { Dis- } \\ \text { charge. } \end{gathered}$	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge. } \end{aligned}$	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge. } \end{aligned}$	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge. } \end{gathered}$	Gauge Height	Discharge
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1.			$\xrightarrow{1 \cdot 1} 1$	20 20	1.0 1.0	14 14	0.8 0.8	4 4	0.9 0.9	$\begin{aligned} & 8 \\ & 8 \end{aligned}$
3.			$1 \cdot 1$	20	1.0	14	0.8	4	0.9	8
5.			1.0	14	$1 \cdot 1$	20	0.8	4	0.9	8
			$1 \cdot 1$	20	1.0	14	0.8	4	0.9	
6.			1. 1	20	1.0	14	0.5	4	0.9	8
7			${ }_{1}^{1 \cdot 1}$	20 20	1.0 1.0	14 14	0.8 0.8	4	0.9 0.9	8
9.			$1 \cdot 1$	20	0.8	$\stackrel{1}{4}$	0.8	4	0.9	8
10.			$1 \cdot 1$	20	$1 \cdot 1$	20	0.7	1	0.9	
11.			$1 \cdot 1$	20	1.0	14	0.7	1		
12.	1.3	32	1.0	14	1.0	14	0.7	1		
13.	1.3	32	1.0	14	1.0	14	0.8			
14.	$1 \cdot 4$	39	1.0	14	0.9	8	0.9	8	\ldots	
15.	1.3	32	1.0	14	0.9	8	C. 9	8		
16.	$1 \cdot 2$	26	1.0	14	0.9	8	0.9	8		
17.	$1 \cdot 3$	32	0.9	8	0.9	8	0.9	8		****
19.	$1 \cdot 3$	32 20	1.2	26 14	1.0	14	0.9 0.9	\%		
20.	$1 \cdot 1$	20	$1 \cdot 0$	14	1.0	14	0.9	8		
21.	$1 \cdot 1$	20	1.0	14	0.9	8	0.9	8		
22.	$1 \cdot 1$	20	1.0	14	0.9	8	0.9	8		
23.	$1 \cdot 2$	26	$1 \cdot 2$	26	0.9	8	$0 \cdot 9$	8		
24.	$1 \cdot 2$	26	$1 \cdot 1$	20	$0 \cdot 9$	8	$0 \cdot 9$	8		***
25.	$1 \cdot 1$	20	1.0	14	0.9	8	0.9	8		
26	$1 \cdot 1$	20	1.0	14	$0 \cdot 9$	8	0.9	8		
27	$1 \cdot 1$	20	1.0	14	0.8	5	0.9	8		
28	$1 \cdot 2$	26	0.8	4	0.8	4	$0 \cdot 9$	8	-	170.
29.	$1 \cdot 2$	26	$1 \cdot 1$	20	$0 \cdot 8$	4	0.9	,		
30.	1.2	26	1.0	14	0.8	4	$0 \cdot 9$	\bigcirc		-
31.			1.0	14	0.8	4			III	

Green River at Nairn Falls (1035).
Location.-Five miles from the mouth, and 46 miles from Cheakamus.
Records available.-Daily discharges, November and December, 1913; January to December, 1914.

Drainage area.-Drainage areas are measured from the provincial map of 1912 (scale $17 \cdot 7$ miles to 1 inch). Area above gauging station is 180 square miles.

Gauge.-Sloping staff gauge bolted to rocks about 150 yards above falls on left bank. Referenced to three bench-marks. Readings taken daily.

Channel.-Wide and fairly deep. Rock and gravel bottom, a good metering section.

Discharge measurements. - Twelve meter measurements taken during 1913, 1914 and 1915 defining the curve quite well for all except the very highest stages.

Winter flow.-Stream is open all year. Slight ice effeet in very cold weather.
Accuracy. - Curve fairly well defined; daily gatuge readings.

6 GEORGE V, A. 1916
Discharge Measurements of Green River above Nairn Falls, for 1914.

${ }^{1}$ Station established.
${ }^{2}$ Section probably affected by ice conditions.

Daily Gauge Height and Discharge of Green River at Nairn Falls, for 1913.

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Green River at Nairn Falls, for 1914.

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Green River at Nairn Falls, for 1914 -Con.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge	Gauge Height.	Discharge	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge.
	Feet.	Sec.-ft.	Feet.	See.ft.								
2	$10 \cdot 1$	6,000	$6 \cdot 3$	2,440	$6 \cdot 3$	2,440	5.9	2,120	$7 \cdot 5$ 6.8	3,500	$5 \cdot 1$	1,580
2	10.1 10.9	6,000	$6 \cdot 3$ $6 \cdot 4$	2,440	$6 \cdot 3$ $6 \cdot 3$	2,440 2,440	$5 \cdot 2$ $4 \cdot 7$	1,650	$6 \cdot 8$ $5 \cdot 9$	2,850 2,120		
3	10.9 11.0	6,800 6,900	6.4 6.9	2,510 2,950	$6 \cdot 3$ $6 \cdot 3$	2,440 2,440	$4 \cdot 7$	1,350 1,050	$5 \cdot 9$ $5 \cdot 5$	2,120 1,850	$4 \cdot 5$ $3 \cdot 9$	1,250 940
5	$10 \cdot 7$	6,600	$7 \cdot 0$	3,050	$6 \cdot 3$	2,440	$3 \cdot 9$	-940	$5 \cdot 0$	1,520		
6	$9 \cdot 1$ 8.7	5,050 4,700	$7 \cdot 4$	3,400 3,300	$6 \cdot 3$ $5 \cdot 3$	2,440 1,710	$3 \cdot 6$ $3 \cdot 4$	800 710	$4 \cdot 8$ 4.7	1,400		
7	$8 \cdot 7$	4,700	$7 \cdot 3$	3,300	$5 \cdot 3$	1,710	$3 \cdot 4$	710	$4 \cdot 7$	1,350		
8	$8 \cdot 3$	4,300	$6 \cdot 9$	2,950	$5 \cdot 3$	1,710	$3 \cdot 2$	620	$4 \cdot 8$	1,400		
9	$8 \cdot 3$	4,300	$6 \cdot 7$	2,760	$5 \cdot 2$	1,650	$4 \cdot 3$	1,150	$4 \cdot 9$	1,460		
10.	$9 \cdot 1$	5,050	$6 \cdot 7$	2,760	$5 \cdot 5$	1,850	$4 \cdot 6$	1,300	$4 \cdot 7$	1,350		
11.	$9 \cdot 2$	5,150	$6 \cdot 6$	2,670	5,7	1,980	$4 \cdot 3$	1,150	$4 \cdot 6$	1,300		
12.	$9 \cdot 3$	5,250	$6 \cdot 6$	2,670	$5 \cdot 2$	1,650	$4 \cdot 0$	990	$4 \cdot 5$	1,250		
13.	$9 \cdot 3$	5,250	$7 \cdot 2$	3,200	$5 \cdot 0$	1,520	$10 \cdot 5$	6,400	$4 \cdot 5$	1,250	$2 \cdot 9$	500
14	$9 \cdot 3$	5,250	$7 \cdot 4$	3,400	$5 \cdot 0$	1,520	$10 \cdot 0$	5,900	$4 \cdot 4$	1,200	2.95	520
15.	$9 \cdot 3$	5,250	$7 \cdot 2$	3,200	$4 \cdot 8$	1,400	$12 \cdot 3$	8,200	$4 \cdot 3$	1,150	$2 \cdot 9$	500
16.	8.9 8.9	4,900 4,900	7.2 6.9	3,200			$13 \cdot 8$ $12 \cdot 5$	9,700 8,400	$4 \cdot 1$ $4 \cdot 0$	1,050	2,85	480 540
17.	8.9 8.9	4,900 4,900	$6 \cdot 9$ 6.9	2,950 2,950			12.5 8.5	8,400 4,500	$4 \cdot 1$ $3 \cdot 9$	990 940	$3 \cdot 0$ $3 \cdot 2$	540 620
19.	8.9	4,900	$6 \cdot 9$	2,950			$8 \cdot 0$	4,000	$4 \cdot 0$	990	$3 \cdot 0$	540
20.	8.9	4,900	$6 \cdot 9$	2,950			$7 \cdot 3$	3,300	$4 \cdot 2$	1,100	$3 \cdot 0$	540
21.	$8 \cdot 1$	4,100	6.9	2,950		$6 \cdot 5$	2,600	$4 \cdot 3$	1,150	$3 \cdot 0$	540
22.	$7 \cdot 3$	3,300	$6 \cdot 9$	2,950			$5 \cdot 5$	1,850	$4 \cdot 5$	1,250	$2 \cdot 9$	500
23.	$7 \cdot 3$	3,300	$6 \cdot 9$	2,950			$4 \cdot 7$	1,350	$4 \cdot 5$	1,250	2.85	480
24.	$7 \cdot 4$	3,400	$6 \cdot 9$	2,950			$4 \cdot 1$	1,050	$4 \cdot 6$	1,300	$2 \cdot 8$	470
25.	$7 \cdot 3$	3,300	$6 \cdot 7$	2,760			$4 \cdot 8$	1,400	$8 \cdot 6$	4,600	$2 \cdot 8$	470
26.	$7 \cdot 3$	3,300	$6 \cdot 5$	2,600			$4 \cdot 9$	1,460	$6 \cdot 3$	2,440	$2 \cdot 7$	430
27.	$7 \cdot 1$	3,150	$6 \cdot 7$	2,760			$5 \cdot 1$	1,580	$3 \cdot 7$	850	$2 \cdot 6$	400
28	$6 \cdot 3$	2,440	$6 \cdot 7$	2,760			$5 \cdot 9$	2,120	$3 \cdot 8$	890	$2 \cdot 6$	400
29.	$6 \cdot 3$	2,440	$6 \cdot 3$	2,440			$7 \cdot 5$	3,500	$3 \cdot 7$	850	$2 \cdot 5$	360
30.	$6 \cdot 3$	2,410	$6 \cdot 3$	2,440			$6 \cdot 8$	2,850	$4 \cdot 6$	1,300	$2 \cdot 5$	360
31.	$6 \cdot 3$	2,440	$6 \cdot 3$	2,440			$6 \cdot 7$	2,760			$2 \cdot 5$	360

Monthly Discharge of Green River at Nairn Falls, for 1913.
(Drainage area, 180 square miles.)

Month.	Discharge in Second-Feet.				Run-Off.	
	Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on Drainage area.	Total in acre-feet.
Docember..	330	120	200	$1 \cdot 1$	$1 \cdot 3$	12,300

[^23]SESSIONAL PAPER No. 25e
Monthly Discharge of Green River at Nairn Falls, for 1914.
(Drainage area, 180 square miles.)

Month.	Discharge in Second-feet.				Run-Ofr.		Accuracy.
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	Total in acre-feet.	
January	990	120	280	1.5	1.7	17,200	B
February.	270	120	172	$0 \cdot 9$	1.0	9,550	B
March...	1,710	270	${ }^{851}$	4.7	$5 \cdot 4$	52,300	B
April..	2,280	750	1,838	$10 \cdot 2$	11-4	109,000	B
June....	6,100	580	3,524	$19 \cdot 6$	21.9	209,000	B
July....	6,900	2,440	4,515	$25 \cdot 1$	28.9	277,000	B
August.	3,400	2,440	2,861	$15 \cdot 9$	18.3	176,000	B
September	9,700	620	2,800	$15 \cdot 6$	17.9	172,000	C
November.	4,600	850	1,530	8.5	$9 \cdot 5$	91,000	B
The period.	9,700	120					

Green River at Green Lake (1041).
Location.-Highway bridge at mouth of the lake, 42 miles from Squamish. Records available.-Daily discharges from January to December, 1914.
Drainage area.-Twenty-four square miles; measured from the provincial map of 1912 (scale 3 miles to 1 inch).

Gauge.-Graduated staff. Readings taken by measuring to water surface, from permanent point on the bridge.

Channel.-Narrow and fairly deep. Strewn with boulders.
Discharge measurements.-Six discharge measurements define the rating curve fairly well.

Winter flow.-Open all winter.
Accuracy.- C and D ; change in section -

Discharge Measurements of Green River at Green Lake, for 1914.

Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section.	Mean Velucity.	Gauge Height.	Discharge.
			Feet.	Squ.-ft.	Ft. per see.	Feet.	Sec-ft.
Nov. 22	1I. J. E. Kioyes.	1,046	26	$51 \cdot 3$	3.00	1.32	15.21
March 1917.	do	1,046	33	$5 \mathrm{~S} \cdot 0$	$2 \cdot 71$	$1 \cdot 47$	$15 \%^{2}$
Miny 28	Keys \& Ilughes.	1,040	37	96.6	+-37	$3 \cdot(4)$	428
July 21	11. C. 1lughes..	1,046	30	93.0	5.62	2.32	523
Aug. 15	do -	1,046	30	89.2	4.109	2.15	435
Niopt. 10		1,046	34	73.1 102.0	2.92 2.35	1.35	215 243
bee. 5	Dobbie \& Hughes.	1,057	40	$102 \cdot 0$	2 -38	1-81	$243{ }^{3}$

[^24]6 GEORGE V, A. 1916
Monthly Discharge of Green River at Green Lake, for 1914.
(Drainage area, 24 square miles.)

Month.	Dis,charge in Second-feet.				Run-Off.		Accuracy.
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	Total acre-feet.	
January	700	145	245	$10 \cdot 2$	11.8	15,100	
February.	180	120	137	$5 \cdot 7$	6.0	7,610	D
March...	520	145	270	11.2	$12 \cdot 9$	16,600	C
April.	1,000	220	598	$24 \cdot 9$	27.8	35,580	D
May.	850	310	635	$26 \cdot 2$	$30 \cdot 3$	39,000	D
June.	1,150	400	648	$27 \cdot 0$	$30 \cdot 1$	38,600	D
July	1,150	440	764	31.9	$36 \cdot 8$	47,000	D
August.	560	310	399	$16 \cdot 6$	$19 \cdot 1$	24,500	C
September	600	160	267	$11 \cdot 1$	12.4	15,900	C
October...	1,650	160	567	$23 \cdot 6$	$27 \cdot 2$	34,900	D
November.	1,080	220	440	$18 \cdot 3$ 6.4	20.4 7.4	26, 200	D
December...	530	90	154	$6 \cdot 4$	$7 \cdot 4$	9,500	C
The year	1,650	90	427	$17 \cdot 8$	$242 \cdot 2$	310,490	C

Daily Gauge Height and Discharge of Green River at Green Lake, for 1914.

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Green River at Green Lake, for 1914 -Con.

Laluwissin Creek (1050).
Location.- Above the irrigation ditches about 1 mile from the mouth and 26 miles from Lillooet.

Records available.-Daily discharges from June 17, 1914, to September 30, 1914, discontinued at end of irrigation season.

Drainage Area. Twenty square miles (measured from the provincial map of 1913 , scale 12 miles to 1 inch).

Gauge.-Vertical staff gauge about 200 yards above irrigation ditches, refereneed to three bench-marks. Readings ilaily:

Channel-Wide and shallow, strewn with boulders and coarsic gravel. The current is fairly swift. The metering section is quite a good one.

Discharge Measurements. Three diseharge measurements in 1914 define the rating eurve fairly well for the two and intermediate stages of the water.

Winter Flow. Measurements made only during the irrigation seanon.
Accuracy. Daily gatuge readings combined with a fairly wofl-defined rating curve should ensure a fair degree of aecuracy for the variation during the irrigation season.

Laluwissin Creek (1050).

Laluwissin creek has its source in the mountains to the south-east of Lillooet. Some of the peaks in its vicinity attain an altitude of 6,800 feet. It discharges into the Fraser river 26 miles below Lillooet at an elevation of 450 feet. The drainage area is 25 square miles.

The climate in the Laluwissin creek watershed is much similar to that of the Lillooet district generally. The summers are quite hot and the winters rather severe. The mean annual precipitation in the valley is about 10 inches.

The Fraser river benches near the mouth of Laluwissin creek are well suited to cultivation. At present most of the normal flow of the stream is being used to irrigate these benches. No attempt has yet been made to store the high-water flow which occurs during the spring and early summer. It is reported that the upper part of the stream runs through large swamps and meadows, and it is very probable that these meadows could be utilized as storage reservoirs; a pack trail follows the stream up to the meadows.

Discharge Measurements of Laluwissin Creek above intake at irrigation ditches, for 1914.

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height	Discharge.
			Feet.	Sq.-ft.	Ft. per sec.	Feet.	Sec.-ft.
June 17.	Keys and Hughes	1,046	$6 \cdot 0$	$7 \cdot 95$	1.62	1.40	$12.9{ }^{1}$
July $\begin{aligned} & \text { Sept. } \\ & \\ & 13 .\end{aligned}$	H. C. Hughes.	1,046 1,046	$6 \cdot 0$ $6 \cdot 0$	$6 \cdot 20$ $5 \cdot 35$	1.05 1.88	1.00 1.00	$6 \cdot 5$ $4 \cdot 7$
Sept. 13.	do	1,046	$6 \cdot 0$	$5 \cdot 35$. 88	$1 \cdot 00$	4.7

${ }^{1}$ Station established.

Monthly Discharge of Laluwissin Creek above irrigation ditches, for 1914.
(Drainage area, 25 square miles.)

Month.'	Discharge in Second-Feet.				Run-Off.	
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage arca.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$
July .	11	6	$7 \cdot 9$	0.3	0.3	490
August.	6	5	$5 \cdot 3$	$0 \cdot 2$	$0 \cdot 2$	330
September.	6	5	$5 \cdot 4$	$0 \cdot 2$	$0 \cdot 2$	320

Accuracy "D."

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Laluwissin Creek above irrigation ditches, for 1914.

Lillooet River (1038).
Location.-Government highway bridge at Agerton, 57 miles from Cheakamus, 8 miles above Lillooet lake, and 2 miles above the mouth of (ireen river.

Records Available.-Daily discharges.-November 16 to December 31, 1913; January 1 to December 31, 1914.

Drainage Area.-Above mouth is 2,200 square miles; above the lower end of Lillooct lake, 1,600 square miles; above upper end of lake, 1,300 square miles; above gauging station, 800 square miles.

Gauge. Vertical staff gauge nailed to central pier of bridge. Referenced to three bench-marks. Gauge readings taken daily:

Channel.-Wide and deep, smooth, sandy bed. An exeellent measuring section.

Discharge Measurements. Five discharge measurements taken during 1914 define the curve very well for all stages of the water.

Winter flow.-The strem is sometimes frozen over in winter.
Accuracy.-Rating curve well defined and daily gauge readings give good accuracy.

6 GEORGE V, A. 1916
Discharge Measurements of Lillooet River near Agerton above lake, for 1914.

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
1913.			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
Nov. 16.	Keys \& Cline.	1046	168	645	$2 \cdot 63$	1.83	1,693 ${ }^{1}$
1914.							
March 28.	H. J. E. Keys. .	1046	174	636 1.380	$2 \cdot 42$	$1 \cdot 97$	1,540
May 31.	Keys \& Hughes	1046	185	1,380 2,063	$3 \cdot 54$ $4 \cdot 37$	4.92 $7 \cdot 60$	4, 880 9,000
June 28. Aug 10	Hughes....... do	1046	188	2,063	$4 \cdot 37$ $4 \cdot 00$	$7 \cdot 60$ $6 \cdot 76$	9,000 7,400
July 15.	do	1046	188	2,692	$6 \cdot 15$	$10 \cdot 4$	16,500

${ }^{1}$ Station established.

Monthly Discharge of Lillooet River 6 miles above Lillooet Lake, for 1914.
(Drainage area, 800 square miles.)

Mon1t.	Discharge in Second-Feet.				Run-Off.		Accuracy.
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$	
January	1,480	950	1,280	$1 \cdot 60$	1.84	79,000	B
February	980	950	, 960	$1 \cdot 20$	1.25	53,000	B
March...	2,670	980	1,770	$2 \cdot 21$	$2 \cdot 55$	109,000	B
April.	3,750	1,730	2,860	$3 \cdot 57$	3.98	170,000	B
May.	9,250	3,750	5,870	$7 \cdot 34$	$8 \cdot 46$	361.000	B
June.	16.500	4,930	9,140	11.42	12.74	544,000	B
July .	18,300	6,800	13,010	16.25	19.98	799,000	C
August.	14,700	7,500	10,560	$13 \cdot 20$	$15 \cdot 22$	648,000	B
September.	7,850	3,200	5,030	$6 \cdot 29$	$7 \cdot 02$	299,000	B
October...	19,200	2,670	6,590	$8 \cdot 24$	$9 \cdot 50$	405,000	B
November	4,930	2,470	3,540	$4 \cdot 42$	$4 \cdot 93$	211,000	B
December.	3,200	1,480	1,890	$2 \cdot 36$	$2 \cdot 71$	116,000	B
The year.	19,200	950	5,270	6.51	$90 \cdot 18$	3,794,000	B

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Lillooet River 6 miles above Lillooet Lake, for 1914.

Day.	January.		February.		March.		April.		May.		June.	
	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height	Discharge.	Gauge Height	Dis charge	Gauge Height.	Discharge.	Gauge Height.	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec. -ft .								
1.	1.5	1,330	Frozen	950	1.0	$\begin{array}{r}980 \\ \hline 1860\end{array}$	$2 \cdot 0$	1,730	$4 \cdot 0$	3,750	$6 \cdot 0$	6.250
2.	1.6	1,400		950	$1 \cdot 4$	1,260	$2 \cdot 0$	1.730	$4 \cdot 8$	4.690	$7 \cdot 5$	8. 820
3	$1 \cdot 6$	1,400		950	1.4	1,260	$2 \cdot 0$	1,730	$4 \cdot 6$	4,446	8.0.	9.970
4.	1.6	1,400		950	1.4	1,260	$2 \cdot 0$	1,730	$4 \cdot 5$	4.320	7.5	8. 820
5.	$1 \cdot 6$	1,400		950	$1 \cdot 4$	1,260	$2 \cdot 0$	1,730	$4 \cdot 5$	4.320	$6 \cdot 9$	7,660
6.	$1 \cdot 6$	1,400		950	1.4	1,260	$3 \cdot 0$	2,670	$4 \cdot 5$	4,320	6.5	6.690
7.	1.7	1,480		950	$1 \cdot 4$	1,260	$3 \cdot 2$	2,870	$4 \cdot 5$	4,320	$5 \cdot 5$	5,570
8.	1.7	1,480		950	1.4	1,260	$3 \cdot 2$	2,870	$4 \cdot 5$	4.320	$5 \cdot 0$	4.930
9.	1.7	1,480		950	1.4	$1 \cdot 260$	$3 \cdot 2$	2,870	$4 \cdot 8$	4,690	$5 \cdot 0$	4.930
10.	1.7	1,480		950	$1 \cdot 4$	1,260	$3 \cdot 5$	3,200	$5 \cdot 0$	4.930	$5 \cdot 8$	5,970
11.	1.7	1,480		950	$1 \cdot 4$	1,260	$3 \cdot 5$	3,200	$5 \cdot 5$	5,570	$6 \cdot 4$	6,840
12.	1.7	1,480		950	1.5	1,330	$3 \cdot 5$	3,200	$5 \cdot 5$	5.370	$6 \cdot 8$	7.450
13.	$1 \cdot 6$	1,40C		950	1.5	1,330	$3 \cdot 8$	3, 530	$6 \cdot 0$	6,250	$7 \cdot 7$	9,250
14.	$1 \cdot 6$	1,490		950	$2 \cdot 0$	1,730	$3 \cdot 8$	3,530	7.0	7,850	8.2	10,500
15.	$1 \cdot 6$	1,460	Frozen	950	$2 \cdot 0$	1,730	$4 \cdot 0$	3,750	7.0	7,850	$9 \cdot 5$	13,900
16.	$1 \cdot 6$	1,400		950	$2 \cdot 0$	1,730	$4 \cdot 0$	3,750	$6 \cdot 5$	6,990	$10 \cdot 1$	15.610
17.	$1 \cdot 6$	1,400		950	$2 \cdot 4$	2,090	$3 \cdot 8$	3,530	$5 \cdot 9$	6,110	$10 \cdot 4$	16.300
18	$1 \cdot 6$	1,400		950	$2 \cdot 0$	1,730	$3 \cdot 5$	3,200	5.7	5, 830	9.7	14,500
19.	$1 \cdot 6$	1,400		950	$2 \cdot 2$	1,900	$3 \cdot 5$	3,200	$5 \cdot 7$	5, 830	$9 \cdot 0$	12.54n
20.	$1 \cdot 5$	1,330		950	$2 \cdot 6$	2,280	$3 \cdot 5$	3,200	$6 \cdot 2$	5,540	8.3	10.7(0)
21.	1.4	1,260		950	$2 \cdot 8$	2,470	$3 \cdot 6$	3,310	7.0	7.850	7.8	9.510
22.	$1 \cdot 4$	1,260	$1 \cdot 0$	980	$2 \cdot 8$	2,470	$3 \cdot 3$	3,200	$7 \cdot 0$	7,850	7.2	8. 230
23.	$1 \cdot 2$	1,110	1.0	980	$3 \cdot 0$	2,670	$3 \cdot 2$	2,870	$7 \cdot 5$	8,820	$6 \cdot 8$	7, 4×0
24.	$1 \cdot 0$	980	$1 \cdot 0$	980	$3 \cdot 0$	2,670	$3 \cdot 2$	2,870	$7 \cdot 7$	9,250	$6 \cdot 5$	6. 990
25.	$1 \cdot 0$	980	$1 \cdot 0$	980	$3 \cdot 0$	2,670	$3 \cdot 2$	2.870	$7 \cdot 0$	7,850	6.8	7.480
26.	Frozen	950	$1 \cdot 1$	950	$2 \cdot 8$	2,470	$3 \cdot 0$	2,670	6.7	7.310	$7 \cdot 4$	\$.620
27.		950	1.0	950	2.8	2,470	$3 \cdot 0$	2.670	6.0	6,250	$7 \cdot 4$	8,620
28.		950	$1 \cdot 0$	980	$2 \cdot 8$	2,470	$3 \cdot 0$	2. 670	$5 \cdot 0$	4,930	7.8	9.496
29.		950			$2 \cdot 0$	1,730	$3 \cdot 0$	2,670	4.8	4,690	8.0	9,970
30.		950			$2 \cdot 0$	1,730	$3 \cdot 2$	2.870	$4 \cdot 8$	4.6940	8.2	10.400
31.		950			$2 \cdot 0$	1.730	...		$5 \cdot 0$	4.930		

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Lillooet River 6 miles from Lillooet Lake, for 1914-Con.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge.						
	Feet.	Sec.-ft.	Feet.	Sec.-ft	Feet.	Sec.-ft.	Feat.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1.	9.4	13,600	$8 \cdot 0$	10,000	6.8	7,500	$4 \cdot 0$	3,750	$5 \cdot 0$	4,930	$3 \cdot 5$	3,2 20
2	$9 \cdot 9$	15,000	8.5	11,200	$6 \cdot 8$	7.500	$3 \cdot 8$	3,530	$5 \cdot 0$	4.930	$3 \cdot 2$	2,870
3	$10 \cdot 8$	17.700	$9 \cdot 2$	13,100	$7 \cdot 0$	7,850	$3 \cdot 5$	3,200	$4 \cdot 6$	4.440	$3 \cdot 0$	2,670
4.	10.8	17,700	$9 \cdot 6$	14,200	$6 \cdot 5$	7,500	$3 \cdot 0$	2,670	$4 \cdot 5$	4.320	$3 \cdot 0$	2,670
5.	9.8	14,700	$9 \cdot 0$	12,500	$6 \cdot 7$	7,300	$3 \cdot 2$	2,870	$4 \cdot 5$	4,320	$2 \cdot 8$	2,470
6.	$9 \cdot 4$	13,600	$8 \cdot 9$	12,300	6.4	6,840	$3 \cdot 4$	2,990	$4 \cdot 0$	3,750	$2 \cdot 7$	2,380
7	$8 \cdot 7$	11,700	$7 \cdot 6$	9,000	$6 \cdot 0$	6. 250	$3 \cdot 4$	2,990	$3 \cdot 8$	3,530	$2 \cdot 7$	2,380
8	8.7	11,700	$6 \cdot 6$	7,200	$6 \cdot 5$	7.000	$3 \cdot 8$	3,530	$3 \cdot 7$	3,420	$2 \cdot 8$	2,470
9.	8.8	12,000	7.4	8,600	6.0	6, 250	$3 \cdot 9$	3,640	$4 \cdot 7$	4,570	$2 \cdot 6$	$\frac{2,280}{}$
10.	$9 \cdot 5$	13,900	$7 \cdot 8$	9,500	$5 \cdot 8$	5,970	$4 \cdot 0$	3,750	$4 \cdot 0$	3,750	$2 \cdot 3$	2,000
11.	$10 \cdot 0$	15,300	8.2	10,400	$5 \cdot 2$	5,180	$4 \cdot 0$	3,750	$4 \cdot 2$	3,970	$2 \cdot 0$	1,730
12.	$9 \cdot 8$	14,700	$8 \cdot 6$	11,500	$5 \cdot 0$	4,930	$5 \cdot 0$	4,930	$3 \cdot 8$	3,530	$2 \cdot 0$	1.730
13.	$10 \cdot 6$	17,100	9.0	12,500	$4 \cdot 4$	4,200	8.55	11,300	$3 \cdot 8$	3,530	$2 \cdot 0$	1.730
14.	$10 \cdot 5$	16,800	$9 \cdot 8$	14,700	$4 \cdot 2$	3,970	$11 \cdot 3$	19, 200	$3 \cdot 6$	3,310	1.8	1.570
15.	$10 \cdot \mathrm{C}$	15,300	$9 \cdot 2$	13,100	$4 \cdot 1$	3,860	$10 \cdot 8$	17,70¢	$3 \cdot 3$	2,980	1.8	1,570
16.	$9 \cdot 2$	13, 100	$9 \cdot 0$	12,500	$3 \cdot 5$	3,200	11.0	18,300	$3 \cdot 0$	2,670	1.8	1,570
17.	$9 \cdot 5$	13,900	8. 6	11,500	$3 \cdot 8$	3,530	11.2	18,900	$3 \cdot 0$	2,670	1.8	1.57!
18.	10.0	15,300	$8 \cdot 0$	10,000	$4 \cdot 0$	3,750	$7 \cdot 8$	9.500	$2 \cdot 8$	2,470	1.7	1.483
19.	$10 \cdot 8$	17,700	8.5	11,200	$3 \cdot 8$	3,530	6.4	6,840	$2 \cdot 8$	2,470	$1 \cdot 7$	1,483
20.	11.0	18,300	$9 \cdot 0$	12,500	$3 \cdot 5$	3,200	$5 \cdot 8$	6,000	$2 \cdot 8$	2,470	$1 \cdot 7$	1,480
21.	$9 \cdot 0$	12,500	$9 \cdot 0$	12,500	$3 \cdot 5$	3,200	$5 \cdot 4$	5,44C	$2 \cdot 8$	2.470	$1 \cdot 7$	1,480
22.	$7 \cdot 5$	8,800	$9 \cdot 0$	12,500	$3 \cdot 8$	3,530	$4 \cdot 8$	4,690	$3 \cdot 0$	2, 670	$1 \cdot 7$	1,480
23.	$7 \cdot 5$	8,820	$8 \cdot 4$	11,000	$3 \cdot 8$	3,530	$4 \cdot 5$	4,320	$3 \cdot 0$	$\stackrel{9}{2}, 670$	1.8	1,570
24.	$8 \cdot 0$	10.000	$7 \cdot 8$	9,500	$4 \cdot 0$	3,750	$4 \cdot 0$	3,750	$3 \cdot 2$	2,870	1.8	1,570
25.	$8 \cdot 4$	10,900	$7 \cdot 8$	9,500	$4 \cdot 5$	4,320	$4 \cdot 0$	3,750	$4 \cdot 4$	4,200	1.8	1,570
26.	$8 \cdot 7$	11,700	$7 \cdot 5$	8,280	$5 \cdot 6$	4,930	$4 \cdot 2$	3,970	$4 \cdot 8$	4,700	1.8	1,570
27.	$8 \cdot 0$	10,000	$7 \cdot 8$	9,500	$5 \cdot 0$	4,930	$4 \cdot 3$	4,080	$4 \cdot 2$	3,970	$1 \cdot 9$	1,650
28.	$6 \cdot 4$	6.800	$7 \cdot 6$	9,000	$4 \cdot 8$	4,700	$4 \cdot 2$	3,970	$4 \cdot 2$	3,970	1.9	1,650
29.	$6 \cdot 8$	7,500	$6 \cdot 8$	7,500	$4 \cdot 5$	4,320	$5 \cdot 0$	4,930	$3 \cdot 8$	3,530	1.8	1,570
30.	$7 \cdot 2$	8,200	$6 \cdot 8$	7,500	$4 \cdot 5$	4,320	$7 \cdot 6$	7,850	$3 \cdot 5$	3,200	1.8	1,570
31.	7-5	8,800	$6 \cdot 8$	$7 \cdot 500$			$7 \cdot 2$	8,230			1.8	1,570

Riley Creek (1043).

Location.-Above irrigation ditches, about half a mile from the mouth and 9 miles from Lillooet.

Records Available.-Daily discharges from July 28, 1914, to October 14, 1914,(irrigation season).

Drainage Area.-Five square miles (measured from provincial map of 1913, scale 3 miles to 1 inch).

Gauge.-Vertical staff gauge nailed to old flume just below the falls. Readings every second day.

Channel.-Fairly wide and shallow. The bed consists mainly of solid rock and gravel. The current is swift. The metering section is a good one.

Discharge Measurements.-Two discharge measurements in 1914 define the rating curve fairly well for the variations during the irrigation season.

Winter Flow.-Measurements made only during the irrigation season.
Accuracy. $-D$.

Riley Creek (1043).
Riley creek rises in the mountains to the south of Lillooet and discharges into the Fraser river about 9 miles below Lillooet at an elevation of about 620 feet. The drainage area is about 5 square miles.

The climate in the Riley Creek basin is much similar to that of the Lillooet district generally. The summers are quite hot and the winters rather severe. The mean annual precipitation in the valley is about 20 inches.

A large fraction of the water flowing in Riley creek is used to irrigate the benches on the Fraser river near the mouth of the stream. It is very probable the remaining flow could be utilized to advantage on these benches. The possibilities of conserving the high-water flow have never been fully investigated.

Discharge Meastrements of Riley Creek above intake of irrigation ditch, for 1914.

Date.	Hydrographer.	Meter No.	Width.	Area of section.	Mean. Velocity:	Gauge Height.	Discharge.
1914.			Feet.	sq.ft.	Ft. per sec.	Feet.	Sec. - ft .
$\begin{array}{ll} \text { July } & 28 \\ \text { Sept. } & 16 . \end{array}$	$\begin{aligned} & \text { H. C. Hughes. } \\ & \text { do } \end{aligned}$	$\begin{aligned} & 1046 \\ & 1046 \end{aligned}$	$\begin{aligned} & 13 \\ & 13 \end{aligned}$		$\begin{aligned} & 1.84 \\ & 1.08 \end{aligned}$		$\stackrel{21-4}{7-5}$

${ }^{1}$ Station established.

Monthly Discharge of Riley Creek above irrigation ditches, for 1914.
(Drainage area, 5 square miles.)

	Month.	Discharge in Second-Feet.				Ren-Off.	
		Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on Drainage area.	Total in acre-feet
August		21	4	10.4	$2 \cdot 1$	$2 \cdot 4$	640
neptember				$11 \cdot 0$	$2 \cdot 2$	$2 \cdot 5$	650

Accuracy " D".

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Riley Creek above irrigation ditches, for 1914.-Con.

	July.		August.		September.		October.	
	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height	Discharge	Gauge Height	Discharge
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft	Feet.	Sec.-ft.
1.			1.3	13 17	$1 \cdot 3$	13 13	$1 \cdot 3$	13 13
3			1.35	21		13		13
4				17	1.3	13	$1 \cdot 3$	13
5			1.30	13		13		13
6.				13	1.3	13	$1 \cdot 3$	13
7.			$1 \cdot 30$	13		10		13
8				13	1.25	8	1.3	13
9			$1 \cdot 30$	13 13	1.25	8	1.3	13 13
11.			1.30	13		8		13
12.				10	1.25	8	$1 \cdot 3$	13
13.			1.25	8		8		13
14.				8	$1 \cdot 25$	8	$1 \cdot 3$	
15			$1 \cdot 25$	8		8		
16.				8	1.25	8		
17.			$1 \cdot 25$	8		8		
18.					$1 \cdot 25$	8		
19.			1.25	8		10		
20.				8	$1 \cdot 3$	13		
21.			$1 \cdot 20$	4		13		
22.				4	1.3	13		
23.			$1 \cdot 20$	4		13		
24				${ }_{8}^{6}$	$1 \cdot 3$	13		
25.			$1 \cdot 25$	8		13		
26.				8	1.3	13		
27.			$1 \cdot 25$	8		13		
28.	$1 \cdot 3$	13		10	1.3	13		
29.		13	1.30	13		13		
30.	1.3	13	$1 \cdot 30$	13	1.3	13		
31.		13		13				

Seton Creek (1049).

Location.-At footbridge at provincial hatchery, about half a mile below Seton lake, and three miles from Lillooet.

Records Available.-Daily discharges from April 6 to December 31, 1914.
Drainage Area. - 460 square miles (measured from provincial map of 1912, scale 12 miles to 1 inch.)

Gauge.-Vertical staff on bridge pier, referenced to three bench-marks. Daily readings.

Channel.-Wide and shallow, and strewn with boulders. The current is quite swift. The measuring section is hardly an ideal one, though about the best obtainable on the stream.

Discharge Measurements.-Four discharge measurements taken in 1914 define the rating curve fairly well except for extremely low or extremely high stages.

Winter Flow.-Open water conditions all year.
Accuracy.-Daily gauge readings combined with a fairly well-defined rating curve should insure a reasonable degree of accuracy, except possibly at the extreme stages.

Seton Creek (1049).
Seton Creek has its source in Seton lake at an elevation of 800 feet, and discharges into Cayuse creek at an elevation of 750 feet. The stream itself is only about $1 \frac{1}{2}$ miles in length, but the lakes which feed it have a drainage area of some 460 square miles.

Seton creek itself is in the dry belt, though some of the territory it drains is outside. The mean annual precipitation at Lillooet is probably about 15 inches, while it may be as high as 30 or even 40 at the headwaters of some of the tributaries. The general climatic conditions vary in a similar manner.

Seton creek forms part of quite an interesting system of waterways. Anderson river rises near the divide which separates it from the Birkenhead, and flows into Anderson lake, which has a number of other rather important streams tributary to it. Anderson lake discharges through Portage creek into Seton lake, which in its turn is drained by Seton creek. The two lakes at one time formed part of quite an important route into the Lillooet and Cariboo country by Harrison lake and the Lillooet river. The construction of the Yale-Cariboo wagon road caused the practical abandonment of this route years ago, but now the country is being opened up again by the construction of the Pacific Great Eastern railway. The railroad, coming up from Squamish to Pemberton, crosses the divide from the Birkenhead, runs along the shores of Anderson and Seton lakes, follows Seton and Cayuse creeks and then crosses the Fraser river below Lillooet on its way to Clinton and Fort George. During the railroad construction the lakes were used extensively for the transportation of supplies.

The country surrounding Seton and Anderson lakes is very picturesque, and should be a good place for a summer resort. There is plenty of good hunting and fishing in the vicinity in addition to the numerous attractions which the lakes themselves afford.

The Provincial Fisheries Department is operating a fish hatchery on Seton crenk. The Salmon coming up from the Fraser river are taken in the creek just below Seton lake. The spawn are hatched and the fry are kept for a time in the tanks at the hatchery. The supply of fresh water required for this purpose is taken from Seton lake.

Owing to the comparatively small fall in Seton creek and the low elevation of Scton lake, there is not much opportunity for using the water for developing water-power or even for irrigation.

There is a considerable quantity of timber on the hills surrounding the two lakes. It is generally fairly easy to get the logs down to the water, and then they ean be towed to the saw-mills. There is a saw-mill on each lake.

On aceount of the proximity of Bridge river to Seton lake, and the great differenee in altitude, there is a splendid chance to develop a large amount of water-power. By driving a tumbl through the intervening ridge, water could be diverted from Bridge river and conveyed to a point on the hillside abowe Scton lake, whence penstocks could be laid to a power-house situated beside the lake. Such an installation could make use of the whole minimum flow of Bridge river at a head of about 2,000 feet. If storage combl be whatamed on Bridge river, the available flow at low water could be increased. Such a development might mean the addition of more than 500 enbie feet per seeomed to the natural flow of Geton ereek and it woukd be neessang to colarge its ehanwel in order that it might carry off this greatly inereased discharge without damage to the suromoling property. 'The tumel portal and the penstocks for sueh a plant would be located on the hillside above the Pacifie Cireat Fastern railway, and it would be necessary to take extra preeations to prevent leaks of breaks which might wash out the track.

There are three creeks of some importance flowing into Anderson lake, and brief descriptions of them are added here. As yet no measurements have been taken on them by the engineers of this survey, partly on account of the poor transportation facilities. Next season, however, measurements will probably be made on some or all of them.

ANDERSON RIVER.

Anderson river rises in Summit lake at an elevation of 1,600 feet and discharges into the southern end of Anderson lake at an elevation of 850 feet. Cedar, Spruce and Little Blackwater creeks are tributaries of Anderson river.

The climatic conditions in the Anderson Creek valley differ considerably from those around Lillooet. The summers are milder and the winters are not quite as cold. The mean annual precipitation is considerably greater, being between 30 and 40 inches. Irrigation is practised to some extent, but is not so necessary, as in the country immediately surrounding Lillooet.

The soil in the Anderson river valley is very fertile, and much of the best land has been taken up for settlement. This development will probably be increased on account of greatly improved transportation facilities afforded by the railroad. There is a good growth of timber in many parts of the valley. The surrounding hills are rich in minerals, and many claims have been staked, though comparatively little development has been done as yet:

LITTLE BLACKWATER.

Little Blackwater creek, which is a tributary of Anderson river, rises in Little Blackwater lake. About 3 miles of swampy land separate this lake from Big Blackwater lake, which is said to be at a somewhat higher elevation. Little Blackwater creek is quite small itself, but by diverting water into it from Big Blackwater lake, it is possible that a considerable amount of water-power might be developed by a pipeline down the valley of Little Blackwater creek.

MCGILLIVRAY CREEK.

McGillivray creek rises in the hills northwest of Anderson lake, into which it discharges.

Near the mouth of the creek there is a falls about 60 feet high at which a considerable amount of water-power might be developed. A small fraction of the water is being used at present to run a saw-mill which is situated at the mouth. Water is led from the head of the falls through a 6 -inch wooden stave pipe to the turbines which drive the mill.

There are gravel deposits on this stream which contain small quantities of gold, and they are being worked to a certain extent.

ROARING CREEK.

This stream empties into Anderson lake about 7 miles from its southern end. It has quite a high water fall on it at which water-power could probably be developed.

SESSIONAL PAPER No. 25e
Discharge Measurements of Seton Creek near Seton Lake, for 1914.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Date. \& Hydrographer. \& Meter So. \& Width. \& Area of Section. \& Mean Velocity. \& \begin{tabular}{l}
Gauge \\
Height.
\end{tabular} \& Discharge. \\
\hline 1914. \& \& \& Feet. \& Sq. ft. \& Ft. per sec. \& Feet. \& See -ft. \\
\hline April
June

13 \& H. J. E. Keys
Kevs \& Hughes \& 1046

1046 \& | 66 |
| :--- |
| 78 |
| 8 | \& ${ }_{231}^{112}$ \& 3.23

6.73
.7 \& 1.72
3.30 \& ${ }_{1.5562}$

\hline " 19 \& H. C. Hughes \& 1046 \& 78 \& 261 \& 7.50 \& 3.70 \& 1,967

\hline Sept. 17 \& do \& 1046 \& 73 \& 134 \& $3 \cdot 64$ \& 2.20 \& 488

\hline
\end{tabular}

${ }^{1}$ Station established.

Monthly Discharge of Seton Creek below Seton Lake, for 1914.
(Drainage area, 460 square miles.)

	Month.		Discharge in Second-Feet.				Rev-Off.	
			Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on Drainage area.	Total in acre-feet.
April.			450	300	362	0.8	0.9	21.500
May..	10	-	1,760	420	1.013	$2 \cdot 2$	$2 \cdot 5$	62.300
June..			2, 290	1.660	1,646	$4 \cdot 0$	$4 \cdot 5$	110.000
July .			2, 800	1.760	2,390	5-2	$6 \cdot 0$	147.060
August.			1,760	700	952	$2 \cdot 1$	$2 \cdot 4$	58,500
September			610	450	492	$1 \cdot 1$	1.2	29,300
October.			610 610	450	510 509	1.1	1.3	31.400
November. .			610 450	450 340	509 380	1.1	1.2	30.300
December.			450	340	382	0.8	0.9	23,54.0

Accuracy " C ".

Daily Gauge Height and Discharge of Seton Creek below Seton Lake, for 1914.

Day.	April.		May.		June.		July.		August.		September.	
	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height	Discharge	Gauge Height	Discharge.	Gauge Height	Discharge.
.	Feet.	See.-ft.	Feet.	Sec.-ft.								
1.			$2 \cdot 0$	420	3.4	1,660	3.7 3.7	1,970	$3 \cdot 5$ $3 \cdot 4$	1,760	$2 \cdot 4$	610
2.			$2 \cdot 0$	420	$3 \cdot 4$	1,660	$3 \cdot 7$	1,970	$3 \cdot 4$	1,660	$2 \cdot 4$	610
3			$2 \cdot 0$	420	$3 \cdot 4$	1,660	$3 \cdot 7$	1,970	$3 \cdot 3$	1,550	$2 \cdot 4$	610
4			$2 \cdot 0$	420	$3 \cdot 4$	1,660	$4 \cdot 0$	2,280	$3 \cdot 2$	1,440	$2 \cdot 4$	610
5.	1.4	320	$2 \cdot 0$	420	$3 \cdot 4$	1,660	$4 \cdot 2$	2,490	$2 \cdot 8$	1,030	$2 \cdot 3$	540
6	$1 \cdot 3$	310	$2 \cdot 1$	450	$3 \cdot 4$	1,660	$4 \cdot 2$	2,490	$2 \cdot 8$	1,030	$2 \cdot 3$	540
7.	1.5	330	$2 \cdot 1$	450	$3 \cdot 4$	1,660	$4 \cdot 1$	2,390	$2 \cdot 8$	1,030	$2 \cdot 2$	490
8	1.5	330	$2 \cdot 1$	450	$3 \cdot 4$	1,660	$4 \cdot 2$	2,490	$2 \cdot 8$	1,030	$2 \cdot 3$	540
9	$1 \cdot 5$	330	$2 \cdot 2$	490	$3 \cdot 4$	1,660	$4 \cdot 2$	2,490	$2 \cdot 6$	810	$2 \cdot 3$	540
10	$1 \cdot 6$	340	$2 \cdot 2$	490	$3 \cdot 4$	1,660	$4 \cdot 3$	2,600	$2 \cdot 7$	920	$2 \cdot 2$	490
11.	$1 \cdot 6$	340	$2 \cdot 3$	540	$3 \cdot 4$	1,660	$4 \cdot 3$	2,600	$2 \cdot 7$	920	$2 \cdot 2$	490
12.	$1 \cdot 6$	340	$2 \cdot 4$	610	$3 \cdot 4$	1,660	$4 \cdot 2$	2,490	$2 \cdot 7$	920	$2 \cdot 2$	490
13.	1.7	350	$2 \cdot 5$	700	$3 \cdot 4$	1,660	$4 \cdot 3$	2, 600	$2 \cdot 7$	920	$2 \cdot 1$	450
14	1.7	350	$2 \cdot 6$	810	$3 \cdot 4$	1,660	$4 \cdot 2$	2,490	$2 \cdot 7$	920	$2 \cdot 1$	450
15.	$1 \cdot 7$	350	$2 \cdot 7$	920	$3 \cdot 5$	1,760	$4 \cdot 2$	2,490	$2 \cdot 7$	920	$2 \cdot 1$	450
16.	$1 \cdot 7$	350	$2 \cdot 8$	1,030	$3 \cdot 5$	1,760	$4 \cdot 3$	2, 600	$2 \cdot 7$	920	$2 \cdot 0$	420
17.	1.7	350	$2 \cdot 8$	1,030	$3 \cdot 7$	1,970	$4 \cdot 4$	2,700	$2 \cdot 7$	920	$2 \cdot 0$	420
18	1.7	350	$2 \cdot 9$	1,140	$3 \cdot 8$	2,070	4.4	2,700	$2 \cdot 7$	920	$2 \cdot 2$	490
19	1.7	350	$2 \cdot 9$	1,140	$3 \cdot 7$	1,970	$4 \cdot 5$	2,800	$2 \cdot 6$	810	$2 \cdot 2$	490
20.	1.8	370	$3 \cdot 0$	1,250	$3 \cdot 8$	2,070	$4 \cdot 5$	2,800	$2 \cdot 6$	810	$2 \cdot 2$	490
21	1.8	370	$3 \cdot 1$	1,340	$3 \cdot 9$	2,180	$4 \cdot 5$	2, 800	$2 \cdot 6$	810	$2 \cdot 2$	490
22.	$2 \cdot 1$	450	$3 \cdot 2$	1,440	$4 \cdot 0$	2,280	4.4	2,700	$2 \cdot 6$	810	$2 \cdot 1$	450
23.	$2 \cdot 1$	450	$3 \cdot 3$	1,550	$3 \cdot 9$	2,180	$4 \cdot 3$	2, 600	$2 \cdot 6$	810	$2 \cdot 1$	450
24	$2 \cdot 0$	420	$3 \cdot 4$	1,660	$3 \cdot 9$	2,180	$4 \cdot 2$	2,490	$2 \cdot 6$	810	${ }_{2} \cdot 1$	450
25.	$2 \cdot 0$	420	$3 \cdot 4$	1,660	$3 \cdot 8$	2,070	$4 \cdot 1$	2,390	$2 \cdot 6$	810	$2 \cdot 1$	450
26.	$2 \cdot 0$	420	$3 \cdot 4$	1,660	3-8	2,070	$4 \cdot 1$	2,390	$2 \cdot 5$	700	$2 \cdot 1$	450
27.	$2 \cdot 0$	420	$3 \cdot 4$	1,660	$3 \cdot 7$	1,970	$3 \cdot 8$	2,070	$2 \cdot 5$	700	$2 \cdot 1$	450
28	$2 \cdot 0$	420	$3 \cdot 5$	1,760	$3 \cdot 6$	1,860	$3 \cdot 7$	1,970	$2 \cdot 5$	700	$2 \cdot 1$	450
29.	$2 \cdot 0$	420	$3 \cdot 5$	1,760	$3 \cdot 6$	1,860	$3 \cdot 6$	1,860	$2 \cdot 5$	700	$2 \cdot 1$	450
30.	$2 \cdot 0$	420	$3 \cdot 4$	1,660	$3 \cdot 7$	1,970	$3 \cdot 6$	1,860	$2 \cdot 5$	700	$2 \cdot 1$	450
$31 \ldots$			$3 \cdot 4$	1,660			$3 \cdot 5$	1,760	$2 \cdot 5$	700		

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Seton Creek below Seton Lake, for 1914-Con.

Six-mile Creek (1061).

Location.- At Highway bridge - 1 mile from the mouth, 5 miles from Pemberton, and 56 miles from Squamish.

Records Available.-Daily discharges from June 2, 1914, to December 31, 1914.

Drainage Area.-Thirty square miles (measured from the provincial map) of 1913 , scale 3 miles to 1 inch).

Gauge. Vertical staff on bridge pier, referenced to three bencli-marks. Daily readings.

Channel. Wide and sha low and strewn with boulders and coarse gravel. The current is very swift. The measuring seetion is hardly an iteal one, though about the best obtainable on the stream.

Discharge Measurements. Five discharge measurements in 191415 define the rating curve fairly well, exerpt for extremely high stages.

Winter Flow.- Open water conditions all winter.
Accuracy. Daily gauge readings eombined with a fairly well-defined rating eurve should insure a reasomable degree of acemaey, exeept possibly at extremely high stages.

Six-mile Creek (1061).

Six-mile creek has its source in the mountains to the southwest of Pemberton and discharges into the Green river at an elevation of about 1,400 feet. It has a drainage area of something like 30 square miles.

The climate in the Six-mile creek watershed is much similar to that of Pemberton meadows and the Green river valley. The range of temperature is not very great. There is a fairly heavy snowfall. The mean annual precipitation of the watershed is about 75 inches.

Six-mile creek is the second largest tributary of Green river. The stream has a very rapid fall, and considerable power might be developed on it. If a suitable strap site can be found on it, it would assist in regulating the flow in Green river for use at the proposed development at Nairn falls. Its value in this capacity has never been fully investigated.

The main line of the Pacific Great Eastern railway crosses the stream about three-quarters of a mile from the mouth. A flag-station, Tisdall, near this point, affords easy access to the gauging station.

There is some good farming land on the benches near the mouth of the stream, but it is little developed as yet.

Discharge Measurements of Six-mile Creek at mouth, for 1914.

Date.	Hydrographer.	Meter No.	Width.	Area of section.	Mean Velocity:	Gauge Height.	Discharge.
1914.			Feet.	Sq. ft.	Ft . per sec.	Feet.	Sec.-ft.
June Aug. 2^{21} 12.	Keys \& Hughes. H. C. Hughes..	1046 1046		123	6.8	$3 \cdot 32$	840
Aug. Sept. 	H. C. Hughes ...	1046 1046	45	166	$6 \cdot 8$ $4 \cdot 4$	$3 \cdot 28$	290
Sept 10		1046	45	86.4	5.13	2.80	446
Nov. 27.	Dobbie \& Hughes	1057	45	$67 \cdot 8$	5.18	$2 \cdot 40$	346^{2}

${ }^{1}$ Stations established. $\quad{ }^{2}$ Channel probably changed by freshet

Monthly Discharge of Six-mile Creek, 5 miles from Pemberton, for 1914.
(Drainage area, 30 square miles.)

Month.	Discharge in Second-Feet.				RUN-Off.		Accuracy.
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	Total in acre-feet.	
June..	1,720	390	866	28.9	$32 \cdot 2$	52.000	C
July	1,900	540	1,170	$39 \cdot 0$	45.0	71,900	C
August	1,090	390	717	23.9	$27 \cdot 6$	44, 100	B
September							
October	6,580 1.850	40 100	1,620 590	$5 \cdot 4$ 2.0	$6 \cdot 2$ $2 \cdot 2$	99,600 35,000	$\underset{\mathrm{B}}{\mathrm{D}}$
November	1.850	100	590	$2 \cdot 0$	$2 \cdot 2$	35,000	

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Six-mile Creek at Highway Bridge, for 1914.

Day.	June.		July.		August.		September.		October.		November.	
	Gauge Height	Discharge	Gauge Height	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height	Discharge
	Feet.	Sec-ft.	Feet.	Siec.-ft.	Feet.	Sec-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1	$3 \cdot 4$	910	$3 \cdot 9$	1,360	$3 \cdot 0$	600	$2 \cdot 65$	410	$2 \cdot 6$	390	4.45	1. 550
2	$3 \cdot 4$	910	$4 \cdot 2$	1.630	$3 \cdot 2$	750	$2 \cdot 6$	390	$2 \cdot 4$	320	$4 \cdot 25$	1,6>0
3.	$3 \cdot 4$	910	$4 \cdot 4$	1. 810	3.3	830	2-6	391	$2 \cdot 2$	260	4.15	1.580
4	$3 \cdot 0$	600	$4 \cdot 3$	1,720	$3 \cdot 4$	910	2.6	390	2.1	230	3.95	1. 4100
5.	$2 \cdot 9$	540	$4 \cdot 0$	1,450	$3 \cdot 3$	830	$2 \cdot 6$	390	$2 \cdot 1$	230	$3 \cdot 65$	1,130
6	$2 \cdot 7$	440	$3 \cdot 8$	1,270	$3 \cdot 3$	830	2-6	390	1.9	160	3-35	870
7	$2 \cdot 7$	440	$3 \cdot 7$	1,180	$3 \cdot 2$	750	2.6	390	1.6	120	3.05	640
8	2.6	391)	$3 \cdot 5$	1,010	3-2	730	$2 \cdot 6$	390	1.1	40	3. 25	790
9	2.7	440	$3 \cdot 5$	1,000	$3 \cdot 0$	600	$2+5$	350	$2 \cdot 2$	260	$3 \cdot 45$	950
10.	$2 \cdot 8$	490	$3 \cdot 4$	910	$3 \cdot 0$	600	$2 \cdot 3$	290	$2 \cdot 7$	440	3-15	710
11.	2.9	540	$4 \cdot 2$	1.630	$3 \cdot 1$	670 -70	2.8	490	$2 \cdot 2$	263	$\frac{2}{2} \cdot 95$	570
12	$3 \cdot 1$	670	$4 \cdot 5$	1,900	$3 \cdot 2$	750	2.8	490	$2 \cdot 1$	230	$\frac{2}{2} \cdot 75$	460
13.	$3 \cdot 3$	830 1.270	$4 \cdot 3$	1,720	$3 \cdot 6$	1,090	$\frac{2}{2}+3$	290	$6 \cdot 3$	3,520	2-65	420
14	$3 \cdot 8$	1,270	$4 \cdot 4$	1. 810	$3 \cdot 4$	910	$2 \cdot 3$	$291)$	6.0	3.250	$\frac{9}{9} \cdot 45$	330
15	$3 \cdot 9$	1,360	4.5	1,9140	$3 \cdot 2$	750	2-1	230	8.9	5. 450	$2 \cdot 35$	300
16	$4 \cdot 2$	1. 630	$4 \cdot 3$	1.720	$3 \cdot 2$	750	$2 \cdot 0$	200	9.7	6.560	$2 \cdot 35$	300
17	$4 \cdot 3$	1.720	$3 \cdot 7$	1,180	3.0	$601)$..	<		6. 1000	2.15	240
18	$4 \cdot 0$	1,450	$3 \cdot 8$	1,270	2.9	540				4, 4,40	1.95	1 (\%)
19	3.8	1,270	$3 \cdot 5$	1.270	$3 \cdot 3$, 830	-		$4 \cdot 55$	1.950	2.05	220
20.	$3 \cdot 4$	910	$3 \cdot 5$	1, $\mathrm{O} \times 50$	$3 \cdot 5$	1,000			4.15	1,550	$2 \cdot 15$	240
21	$3 \cdot 1$	670	$3 \cdot 2$	750	$3 \cdot 1$	670			3.75	1.220	2.25	980
22.	$3 \cdot 0$	600	$3 \cdot 1$	670	$3 \cdot 5$	1,040)	1		$3 \cdot 45$	960	$2 \cdot 15$	240
23.	$3 \cdot 1$	670	$3 \cdot 3$	830	$2 \cdot 9$	540		*	$3 \cdot 25$	7 (1)	$2 \cdot 35$	300
24	$3 \cdot 0$	660	$3 \cdot 3$	8.30	$2 \cdot 9$	540			$2 \cdot 95$	570	2.35	300
25	$3 \cdot 4$	910	$3+3$	830	$3 \cdot 1$	670			$3 \cdot 15$	710	3. 25	790
26.	$3 \cdot 4$	910	3-3	830	$3 \cdot 0$	600			$3 \cdot 15$	710	265	420
27	$3 \cdot 3$	830	$3 \cdot 1$	670	$3 \cdot 0$	$616)$			$3 \cdot 55$	1. 1.40	1.70	140
28	3-4	910	$3 \cdot 0$	690	$3 \cdot 1$	679			$4 \cdot 45$	1. 8.50	1.40	160
29	$3 \cdot 5$	1, 15010	2.9	540	$3 \cdot 0$	600			$5 \cdot 55$	2. N 50	1-6)	120
30	$3 \cdot 7$	1.180	$3 \cdot 9$	6041	$3 \cdot 0$	600			$4 \cdot 25$	2220	$1 \cdot 50$	$1(0)$
31.			$3 \cdot 0$	600	$2 \cdot 6$	390			$4 \cdot 25$	1,680		

Daily Gauge Height and Discharge of Six-mile Creek at Highway Bridge, for 1914-Con.

	DAx.

Soo River (1037).
Location.-At Highway bridge, 2 miles from the mouth; $61 / 2$ miles from Pemberton, and 56 miles from Squamish.

Records Available.-Six meter measurements. Gauge readings are available from December 5, 1914. These can be used to get discharges when the curve is more thoroughly defined.

Drainage Area.-Seventy-five square miles (measured from the Provincial map of 1912 , scale 3 miles to 1 inch).

Gauge.-Vertical staff on bridge pier, referenced to three bench-marks. Readings daily.

Channel.-Wide and shallow, strewn with boulders, gravel and silt. The current is fairly swift. The metering section is an excellent one.

Discharge Measurements.-Six meter measurements.
Winter Flow.-The measuring section is usually frozen over and the channel is affected by ice at times during the winter.

Soo River (1037).
Soo river has its source in the mountains to the northwest of Green lake, and discharges into the Green river about 11 miles from its mouth, at an elevation of some 1,500 feet. It has a drainage area of something like 75 square miles.

SESSIONAL PAPER No. 25e

The climate in the Soo river watershed is much similar to that of Pemberton meadows and the Green river valley. The range of temperature is not very great, and there is a fairly heavy snowfall. The mean annual precipitation for the whole watershed is about 75 inches.

The discharge figures indicate that there is a considerable quantity of water flowing in Soo river. This could be used to develop power in a small canyon about 2 miles from the mouth, in which there is a large fall. The stream could also be used to good advantage as a storage reservoir for power development on Green river at Nairn falls. About 20 miles from the mouth there is a string of fair-sized lakes and several large meadows which are well adapted for this purpose. A pack trail follows the stream up to the lakes.

The main line of the Pacific Great Eastern railway follows along the right bank for about 2 miles, and crosses 4 miles from the mouth.

There is some good farming land on the flats near the mouth of the stream.
The Soo river is fairly well-timbered.

Discharge Measurements of Soo River near mouth, for 1914.

Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
1914.			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
March 24^{1}.	H. J. E. Keys...						
May July 19,...	Keys \& Hughes. H.C. Hughes.		107 115	320 426	2.67 4.42	2.93	${ }_{8}^{853}$
July Aug. A	H. C. do uighes.	${ }_{1046}^{1046}$	115 110	426 366	4.42 $3 \cdot 60$	$3 \cdot 87$ $3 \cdot 50$	1,880 1,320
Dec. ${ }^{\text {a }}$	Dobbie \& Hughes	1057	90	223	1.61	$1 \cdot 10$	1,352 ${ }^{2}$

Station established.
${ }^{2}$ Channel probably changed by freshet.

Texas Creek (1044).

Location.-At the highway bridge, 14 miles from Lillooet, and on the west side of the Fraser river.

Records Available.-Daily discharges from April 14 to September 14, 1914 (irrigation season).

Drainage Area.-Fifty square miles (measured from the provincial map of 1912, scale 12 miles to 1 inch).

Gauge.-Vertical staff gauge nailed to bridge pier, and referenced to three bench-marks. Gauge readings taken three times a week.

Channel--Wide and shallow, covered with boulders. The measuring section on the lower side of the bridge is rather poor but is the best obtainable.

Discharge Measurements.-Four meter measurements taken during the spring and summer of 1914 define the rating curve fairly well for all but the highest stages.

IVinter Flow.-Measurements made only daring the irrigation season.
Accuracy.-The four meter measurements agree farly well and eover all but the highest stages. The gauge readings were taken only thee times a week.

Texas ('mek (10-4).
Texas ereek has its source in the mountains to the south of lillowet. some of the mountain peaks in its vicinity attain an altitute of s.000 feet. It discharges into the fraser river some 11 miles below lilleoed, at an elevation of about 600 feet. It hats a dramage area of something like 50 square miles.

The climate in the Texas creek watershed is much similar to that of the Lillooet district generally; the summers are quite hot and the winters rather severe. At the mouth the mean annual precipitation is probably about 20 inches, and this may increase to 30 inches or more at the higher altitudes near the head-waters.

The discharge figures indicate that there is a considerable quantity of water flowing in Texas creek during the irrigation season, and in a dry part of the country like the Lillooet district, this water should be quite valuable. Unfortunately, the benches near the mouth are so high above the stream that it would be very costly to get the water up to them. There are large areas of good land on the opposite side of the Fraser river which might be irrigated from Texas creek, though the expense of conveying the water across the river would be quite high.

Discharge Measurements of Texas Creek one mile from mouth, for 1914.

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity:	Gauge Height.	Discharge.
1914.			Feet.	Sq. ft .	Ft. per sec.	Feet.	See.-ft.
April 14	H. J. E. Keys	1046	19	29.7	3.60	1.20	${ }^{107} 7^{1}$
June $\begin{array}{r}7 \\ \text { July } \\ 29\end{array}$	Keys \& Hughes	1046 1046	22	$42 \cdot 7$ $43 \cdot 0$	$5 \cdot 47$ $2 \cdot 96$	2.00 1.50	233 137
$\begin{array}{ll}\text { July } & 29 \\ \text { Sept. } & 16 .\end{array}$	H. C. Hughes.	1046	22 20	$+3 \cdot 0$ 26.3	2.90 $2 \cdot 39$	1.00	137 63

${ }^{1}$ Station established, gauge referenced to bench-marks.

Monthly Discharge of Texas Creek one mile from mouth, for 1914.
(Drainage area, 50 square miles.)

	Month.	Discharge in Second-Feet.				Rux-Off.	
		Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	Total in acre-feet.
May.		340	120	247	$4 \cdot 9$	$5 \cdot 6$	15,200
June.		560	210	337	$6 \cdot 7$	$7 \cdot 5$	20,000
July		280	140	211	$4 \cdot 2$	4.8	13,000
August.	$100-1$	130	70	100	2.0	$2 \cdot 3$	6,100
September	, $3=-1$	100	50	71	$1 \cdot 4$	1.6	4,200

[^25]SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Texas Creek one mile from mouth, for 1914.

Daily Gauge Height and Discharge of Texas Creek, one mile from mouth, for 1914-Con.

Miscellaneous Metering Stations.

REPORT

of THE

BRITISH COLUMBIA HYDROGRAPHIC SURVEY FOR 1914

CHAPTER 6
Kamloops Division-Hydrographic Data

CHAPTER VI.

KAMLOOPS DIVISION-HYDROGRAPHIC DATA.

REGULAR METERING STATION.

Bolean Creek (2002).
Location.-Section 10, township 18, range 12, west 6 th meridian.
Records Available.-May 23 to December 31, 1911; January 1 to September 16, 1912; April 27 to September 19, 1913; April 1 to December 8, 1914.

Drainage Area.-Eighty square miles.
Gauge.-Vertical staff gauge. Read by Clement Stickney, Falkland, B.C.
Channel.-Gravel, sandy and clean. One permanent channel. Average width about 20 feet.

Discharge Measurements.-In freshet, measurements are made with a stay line and $61 / 2$ pound weight from a log. Low-water measurements are made by wading. Gauge-height discharge curve is fairly well defined from twelve meterings.

Winter Flow.-Partial ice conditions usually prevail during December and January.

Accuracy.-Fairly high, being probably within 10 per cent of obtaining conditions.

Discharge Measurements of Bolean Creek near Falkland, for 1914.

Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of section.	$\begin{gathered} \text { Mean } \\ \text { Velocity. } \end{gathered}$	Gauge Height	Discharke.
			Feet.	Aq. ft .	Ft. per sec.	Feet.	See. ff .
June 22	C. Corbould	1915	26.0	26.0	2.4	1.8	63.01
Juply ${ }^{\text {Jut. }} 24$	"		$\underline{16.5}$	15.1 6.8	1.13	$1 \cdot 15$	20.3

[^26]6 GEORGE V, A. 1916
Daily Gadge Height and Discharge of Bolean Creek near Stickney's Ranch, for 1914.

S'ESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Bolean Creek near Stickney's Ranch for 1914-Con.

Day.	July		August.		September.		October.		November.		December.	
	Gauge Height	Discharge	Gauge Height	Discharge.	Gauge Height	Discharge.	Gauge Height	Discharge	Gauge Height.	Discharge.	Gauge Height.	Discharge.
	Feet.	Sec.-ft.										
1	$1 \cdot 60$	38.0	$1 \cdot 15$	$10 \cdot 5$	1.00	$3 \cdot 0$	1-30	18.2	$1 \cdot 32$	19.4	1.25	15.6
2	1.52	$32 \cdot 0$	$1 \cdot 15$	$10 \cdot 5$. 97	$2 \cdot 1$	1.25	$15 \cdot 6$	$1 \cdot 40$	24-0	1.25	15.6
3	$1 \cdot 47$	28.5	$1 \cdot 10$	8.0	1.00	$3 \cdot 0$	1-25	$15 \cdot 6$	1.35	21.1	$1-30$	18.2
4	1.42	$25 \cdot 3$	$1 \cdot 10$	8.0	. 97	$2 \cdot 1$	1.25	$15 \cdot 6$	$1 \cdot 30$	18.2	1-25	$15 \cdot 6$
5.	1.40	$24 \cdot 0$	1-10	$8 \cdot 0$	1.00	$3 \cdot 0$	1.22	$14 \cdot 4$	1.32	$19 \cdot 4$	1.20	13.0
6.	1.40	24-0	$1 \cdot 10$	8.0	. 97	$2 \cdot 1$	$1 \cdot 20$	13.0	1.35	$21 \cdot 1$	1-20	13.0
7.	1.35	21.1	1. 10	8.0	. 97	$2 \cdot 1$	1.20	13.0	1.35	21.1	$1 \cdot 27$	$16 \cdot 6$
8	1.30	18.2	1.10	$8 \cdot 0$	1.00	$3 \cdot 0$	$1 \cdot 20$	13.0	1.30	18.2	1-35	$21 \cdot 1$
9	$1 \cdot 30$	18.2	$1 \cdot 10$	8.0	1.00	$3 \cdot 0$	$1 \cdot 20$	$13 \cdot 0$	1.30	18.2		
10.	1.30	18.2	$1 \cdot 10$	8.0	$1 \cdot 00$	$3 \cdot 0$	$1 \cdot 20$	13.0	1.30	18.2		
11	1.30	18.2	$1 \cdot 10$	$8 \cdot 0$	1.00	$3 \cdot 0$	$1 \cdot 20$	13.0	1.30	18.2		
12	1-32	19.4	$1 \cdot 10$	$8 \cdot 0$	1.07	$6 \cdot 5$	1.27	$16 \cdot 6$	1-30	18.2		
13.	1.52	$32 \cdot 0$	1.05	$5 \cdot 5$	$1 \cdot 10$	8.0	1.40	$24 \cdot 0$	1.30	18.2		
14	1.77	$54 \cdot 0$	1.05	$5 \cdot 5$	1.15	$10 \cdot 5$	$1 \cdot 32$	19.4	1.25	15.6		
15.	$1 \cdot 65$	42.5	1.02	$4 \cdot 0$	1.20	13.0	1.30	18.2	1.25	15.6		
16	1.47	28.5	1.00	3.0	1.15	$10 \cdot 5$	1.30	18.2	1.30	18.2		
17.	1.40	24.0	1.00	3.0	1.20	13.0	1.30	18.2	1.25	15.6		
18.	1.37	$22 \cdot 3$	1.00	$3 \cdot 0$	1.25	$15 \cdot 6$	1.30	18.2	1.25	15.6		
19.	1.35	$21 \cdot 1$	1.00	$3 \cdot 0$	1.25	$15 \cdot 6$	1.30	18.2	1.30	18.2		
20.	$1 \cdot 35$	$21 \cdot 1$	1.00	$3 \cdot 0$	1.22	$14 \cdot 4$	$1 \cdot 30$	18.2	1.30	18.2		$1-$
21.	1.40	$24 \cdot 0$	$1 \cdot 00$	$3 \cdot 0$	$1 \cdot 20$	$13 \cdot 0$	1-30	18.2	1.30	18.2		
22	1.30	18.2	1.00	$3 \cdot 0$	1.20	13.0	$1 \cdot 30$	18.2	$1 \cdot 27$	$16 \cdot 6$		
23	1.30	18.2	1.00	$3 \cdot 0$	1.20	13.0	$1 \cdot 30$	18.2	1.25	15.6		
24	1.30	18.2	1.00	$3 \cdot 0$	1.15	$10 \cdot$ -	$1 \cdot 24$	$15 \cdot 0$	1.27	16.6	F 1	
25.	$1 \cdot 30$	18.2	1.00	$3 \cdot 0$	$1 \cdot 15$	$10 \cdot 5$	1-25	$15 \cdot 6$	1.30	15.2		
26 . . ${ }^{27}$	1.25	15.6	1.00	3.0	1.20	13.0	$1 \cdot 25$	15.6	1.30	18.2		
$27 . .$.	1.25	$15 \cdot 6$	1.00	$3 \cdot 0$	1.70	47.0	$1 \cdot 25$	15.6	1.30	18.2		
28.	1.20	13.0	1.00	$3 \cdot 0$	1+45	27.2	$1 \cdot 25$	15.6	1.30	18.2		
29	1.20	13.0	1.00	$3 \cdot 0$	1.35	21.1	1.20	13.0	1.30	15.2		
30.	1.20	13.0	1.00	$3 \cdot 0$	$1 \cdot 30$	18.2	$1 \cdot 20$	13.0	1.25	$15 \cdot 6$		
$31 . .$.	$1 \cdot 20$	13.0	1.00	$3 \cdot 0$. ..		$1 \cdot 20$	13.0				

Monthly Discharge of Bolean Creek near Stickney's Ranch, for 1914.
(Drainage arca, 80 square miles.)

Montil	Dincharge in siecond-Fiekt.				Ru-N-Ity	
	Maximum.	Minimum.	Mern.	$\begin{aligned} & \text { Per } \\ & \text { nyuare } \\ & \text { mile } \end{aligned}$	```Depthin inches on 1) ratagese miva```	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { nere feet } \end{gathered}$
April	(0x-5	15.6	$57 \cdot 4$	0.7	0.3	3.415
May	$470 \cdot 0$	148.1	$2 \mathrm{nct}-4$	3.6	41	17.1611
June	$210 \cdot 8$	+2.5	lis. 5	13	1.	15, 4,0
July	5.1 .0	13.0	22-9	$1{ }^{1} 3$	(1.3	1 แs
August	111.5	3.0	5.3	0.0	1106	26
Mepiconiser	47.0	$2 \cdot 1$	11. 8	1113	11.14	(143
Gecober	21.0	13.0	16-0	1-3	$1 .:$	1154
November berembur	240	$15 \cdot 6$	18.1	11.23	112	$1 \mathrm{n} / \mathrm{F}$
The peritst	$470 \cdot 0$	$2 \cdot 1$	65.7	11.81	? 26	d1 419

Nore - Winter conditions obtainend after Deqeember x

Campbell Creek (2004).
Location.-Section 26, township 19, range 16, west 6 th meridian.
Records Available.-May 27 to October 4, 1911; April 1 to September 16, 1912; May 1 to August 31, 1913; April 1 to August 31, 1914.

Drainage Area.-Two hundred square miles.
Gauge.-Vertical staff gauge read by A. Holt of Barnhart Vale.
Channel.-Straight for about 100 feet at measuring section. Bed of stream sandy and fairly permanent. Average width of channel about 10 feet.

Discharge Measurements.-Gauge height discharge curve is very well defined from seven meterings taken during 1914. Measurements in high water taken from bridge with 6 -pound weight. In low water, measurements taken by wading. Flow in this stream ceased altogether on August 23.

Winter Flow.-Ice conditions prevail during December, January, and February.

Accuracy.-High; results compiled from a well-rated curve.

Discharge Measurements of Campbell Creek at Todd's Corners, for 1914.

	Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
				Feet.	Sq. tt .	Ft. per sec.	Feet.	Sec. -ft .
April	17.	E. 11. Dann. ${ }_{\text {M }}$ Dann \& H. Tred-	1505	9	$6 \cdot 7$	0.83	0.88	$5 \cdot 5^{1}$
May		E. M. Dann \& E. H. Trederoft	1055	9	$17 \cdot 0$	1.75	$1 \cdot 6$	29.7
May	15.	C. B. do do	1055	20	$33 \cdot 9$	$2 \cdot 13$	$2 \cdot 6$	$72 \cdot 0$
June	20.	C. B. Corbould.	1915	9	$10 \cdot 0$	1.1	$1 \cdot 05$	11.0
June	25	do	1915	7	8.4	1.7	$1 \cdot 5$	$14 \cdot 0$
July	16	do	1915	11	$12 \cdot 1$	1.56	1.25	$19 \cdot 0^{2}$
July	21.	do	1915	11	10.7	1.29	1.15	13.8
Sept.	26.	do	1915	5	$1 \cdot 1$	$0 \cdot 7$	$0 \cdot 55$	0.8

[^27]SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Campbell Creek at Todd's Corners, for 1914.

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Campbell Creek near Todd's Corners, for 1914 -Con.

Monthly Discharge of Campbell Creek near Todd's Corners, for 1914.
(Drainage area, 200 square miles.)

Month.	Discharge in Second-Feet.				ReN-Ofy.	
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { milc. } \end{aligned}$	Depth in inches on Drainage агея.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-fect. } \end{gathered}$
April.	$15 \cdot 8$	6.2	$10 \cdot 7$	$0 \cdot 05$	$0 \cdot 06$	$637 \cdot 0$
	$72 \cdot 2$	$13 \cdot 1$	48.0	$0 \cdot 24$	0.28	2,951-0
June. , - . ich .	$35 \cdot 5$	$7 \cdot 8$	$17 \cdot 5$	0.09	$0 \cdot 10$	$1.041 \cdot 0$
July:	$18 \cdot 9$	$2 \cdot 7$	8.0	$0 \cdot 64$	$0 \cdot 05$	$492 \cdot 0$
August.	$3 \cdot 6$	$0 \cdot 0$	$1 \cdot 7$	0.01	0.01	104.5
The period	$72 \cdot 2$	$0 \cdot 0$	$17 \cdot 2$	0.09	$0 \cdot 50$	$5.225 \cdot 0$

[^28]SESSIONAL PAPER No. 25e
Canyon Creek (2057).
Location.-Section 32, township 21, range 15, west 6 th meridian.
Records Available.-June 7 to August 28, 1914.
Drainage Area.-Seven square miles.
Gauge.-Standard staff gauge read daily by D. A. McKienzie.
Channel.-Channel straight at measuring section, banks very heavily timbered, velocity fairly swift, bed of stream rocky with several channels at high water.

Discharge Measurements.-Four discharge measurements were obtained during 1914 at various stages. Stream generally runs dry during end of August, and remains so until following spring.

Winter Flow.-Ice conditions always exist on this stream throughout the winter.

Accuracy. - The accuracy of returns will eventually be high but more data are required before the stream can be properly rated.

Discharge Measurements of Canyon Creek above Heffley Lake, for 1914.

	Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section.	Mean Velocity:	Gauge Height	Discharge.
				Feet.	Sq. ft .	Ft . per sec.	Feet.	Sec. -ft .
June	2.	C. B. Corbould	1,915 1,915	5	$2 \cdot 7$ $5 \cdot 45$	1.44		3.9 3.9
June	30.	do	1,915 1,915	5 4.5	$5 \cdot 45$ $3 \cdot 5$	0.72 0.33	1.8 1.45	3.9 $1 \cdot 17$
Aug.		do					$0 \cdot 15$	$0.0{ }^{1}$

[^29]Daily Gauge Height and Discharge of Canyon Creek above Heffley Lake, for 1914.

SESSIONAL PAPER No. 25e

Daily Gauge Height and Discharge of Canyon Creek above Heffley Lake, for 1914-Con.

Monthly Discharge of Canyon Creek above Heffley Lake, for 1914.
(Drainage area, 7 square miles.)

[^30]Clearwater River (2047).
Location.-Near Raft River; Water District No. 2.
Records Available.-August 12 to December 31, 1913; January 1 to December 31, 1914.

Drainage Area.-2,400 square miles.
Gauge.-Standard chain gauge graduated in feet and tenths, and read by Theo. Brookfield, rancher.

Measuring Section.-500 feet above gauge; width of channel 230 feet. Bed of stream rocky and permanent. Deepest point in measuring section at highest recorded water level 22 feet. Highest mean velocity 7.78 feet per second.

Methods of Gauging.-Discharge measurements are made from car suspended from $\frac{3}{4}$ inch steel cable.

Channel.-The channel varies in width throughout its course from 100 to 400 feet. and passes over several small falls and rapids.

IV inter Flow.-The Clearwater river is seldom frozen during winter to the extent of materially affecting the accuracy of returns.

Accuracy. - The accuracy on the whole will be high, the curve being well rated, and the only possibility of error being in the present chain gauge which it is proposed to replace early in the spring of 1915.

Confluence of Myrtle and Clearwater rivers.
Photograph by F. R. Arehibald
The Myrtle river is in the foreground flowing north-westerly. The (learwater, flowing south swings to the south-west at its junetion with the Myrtle. Both rivers have storage facilities for power purposes.

CLEARWATER RIVER.

Twenty-four miles above its confluence with the North Thomspon the two principal component tributaries of the Clearwater river join. The more westerly stream of the two, geographers have named the Clearwater, while the other, which is probably the more important, is known as the Myrtle.

The Clearwater river above its junction with the Myrtle. -The Clearwater river rises in the steep hills and glaciers surrounding Cpper Clearwater lake, a sheet of water with a superficial area of some 15 square miles, distant about $5 \frac{1}{2}$ miles by trail from the head of Quesnel lake. Mr. F. C. Green, B.C.L.S., places the elevation of Upper Clearwater lake at 405 feet above Quesnel lake, whose altitude the Geological Survey gives as 2,250 feet above sea-level. Clearwater river, discharging from its south end is said to fall 600 feet in a distance of 7 miles in its tumultuous course to Lower Clearwater lake. (This amount is thought to be overestimated since it makes the elevation of Lower Clearwater lake coincide with the elevation of the confluence of the Myrtle and Clearwater as determined by Mr. R. H. Lee, B.C.L.S.) Two tributaries join from the east in this distance Goat creek about a mile and a half south of the Upper lake, and the outlet of Blue lake about 4 miles farther down. Blue lake lies but a quarter of a mile east, and is represented as being a beautiful rockbound sportsman's paradise, with rainbow trout and cariboo in abundance. It is said to be about 15 miles long and 1 mile wide. Navigation by canoe is possible between Blue lake and Lower Clearwater lake, which is about 17 miles long and a mile wide. The Clearwater river, draining from its south end joins the Myrtle about 13 miles below at an elevation of about 2,000 feet above the sea. Little information could be obtained regarding the course of the Clearwater between Lower Clearwater lake and the Myrtle river.

The Myrtle river.-(sce description Myrtle river.)
The Clearwater river below its junction with the Myrtle.-In the twenty-four miles of its course to the North Thompson, the Clearwater river drops about 675 feet at a rate of about 31 feet to the mile. It passes through a series of rocky canyons in its course, but so far as is known there is no large natural concentrated fall. The width of the river in this part is from 200 to 500 feet.

The principal tributaries are:-

FROM THE WEST.

Mahood river (or Bridge creek).-This stream drains (anim and Mahood lakes and enters about 4 miles below the Myrtle. It is said to be a small stream "about the size of the Little Clearwater." Its drainage area is very large. though the probable low precipitation, and evaporation losses from the two large regulating lakes are contributing causes to a low rum-off.

FRUM THE EAST.

Little Clearwater river joins the Clearwater about 15 miles abowe its confluenee with the Thompson. (Swe hydrographie data, Little (learwater river.)

Beaver ereek. $-\lambda$ small momitain torrent, 40 to a) fort wide and a reported fall of 750 feet in three quarters of a mile. (Jume 10, 1911, 190 seeond-feet high water.) Joins Clearwater about 14 mikes above North Thompson.

Bear creck, which joins the Clearwater about s miles from its mouth, is said to fall 800 feet in its last mile. (0 n Jme 11, 1914, its flow was 162 seromed-feet and on September 1, 1914, it was $7 \cdot 1$ secomelfeet

Candle creek, joining about 4 miles from the river's mouth had a thow of 49. 7 seeomidefet on Jume 11, and on 0-3 seeond-feet on Dugust 29, 1911.

```
6 GEORGE V, A. 1916
```

The station on the Clearwater was established by Mr. K. G. Chisholm in March, 1914, and cable station installed from which numerous meterings covering the range of stream-flow have been obtained. (See report British Columbian Minister of Lands for 1913 and, in particular articles on the Clearwater valley by Messrs. Green and Lee, British Columbia Land Surveyors.)

Discharge Measurements of Clearwater River near mouth, for 1914.

Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
April 16	K. G. Chisholm	1055	30 C	2,043	2.04	0.57	4,170
May 30	E. Trederoft	1923	${ }_{234}^{234} 5$	2.778 2.735	$5 \cdot 84$ 5.75	4.8 4.6	${ }_{15,7297^{1}}^{15}$
Junc 1	"	${ }_{1923}^{1923}$	${ }_{234}^{234}$	2,667	5.75 $5 \cdot 56$	$\stackrel{4 \cdot 6}{4 \cdot 1}$	${ }_{14,854^{1}}$
${ }^{1} 12$.	"	1923	236	2,890	6.8	$5 \cdot 3$	19,650 ${ }^{1}$
" 15.	"	1923	238	3,049	7.63	6.0	23,2921
" 16	"	1923	239	3.174	7.93	6.5	${ }_{25,165{ }^{1}}$
" 17.	"	1923	240	3.300	7.78	7.0	${ }_{14,717^{1}}^{25,7031}$
- Sept. 19	E II Dann and E H Tred-	1923	234	2,599	$5 \cdot 66$	$4 \cdot 2$	14,7171
Sept. 19	E. M. Dann and E. H. Tred	1923	$201 \cdot 5$	2,022	$2 \cdot 61$	$1 \cdot 29$	5,2¢3

${ }^{1}$ Surface velocity: coefficient 0.89 .
Daily Galge Height and Discharge of Clearwater River near mouth, for 1914.
(Drainage area, 2,400 square miles.)

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Clearwater River near mouth, for 1914
-Con.
(Drainage area, 2.400 square miles.)

Day.	July:		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge.	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height.	Discharge	Gauge Height	Discharge.
	Feet	Sec. -ft .	Feet.	Sec.-ft	Feet.	Sec.-ft	Feet.	Sec.-ft.	Feet.	Sec.-ft	Feet.	Sec.-ft
1.	$5 \cdot 60$	20,825	3.80	13,225	$2 \cdot 05$	7,012	3.00	10.150	$1 \cdot 10$	4,950	$0 \cdot 00$	3,590
2	5.90	22,150	$3 \cdot 70$	12,875	2.05	7.012	3.00	10,150	$1 \cdot 20$	5. 100	-0.10	3,490
3	$6 \cdot 00$	22,600	3.70	12,875	1.95	6,737	$2 \cdot 80$	9.400	$1 \cdot 30$	5.275	-0.10	3,490
4	6.00	22,600	$3 \cdot 60$	12,475	1.85	6,475	$2 \cdot 60$	8, 700	1.20	5.100	-0.10	3.490
5.	$6 \cdot 10$	23,050	$3 \cdot 60$	12,475	1.75	6,225	$2 \cdot 30$	7,725	$1 \cdot 10$	4,950	-0.10	3,490
6.	6.10	23,050	$3 \cdot 50$	12,075	1.75	6. 225	$2 \cdot 10$	7.150	1.00	4,800	-0.20	3.400
7	5.90	22,150	$3 \cdot 50$	12,075	1.75	6,225	1.90	6,600	0.90	4.640	-0.20	3,400
8	5.70	21, 250	$3 \cdot 50$	12,075	1.75	6,225	1.70	6,100	0.90	4,640	-0.30	3,300
9	$5 \cdot 40$	19,975	$3 \cdot 40$	11,675	1.85	6,475	1.60	5,850	$0 \cdot 80$	4.490	-0.40	3,200
10.	$5 \cdot 30$	19,550	$3 \cdot 10$	10,525	1.85	6,475	1.50	5,650	0.80	4,490	-0.50	3,110
11	$5 \cdot 30$	19,550	$3 \cdot 00$	10,150	1.95	6,737	1.40	5,450	$0 \cdot 70$	4,360	-0.60	3,020
12.	$5 \cdot 30$	19,550	$2 \cdot 80$	9,400	1.75	6.225	1.30	5.275	0.70	4.360	-0.60	3.020
13.	$5 \cdot 50$	20,400	$2 \cdot 60$	8,700	$1 \cdot 55$	5,750	$1 \cdot 20$	5,100	$0 \cdot 60$	4,230	-c. 60	3,020
14	$5 \cdot 70$	21.250	2-50	8,350	1.35	5.362	$1 \cdot 10$	4.950	$0 \cdot 30$	4.110	-0.60	3.020
15.	$6 \cdot 00$	22,600	$2 \cdot 50$	8,350	$1 \cdot 15$	5,025	1.00	4.800	$0 \cdot 40$	3,990	-0.70	2,920
16.	6.00	22,600	$2 \cdot 50$	8,350	1.05	4.875	$0 \cdot 90$	4. 640	$0 \cdot 30$	3,870	-0.70	2,920
17.	5.70	21,250	$2 \cdot 50$	8.350	1.05	4,875	1.00	4.800	$0 \cdot 30$	3.870	-0.70	2.920
18	$5 \cdot 30$	19,550	$2 \cdot 30$	7,725	1.10	4,950	1.20	5,100	$0 \cdot 20$	3.750	-0.70	2.920
19	$5 \cdot 10$	18,700	2.45	8,187	1.40	5,540	1.40	5. 450	$0 \cdot 20$	3.750	-0.70	2,920
20.	4.90	17,850	$2 \cdot 45$	8,187	1-60	5,850	$1 \cdot 50$	5,650	$0 \cdot 10$	3,640	-0.70	2,920
21.	$4 \cdot 80$	17,425	$2 \cdot 35$	7,875	1.70	6,100	1.50	5, 650	$0 \cdot 10$	3.640	-0.70	2,920
22.	$4 \cdot 60$	16,575	$2 \cdot 35$	7. 875	1.70	6,100	1.40	5,450	$0 \cdot 10$	3.640	-0.60	3,020
23.	$4 \cdot 60$	16,575	$2 \cdot 25$	7,575	1.70	6, 100	1.30	5,275	$0 \cdot 10$	3,640	-0.60	3,020
24	$4 \cdot 60$	16,575	$2 \cdot 25$	7,575	1.80	6,350	1.30	5,275	$0 \cdot 10$	3,640	-0.70	2,920
25.	$4 \cdot 50$	16,150	$2 \cdot 15$	7,287	1.80	6,350	$1 \cdot 20$	5,100	$0 \cdot 10$	3,640	-0.70	2,920
26	$4 \cdot 50$	16,150	2.05	7,012	$2 \cdot 00$	6,875	1.20	5,100	0.00		-0.80	2,820
27.	$4 \cdot 40$	15,725	$2 \cdot 05$	7.012	$2 \cdot 20$	7,425	1.10	4.950	0.00	3, 590	-0.80	$2,8 \geqslant 0$
28	$4 \cdot 20$	14, 575	$2 \cdot 15$	7,297	$2 \cdot 40$	8,025	1.00	4,800	0.00	3,590	-0.90	2.720
29	$4 \cdot 10$	14,475	$2 \cdot 15$	7,287	$2 \cdot 80$	9,400	$0 \cdot 90$	4,640	0 - 10	3,640	-0.90	2.720
30.	$4 \cdot 00$	14,075	$2 \cdot 15$	7,287	$3 \cdot 00$	10,150	$0 \cdot 90$	4,640	$0 \cdot 10$	3,640	-0.90	2.720
31.	3.90	13,675	$2 \cdot 05$	7.012			0.90	4,640			-0.91)	2,720
Total.		592,775		289,183		193,060		184, 210	\ldots	124,615	.	94,880

Monthly Discharge of Clearwater River near mouth, for 1914.
(Drainage area, 2.400 square miles.)

Note.-There are no available precipitation records of the Clearwater eatehment basin. Maps are unreliable, and it would appear from the run-off figures shown that the drainage area given is not as large as the actual drainage area of the river. Since it was taken off the most reliable map available, however, it has been thought best not to alter it merely on the evidence of run-off figures for a period of one year.

Little Clearwater Creek (2056).

Location.-Near Raft River, Water District No. 2.

Records Arailable.-June 17 to December 31, 1914.
Drainage Area.-One hundred square miles.
Gauge.-Standard vertical staff gauge set near footbridge at crossing of Myrtle River trail, and read by P. McDougal, rancher.

Channel.-Average width 40 feet. The velocities are low even at high water, seldom exceeding $2 \cdot 0$ feet per second. Maximum flow recorded during 1914, 272 second-feet. Bed of stream at measuring section composed of mud and silt.

H'inter Flow.-Partial ice conditions exist during latter end of January and beginning of February.

Accuracy. - The accuracy of returns will eventually be high, but owing to the lateness of the season when the station was established, and the difficult means of access to this stream, especially during the winter months, only two discharge measurements were obtained during 191\%.

LITTLE CLEARWATER RIVER.

The Little Clearwater is tributary to the Clearwater river at a point about 15 miles north of the latter's junction with the North Thompson. It rises in the Raft River range of mountains and flows in a southwesterly direction. It is probably about 12 miles in length, its average width about 50 feet, and its depth during ordinary stages about 3 or 4 feet. Its flow at the gauging station on McDougall's ranch (lot 3188), is somewhat sluggish, but in the lowest 4 miles of its course it falls at the rate of about 50 feet to the mile. High water occurs in June, and during January and February and sometimes part of December and March the stream is frozen over. A station was established by Mr. E. H. Trederoft on June 6, 1915, on lot 3188 , which is about 7 miles from the ('learwater junction.

SESSIONAL PAPER No. 25e
Discharge Meastrements of Little Clearwater River near Green Mountain, for 1914.

Date.	Hydrographer.	$\begin{aligned} & \text { Meter. } \\ & \text { No. } \end{aligned}$	Width	Area of section	$\begin{aligned} & \text { Mean } \\ & \text { Velocity. } \end{aligned}$	Gauge Height.	Discharge.
$\begin{aligned} & 1914 \\ & \text { June } 6 \ldots \\ & \text { Sept. } 3 \ldots \end{aligned}$	E. H. Trederoft E. H. Trederoft and C. B Corbould		Feet.	Sq. ft.	Ft. per see.	Feet.	See. -ft.
		1923	41	147	1.8	2.5	272
		1923	37	65	$0 \cdot 2$	0.6	13.7

An effort will be made to completely rate this station during 1915.

Daily Gauge Height and Discharge of Little Clearwater River near Green Mountain for 1914.

Daily Gauge Height and Discharge of Little Clearwater River near Green Mountain, for 1914-Con.

Day.	July.		August.		September		October		November.		December.	
	Gauge Height	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Di.scharge
	Feet.	Sec.-ft.										
1.	$2+0$	188	1.0	46	0.6 0.6	13 13	$1 \cdot 3$ 1.2	81 68	1.0 1.1	46 56	0.8 0.8	27 27
2.	1.9 1.8	172	1.0 1.0	46 46	0.6 0.6	13 13	$1 \cdot 2$	68	1.1 1.0	56 46	0.8 0.8	27 27
3.	1.8 1.7	156 140	1.0 1.0	46 46	0.6 0.6	13	1.2	68	1.00	46	0.8 0.7	27 20
5	1.6	124	0.9	36	$0 \cdot 6$	13	1.1	56	0.9	36	$0 \cdot 7$	20
6.	$1+5$	109	1.4	94	$0 \cdot 6$	13	$1 \cdot 1$	56	0.9	36	0.7	20
7.	1.4	94	1.1	56	$0 \cdot 6$	13	1.0	46	0.9	36	0.7	20
8.	$1 \cdot 3$	81	1.0	46	$0 \cdot 7$	20	$1 \cdot 0$	46	$0 \cdot 9$	36	0.7	20
9.	$1 \cdot 2$	68	$0 \cdot 9$	36	0.9	36	1.0	46	0.9	36	$0 \cdot 7$	20
10.	$1 \cdot 2$	68	0.9	36	$0 \cdot 9$	36	1.0	46	0.9	36	$0 \cdot 6$	13
11.	1.2	68	0.9	36	$1 \cdot 2$	68	1.0	46	0.9	36 36	0.6	13
12.	1.2	68	0.9	36	$1 \cdot 2$	68	$0 \cdot 9$	36	0.9	36	$0 \cdot 6$	13
13.	1.2	68	0.9	36	$1 \cdot 2$	68	1.1	56	$0 \cdot 9$	36	$0 \cdot 6$	13
14.	1.9	172	$0 \cdot 8$	27	1.0	46	$1 \cdot 0$	46	$1 \cdot 0$	46	$0 \cdot 7$	20
15.	$2 \cdot 5$	272	0.8	27	$0 \cdot 9$	36	1.0	46	$0 \cdot 9$	36	$0 \cdot 7$	20
16.	$1 \cdot 6$	124	0.8	27	$0 \cdot 9$	36	1.0	46	0.9	36	0.7	20
17.	1.7	140	0.8	27	1.1	56	$1 \cdot 7$	140	$0 \cdot 9$	36	0.7	20
18.	1.6	124	0.8	27	1.6	124	1.4	94	$0 \cdot 9$	36	0.7	20
19.	1.4	94	$0 \cdot 7$	20	$1 \cdot 2$	68	$1 \cdot 2$	68	0.9	36	$0 \cdot 7$	20
20.	1.6	124	$0 \cdot 7$	20	1.2	68	$1 \cdot 1$	56	0.8	27	0.7	20
21.	$1 \cdot 6$	124	0.8	27	1.1	56	1.1	56	0.8	27	0.7	20
22.	1.4	94	0.8	27	$1 \cdot 1$	56	$1 \cdot 0$	46	0.8	27	$0 \cdot 7$	20
23.	1.4	94	0.8	27	$1 \cdot 2$	68	1.0	46	$0 \cdot 8$	27	$0 \cdot 7$	20
24.	$1 \cdot 6$	124	$0 \cdot 8$	27	$1 \cdot 1$	56	$0 \cdot 9$	36	6.9 0.9	36	$0 \cdot 7$	20
25.	$1 \cdot 4$	94	$0 \cdot 7$	20	$1 \cdot 1$	56	$0 \cdot 9$	36	$0 \cdot 9$	36	$0 \cdot 7$	20
26.	$1 \cdot 3$	81	$0 \cdot 7$	20	1.1	56	0.9	36	0.9	36	$0 \cdot 7$	20
27.	1.9	172	$0 \cdot 7$	20	1.9	172	$0 \cdot 9$	36	0.8	27	$0 \cdot 7$	20
28	$1 \cdot 6$	124	$0 \cdot 7$	20	$1 \cdot 6$	124	0.9	36	$0 \cdot 8$	27	$0 \cdot 6$	13
29.	1.4	94	$0 \cdot 6$	13	$1 \cdot 6$	124	0.9	36	0.8	27	$0 \cdot 6$	13
30.	$1 \cdot 2$	68	$0 \cdot 6$	13	1.5	109	1.0	46	$0 \cdot 8$	27	$0 \cdot 6$	13
31.	$1 \cdot 1$	56	$0 \cdot 6$	13			1.0	46			$0 \cdot 6$	13

Monthly Discharge of Little Clearwater River near Green Mountain, for 1914.
(Drainage area, 100 square miles.)

Month.	Discharge in Second-Feet.				Run-Off.	
	Maximum.	Minimum.	Mean.	$\begin{gathered} \text { Per } \\ \text { square } \\ \text { mile. } \end{gathered}$	Depth in inches on Drainage area.	Total in acre-feet.
Junc	323	205	276	$2 \cdot 76$	3.08	16,423 ${ }^{1}$
July	272	- 56	115	1.15	1.32	7.071
August	94	13	32	$0 \cdot 32$	$0 \cdot 37$	1,967
September.	172	13	57	$0 \cdot 57$	$0 \cdot 63$	3,391
Oetober	140	36	54	0-54	$0 \cdot 62$	3,320
November	56	27	36	0.36	0.39	$\begin{array}{r}2,142 \\ 1 \\ \hline\end{array}$
December.	27	13	19	$0 \cdot 19$	$0 \cdot 22$	1,168
The period	323	13	$84 \cdot 1$	0.84	$6 \cdot 63$	35,482

[^31]Cherry Creek (2005).
Location.-Section 14, township 19, range 19, west 6th Meridian.
Records Available.-June 5 to September 1, 1911; April 24 to September 15, 1912; April 19 to October 19, 1913; May 1 to August 19, 1914.

Drainage Area.-Sixty-two square miles.
Gauge.-Standard chain gauge installed during 1914 in canyon, and read daily by F. Bowers, during high water, and twice weekly during low water. To replace station at Cornwall's ranch.

Channel.-Is straight at measuring section. Velocity swift at all stages. Control is fairly good.

Discharge Measurements.-Three discharge measurements were obtained during 1914 by wading at all stages.

Winter Flow.-Stream generally runs dry during August or September.
Accuracy.-Owing to shifting channel, too much reliance cannot be placed on returns from old station, but returns for new station established 1914 point to an exceptionally high degree of accuracy eventually being obtained.

Discharge Measurements of Cherry Creek above Bower's Ranch, for 1914.

	Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
				Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec. ft .
May		E. H. Trederoft.	1055	14	14.	5.02	1.7	70.3
June	11..	C. Corbould. do	1915	12	$5 \cdot 1$ 1.7	1.8 0.8	0.7 0.5	9.0 1.5

An effort will be made to completely rate this station during 1915. See meterings listed under miscellaneous measurements taken at Cornwall's ranch above diversion.

Daily Gadge Height and Discharge of Cherry Creek near Bower's Ranch, for 1914.

SESSIONAL PAPER No. 25e

Daily Galge Height and Discharge of Cherry Creek near Bower's Ranch. for 1914-Con.

| | Day. | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Monthly Discharge of Cherry Creek near Bower's Ranch, for 1914.
(Drainage area, 30 square miles.)

Month.	Discharge in second-Feet.				RENAFy	
	Haximum.	Minimum	Mean.	$\begin{aligned} & \text { Per } \\ & \text { mituare } \\ & \text { mile } \end{aligned}$	I Rept lt in inches on 1) rainage uriva	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { nere-fect } \end{gathered}$
May $\mathrm{Max}_{\text {a }}$	86	8.9	33.1	110	112	2.033
June-	9	1.4	$5 \cdot 3$	0.17	(1). 19	301%
July	4	C.3	2.05	$0 \cdot 17$	(1-10)	$11 / 83$
Auguse		(1)-4	11.17	(1).1015	(1).6417	11.4
The perioul natar $^{\text {a }}$	36	$0 \cdot 11$	10.13	0. 34	1.397	\therefore 4i \%

Norf. Siation establinhed May 13 to replace ntation at Cornwall's ranch, where a comatantls shifture channel made
 ranch. Dath arquired during loht dimprove thes nllegation.
 April 27, May 8, uad May 11, by interpolation.

Thu erowk stopped flowing it the gauge on Juguat 1)

$$
25 \mathrm{E}-16 \frac{1}{2}
$$

6 GEORGE V, A. 1916
Essell Creek (2011).
Location.-Section 36, township 17, range 14, west 6th meridian.
Records Available.-May 25 to September 30, 1911; April 1 to September 7, 1912; April 16 to September 14, 1913; April 1 to December 4, 1914.

Drainage Area.-Six square miles.
Gauge.-Standard staff gauge read tri-weekly by T. F. Teagle.
Channel.-The channel is gravelly and permanent. Control is good, and velocities are not excessive.

Discharge Measurements.-Well-distributed meterings have been taken at all stages of water.

Winter Flow - Winter conditions are not, as a rule, severe; the stream is usually dry during the winter months.

A storage dam on Summit lake controls its flow, which is augmented by a diversion from Monte creek.

Accuracy. - The accuracy of results on the whole is fairly high, and should fall within ten per cent.

Discharge Measurements of Essell Creek below Summit Lake, for 1914.

Date.	Hydrographer.	$\begin{gathered} \text { Meter } \\ \text { No. } \end{gathered}$	Width.	Area of Section.	Mean Velocity.	Gauge Height	Diseharge.
			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
May	E. M. Dann \& E. H. Tred-	1055	17	11.5	3.06	1.47	$35 \cdot 4$
June 24.	C. B. Corbould.............	1915	11.	${ }_{9}^{9.1}$	2.47 0.80	1.30 0.95	$22 \cdot 5$ 4.2
July ${ }_{2} 22$.		1915	9.5 5.5	$5 \cdot 23$ 1.03	0.80 0.56	0.95 0.70	$4 \cdot 2$ 0.6
Sept. 25.	" $\quad . .$.		$5 \cdot 5$	1.03		0.70	$0 \cdot 6$

[^32]SESSIONAL PAPER No. 25e
Daily Gafge Height and Discharge of Essell Creek below Summit Lake, for 1914.

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Essell Creek below Summit Lake, for 1914-Con.

Day.	July .		August.		September.		October.		November.		Deeember.	
	Gauge Height	Diseharge	Gauge Height	Discharge	Gauge Height	Diseharge	Gauge Height	Diseharge	Gauge Height	Discharge	Gauge Height.	Diseharge.
	Feet.	Sec.-ft.	Feet.	Sec.-tt.	Feet.	Sec.-ft.	Feet.	See.-ft.	Feet	Sec.-1t.		Sec.-ft.
1	1.40	30.0 20	$1 \cdot 10$	$10 \cdot 2$		1.7		0.9 1.0		$2 \cdot 5$	0.82	2.00
$\frac{2}{3}$		28.8 27.5		$9 \cdot 1$ $8 \cdot 0$	0.80	1.7 1.6	0.75	1.0 1.2		$2 \cdot 5$ $2 \cdot 5$		$2 \cdot 1$ $2 \cdot 3$
4	1.35	$26 \cdot 2$		$6 \cdot 9$		1.4	-75	1.1	0.85	2.5	0.85	$2 \cdot 5$
5		$24 \cdot 8$	1.00	$5 \cdot 8$	0.75	$1 \cdot 2$		$1 \cdot 0$		$2 \cdot 5$		
6.		23.4		$5 \cdot 6$		1.2		0.9		$2 \cdot 6$		
7.		$22 \cdot 0$		$5 \cdot 3$		$1 \cdot 2$	0.72	$0 \cdot 8$	0.87	$2 \cdot 7$		
8	$1 \cdot 27$	20.5	0.97	$5 \cdot 0$		$1 \cdot 2$		0.7		$2 \cdot 7$		
9.		21.2 21.8		$5 \cdot 2$	0.75	1.2		$0 \cdot 6$		$2 \cdot 6$		
10.		21.8		$5 \cdot 4$		$1 \cdot 0$	0.70	$0 \cdot 6$		$2 \cdot 6$		
11.	$1 \cdot 30$	22.5		$5 \cdot 6$		$0 \cdot 8$		$0 \cdot 8$	0.85	$2 \cdot 5$		
12		$22 \cdot 0$	1.00	$5 \cdot 8$	0.70	$0 \cdot 6$		$1 \cdot 0$		$2 \cdot 3$		
13.		21.5		$4 \cdot 9$		0.6		$1 \cdot 2$		$2 \cdot 0$		
14.	$1 \cdot 27$	$21 \cdot 0$ 20.5	0.90	$4 \cdot 0$ $3 \cdot 2$		0.6 0.6	0.77	$1 \cdot 4$	0.80	1.7 1.9	..	
16.		17.0		$3 \cdot 2$	0.70	0.6		1.6		$2 \cdot 2$		
17.		$13 \cdot 6$		$3 \cdot 2$		$0 \cdot 6$	0.80	1.7		$2 \cdot 4$		
18.	$1 \cdot 10$	$10 \cdot 2$		$3 \cdot 2$		0.6	, ...	1.7	$0 \cdot 87$	$2 \cdot 7$		-
19		8.9 7.6	$0 \cdot 90$	$3 \cdot 2$ $3 \cdot 6$	$0 \cdot 70$	0.6 0.6		1.7		${ }_{2} 2 \cdot 7$		
20..		$7 \cdot 6$		$3 \cdot 6$		$0 \cdot 6$		1.7		$2 \cdot 6$		
21.		$6 \cdot 3$		$4 \cdot 0$		$0 \cdot 6$	$0 \cdot 80$	$1 \cdot 7$	$0 \cdot 85$	$2 \cdot 5$		
22.	0.97	$5 \cdot 0$	0.95	$4 \cdot 5$		$0 \cdot 6$		$2 \cdot 0$	$2 \cdot 5$		
23		$4 \cdot 4$		$3 \cdot 8$	0.70	$0 \cdot 6$		$2 \cdot 2$		2. 6		
24 25		3.8 3.2		3.1 2.4	0.8 1.0	0.85	$2 \cdot 5$ $2 \cdot 5$		${ }_{2} \cdot 7$		
25.	$0 \cdot 90$	$3 \cdot 2$		$2 \cdot 4$		$1 \cdot 0$		$2 \cdot 5$	$0 \cdot 87$	$2 \cdot 7$	I.	
26		$5 \cdot 2$	$0 \cdot 80$	1.7	0.75	$1 \cdot 2$		$2 \cdot 5$		$2 \cdot 7$		
27.		$7 \cdot 2$		1.7		$1 \cdot 1$		$2 \cdot 5$		$2 \cdot 6$		
28.		$9 \cdot 2$		1.7		1.0	0.85	$2 \cdot 5$	0.85	$2 \cdot 5$		$1 \times$
29 30	$1 \cdot 12$	11.3	$0 \cdot 80$	1.7		0.9		$2 \cdot 5$		$2 \cdot 3$		
$30 .$.		11.0		1.7	0.72	0.8		$2 \cdot 5$		$2 \cdot 1$..	
31.		$10 \cdot 6$		$1 \cdot 7$			0.85	$2 \cdot 5$				1 1 . . 1

Monthly Discharge of Essell Creek below summit Lake, for 1914.
(Drainage area, 6 square miles.)

Note.-Winter eonditions obtained after Deeember 4
The indicated run-off of Essell ereek is not a true function of the drainage area, since its ratural flow is augmented by a diversion from Monte ereek to Summit lake. The flow out of summit lake is also artifcially controlled by a dam at its outlet

No precipitation reeords available.

SESSIONAL PAPER No. 25e

Gutichon Creek (2014).
Location.-Near Mamit lake, Water District No. 3.
Records Available. - June 3 to December 31, 1911; January 1 to November 14, 1912; April 26 to September 29, 1913; A pril 1 to November 30, 1914.

Drainage Area.-Three hundred and fifteen square miles.
Gauge.-Standard vertical staff gauge read daily by O. Quenville.
Channel.-Channel is straight at measuring section. Velocities fairly high. Bed of stream composed of sand and gravel, and considered permanent.

Discharge Measurements.-Twenty three discharge measurements have been taken on this creek. Curve is well defined,

Winter Flow.-Ice conditions generally prevail on this stream throughout January and February.

Accuracy.-Curve has been well defined and results should fall within 10 per cent.

Discharge Measurements of Guichon Creek above Mamit Lake, for 1914.

Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section.	Mean Velocity:	Gauge Height.	Discharge.
June 16	C. B. Corbould	1,915	Feet. $26 \cdot 0$	Sq. ft. $58 \cdot 4$	Ft. per sec. 1.7	Feet. $2 \cdot 9$	Sec. -ft . $98 \cdot 9$

[^33]6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Guichon Creek near Mamit Lake, for 1914.

	Day.	April.		May.		June.	
		Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height	Discharge.
		Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
		1.52 1.40 1	28.9 23.0	$4 \cdot 85$	${ }_{277.7}^{229.5}$	3.55 3.35	139.5 126.7
3		1.45	25.5	5.80	${ }^{255 \cdot 0}$	3.25 3.25	${ }_{126.7}^{126}$
4		1.90	46.0	$5 \cdot 82$	360.0	$3 \cdot 05$	108.2
5.		$2 \cdot 90$	98.5	5.97	397.4	3.00	$105 \cdot 0$
6.		3. 15	114.5	6.00	405.0	2.85	95.8
7.		3.05	108.2	$5 \cdot 00$	$405 \cdot 0$	2.80	93.0
9		${ }_{3}^{2.95}$	101.7	5.90 5.92	379.0	$2 \cdot 80$	93.0
9.		3.02	106.3	5.92	$385 \cdot 2$	2.85	95.8
10.		$2 \cdot 92$	99.8	$6 \cdot 25$	483.7	3.05	108.2
11.		$3 \cdot 10$	111.5	6.32	$506 \cdot 8$	3. 10	111.5
12.		$3 \cdot 22$	118.8	6. 17	454.7	$3 \cdot 10$	111.5
13.		$3 \cdot 60$	$142 \cdot 5$	6. 12	441.5	3.00	105.0
14.		3.77	153.2	6.15	$451 \cdot 2$	$2 \cdot 95$	101.7
15.		3.95	$165 \cdot 2$	6.15	$451 \cdot 2$	2.95	101.7
16.		$4 \cdot 15$	178.7	6.10	$435 \cdot 0$	2.85	95.8
17.		4.07	173.0	6.10	435.0	${ }^{2.75}$	$90 \cdot 2$
18.		$4 \cdot 10$	$175 \cdot 0$	6. 10	435.0	2.50	76.5
19.		$4 \cdot 15$	178.7	${ }^{6.07}$	426.0	$2 \cdot 32$	${ }_{66 \cdot 6}$
20.		$4 \cdot 50$	203.0	5.95	392.0	$2 \cdot 32$	$66 \cdot 6$
21.		$4 \cdot 57$	208.0	5.85	367.0	$2 \cdot 30$	65.5
22.		4.40	195.2	5.75	$344 \cdot 2$	$2 \cdot 30$	65.5
23.		$4 \cdot 40$	195.2	5.65	323.7	$2 \cdot 30$	65.5
24.		$4 \cdot 40$	195.2	$5 \cdot 35$	$277 \cdot 7$	$2 \cdot 30$	$65 \cdot 5$
25.		$4 \cdot 40$	$195 \cdot 2$	5. 20	261.5	$2 \cdot 30$	$65 \cdot 5$
26.		$4 \cdot 32$	$190 \cdot 2$	4.70	218.0	2.30	65.5
27.		4.35	$192 \cdot 1$	4.70	218.0	$2 \cdot 30$	65.5
28		$4 \cdot 30$	189.0	4.60	210.1	$2 \cdot 30$	65.5
39		$4 \cdot 27$ 4.32		4.60 3.95	${ }_{165.2}^{210 \cdot 1}$	$2 \cdot 30$ $2 \cdot 30$	
30.		$4 \cdot 32$	$190 \cdot 2$	$3 \cdot 95$	$165 \cdot 2$	$2 \cdot 30$	$65 \cdot 5$
31.				3.70	149.0		

SESSIONAL PAPER No. 25e
Daily Gadge Height and Discharge of Guichon Creek near Mamit Lake, for 1914-Con.

Day.	July:		August.		September.		October.		November.	
	$\begin{aligned} & \text { Gauge } \\ & \text { Height. } \end{aligned}$	Discharge	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height	Dis-	Gauge Height	Discharge.
	Feet.	Sec.ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1.	2.30 2.20	65.5 60.5	1.50 1.47	28.0 26.5	1.10 1.10	12.0 12.0	1.15 1.15	14.0 14.0	1.20 1.20	16.0 16.0
3.	$2 \cdot 10$	55.5	1.45	25.5	1.10	12.0	1.15	14.0	1.20	16.0
	2.00	50.5	1.45	25.5	1. 10	12.0	1-15	14.0	1.20	16.0
5	1.92	46.9	$1 \cdot 45$	25.5	1.10	12.0	1-15	14.0	1.20	16.0
6.	1.90	46.0	1.45	25.5	1.05	$10 \cdot 0$	1.15	14.0	1.20	16.0
7.	1.90	46.0	1.45	25.5	1.07	10.8	1.15	14.0	1.37	21.8
8.	1.90 1.80	46.0	1.50	28.0	1.10	12.0	1.15	14.0	1.30	19.0
10.	1.80	41.0	1.60	${ }_{32 \cdot 5}$	1.15 1.20	14.0 16.0	$1 \cdot 15$ $1 \cdot 17$	$\stackrel{14.0}{14.8}$	1.25 1.25	17.5
11.	1.80	41.0	1.52	28.9	1.20	16.0	1.20	16.0	1.20	16.0
12	1.75	39.0	1.42	$24 \cdot 0$	$1 \cdot 20$	16.0	1.20	16.0	1. 20	16.0
13.	1.70	37.0	$1 \cdot 30$	19.0	1.20	16.0	1.20	16.0	1.20	16.0
14.	1.65	34.7	$1 \cdot 30$	19.0	$1 \cdot 25$	17.5	1.40	23.0	1. 20	16.0
15	$1 \cdot 62$	33.4	1.30	19.0	$1 \cdot 30$	$19 \cdot 0$	1.37	21.8	1.20	16.0
16.	1.60	32.5	$1 \cdot 30$	19.0	1.30	19.0	$1 \cdot 25$	17.5	$1 \cdot 20$	16.0
17.	1.60	32.5	1.30	19.0	1.30	19.0	$1 \cdot 25$	17.5	1.20	16.0
19	1.60	32.5	1.27	18.1	1.35	19.0	1.22	16.6	1.20	16.0
20.	1.50	28.0	1.25	17.5	$\xrightarrow{1.35}$	${ }_{21.0}^{21.0}$	1.20 1.20	16.0 16.0	1.20 1.20	16.0 16.0
21	1.50	28.0	$1 \cdot 25$	17.5	1.25	17.5	$1 \cdot 20$	16.0	1.25	
22	1.50	2 s .0	$1 \cdot 25$	17.5	$1 \cdot 20$	16.0	$1 \cdot 20$	16.0	1.25	17.5
23.	1.50	28.0	1.25	17.5	$1 \cdot 20$	16.0	$1 \cdot 20$	16.0	1.25	17.5
24.	1.50	28.0	$1 \cdot 20$	16.0	$1 \cdot 20$	16.0	1.20	16.0	1.25	17.5
25.	1.50	28.0	1.20	16.0	$1 \cdot 20$	16.0	1.20	16.0	1.25	17.5
26.	1.50	28.0	1.20	16.0	$1 \cdot 29$	16.0	1.20	16.0	$1 \cdot 25$	16.9
27	$1 \cdot 40$	23.0	1.10	12.0	1.20	16.0	1.20	16.0	$1 \cdot 25$	17.5
28	$1 \cdot 40$	23.0	$1 \cdot 10$	12.0	1-17	14.8	1.20	16.0	1.20	16.0
29	$1 \cdot 40$	23.0	$1 \cdot 20$	16.0	1-15	14.0	1.20	16.0	1.20	16.0
30.	1-40	23.0	1.15	14.0	1.15	14.0	1.20	16.0	1.20	16.0
31	$1 \cdot 40$	23.0	$1 \cdot 15$	14.0			$1 \cdot 20$	16.0		

Monthly Discharge of Guichon Creek near Mamit Lake, for 1914.
(Drainage area, 315 square miles.)

Month.	Discharge in Second-Feet.				Rex-Ofr.	
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage arew.	Total in nere-feet.
April.	218.0	23.0	142.9	$0 \cdot 45$	$0 \cdot 5$	8.5013
May.....	506.8	149.0	$346 \cdot 7$	1.1	1.2	21.31 :
	$139 \cdot 5$	65.5	89.4	(1).24	0.31	8.330
	65.5	23.0	$36 \cdot 3$	(1) 11	0.13	2.232
August .-.	32.5	12.0	$20 \cdot 7$	(1).17)	0 - 138	1,273
September 114	21.0	12.0	15.4	0.65	$0 \cdot 116$	918
	21.8	14.0	$15 \cdot 9$	(1.035	0.06	975
November Docember	21.8	16.0	16.7	0.405	0.126	1934
		,				\%
	506.8	$12 \cdot 0$	$85 \cdot 5$	0.27	$2 \cdot 411$	41. 333

Note- - No procipitution duta uro uvailable, lut the total rainfall (ancluiling now fall expreverd in ternas of rainfall in probubly 15 inches.

Heffley Creek-Upper (2019).
Location.-Section 9, township 22, range 16, west 6 th meridian.
Records Available.-May 25 to December 8, 1911; April 1 to September 20, 1912; May 11 to September 19, 1913; May 1 to December 9, 1914.

Drainage Area.-Twenty-eight square miles.
Gauge.-Standard vertical staff gauge read daily by F. S. Lawrence.
Channel.-Straight at measuring section and permanent bed.
Discharge Measurements.-Curve is well defined with series of meterings at all stages.

W'inter Flow.-Ice conditions generally prevail during January and February. A dam at Heffley lake regulates the flow.

Accuracy.-The accuracy is considered to be fairly high, results should fall within 10 per cent at all stages.

Discharge Measurements of Heffley Creek below Heffley Lake, for 1914.

	Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section.	Mean Velocity:	Gauge Height.	Discharge.
				Feet.	Sq. ft .	Ft. per sec.	Feet.	Sec.-ft.
April	28	F. G. Chisholm.	1,055	8.0	$5 \cdot 30$	0.77	$3 \cdot 75$	4. 1
June	3	C. B. Corbould.	1,915	$10 \cdot 0$	$7 \cdot 03$	0.90	3.92	6.3
June	30	do	1,915	$10 \cdot 0$	$6 \cdot 50$	0.91	$3 \cdot 90$	$5 \cdot 9$
Aug.	11.	do	1,915	$10 \cdot 0$	$10 \cdot 60$	2. 10	4.24	$22 \cdot 3$
Oct.	29.	do	1.673	$8 \cdot 0$	$3 \cdot 47$	0.28	$3 \cdot 40$	1.0

For further measurements during 1914 on this stream, see Heffley Creek Lower Station, and for further hydrographic data see Water Resources Papers Nos. 1 and 8.

SESSIONAL PAPER No. 25e

Daily Gauge Height and Discharge of Heffley Creek below Heffley Lake, for 1914.

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Heffley Creek below Heffley Lake, for 1914-Con.

DAY.	July.		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge.	Gauge Height.	Discharge	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height	Discharge	Gauge Height.	Discharge.
	Feet.	Sec.-ft.										
1.	3.85	$5 \cdot 2$	$4 \cdot 25$	23.2	$3 \cdot 65$	$3 \cdot 1$. 50	$2 \cdot 2$	3.49	$2 \cdot 2$	$3 \cdot 45$	$2 \cdot 0$
2.	$3 \cdot 85$	$5 \cdot 2$	$4 \cdot 25$	$23 \cdot 2$	$3 \cdot 65$	3-1	$3 \cdot 50$	$2 \cdot 2$	3.45	$2 \cdot 0$	$3 \cdot 45$	$2 \cdot 0$
3.	$3 \cdot 80$	$4 \cdot 5$	$4 \cdot 25$	23.2	$3 \cdot 60$	$2 \cdot 8$	$3 \cdot 50$	$2 \cdot 2$	3.45	$2 \cdot 0$	$3 \cdot 45$	$2 \cdot 0$
4.	$3 \cdot 90$	$5 \cdot 9$	$4 \cdot 25$	23.2	3.58	$\stackrel{2 \cdot 7}{ }$	$3 \cdot 50$	$2 \cdot 2$	$3 \cdot 45$	$2 \cdot 0$	3.45	$2 \cdot 0$
5.	$3 \cdot 90$	$5 \cdot 9$	$4 \cdot 25$	23.2	$3 \cdot 55$	$2 \cdot 5$	$3 \cdot 50$	$2 \cdot 2$	$3 \cdot 45$	$2 \cdot 0$	$3 \cdot 45$	$2 \cdot 0$
6	$3 \cdot 90$	$5 \cdot 9$	$4 \cdot 25$	23.2	$3 \cdot 55$	$2 \cdot 5$	$3 \cdot 50$	$2 \cdot 2$	$3 \cdot 45$	$2 \cdot 0$	$3 \cdot 45$	$2 \cdot 0$
7.	$4 \cdot 00$	$8 \cdot 3$	$4 \cdot 25$	$23 \cdot 2$	$3 \cdot 55$	$2 \cdot 5$	$3 \cdot 50$	$2 \cdot 2$	$3 \cdot 45$	$2 \cdot 0$	$3 \cdot 42$	$1 \cdot 9$
8	$4 \cdot 00$	$8 \cdot 3$	$4 \cdot 20$	18.7	$3 \cdot 55$	$2 \cdot 5$	$3 \cdot 47$	$\frac{2}{2} 1$	$3 \cdot 48$	$2 \cdot 1$	$3 \cdot 40$	1.8
9.	$4 \cdot 00$	$8 \cdot 3$	$4 \cdot 15$	15.4	$3 \cdot 55$	$2 \cdot 5$	$3 \cdot 45$	$2 \cdot 0$	$3 \cdot 46$	$2 \cdot 0$		
10.	$4 \cdot 00$	$8 \cdot 3$	$4 \cdot 10$	$12 \cdot 2$	$3 \cdot 55$	2.5	$3 \cdot 43$	1.9	$3 \cdot 46$	$2 \cdot 0$		
11.	$3 \cdot 95$	$7 \cdot 1$	$4 \cdot 25$	23.2	3.55	2.5 9.5	3.43 3.45	1.9 2.0	3.47 3.48	$2 \cdot 1$ $2 \cdot 1$		
12.	$3 \cdot 90$	$5 \cdot 9$	$4 \cdot 20$	18.7	3.55	$2 \cdot 5$	$3 \cdot 45$	$2 \cdot 0$	3.48	$2 \cdot 1$		-..
13.	$3 \cdot 85$	$5 \cdot 2$	$4 \cdot 15$	$15 \cdot 1$	$3 \cdot 55$	$2 \cdot 5$	$3 \cdot 45$	$2 \cdot 0$	3.48	$2 \cdot 1$	
14.	$3 \cdot 85$	$5 \cdot 2$	$4 \cdot 15$	$15 \cdot 1$	$3 \cdot 58$	$2 \cdot 7$	$3 \cdot 45$	$2 \cdot 0$	$3 \cdot 48$	$2 \cdot 1$	
15.	3-90	$5 \cdot 9$	$4 \cdot 10$	$12 \cdot 2$	$3 \cdot 58$	$2 \cdot 7$	$3 \cdot 45$	$2 \cdot 0$	$3 \cdot 48$	$2 \cdot 1$		
16.	$3 \cdot 85$	$5 \cdot 2$	$4 \cdot 05$	$10 \cdot 2$	3.55 3.55	2.5 2.5	3.45 3.46	$2 \cdot 0$	3.47 3.46	$2 \cdot 1$ $2 \cdot 0$		
17.	$3 \cdot 80$	$4 \cdot 5$	4.00	$8 \cdot 3$	$3 \cdot 55$	2.5	$3 \cdot 46$	$2 \cdot 1$	$3 \cdot 46$	$2 \cdot 0$		
18.	$3 \cdot 80$	$4 \cdot 5$	4.00	$8 \cdot 3$	$3 \cdot 55$	$2 \cdot 5$	$3 \cdot 48$	$2 \cdot 1$	$3 \cdot 45$	$2 \cdot 0$		
19.	3.75	$4 \cdot 0$	$4 \cdot 00$	$8 \cdot 3$	$3 \cdot 55$	$2 \cdot 3$	$3 \cdot 49$	$2 \cdot 2$	$3 \cdot 45$	$2 \cdot 0$		
20.	$3 \cdot 80$	$4 \cdot 5$	$3 \cdot 95$	$7 \cdot 1$	$3 \cdot 55$	$2 \cdot 5$	$3 \cdot 49$	$2 \cdot 2$	$3 \cdot 45$	$2 \cdot 0$		
21.	$4 \cdot 00$	$8 \cdot 3$	3.95	7.1	$3 \cdot 55$ 3.55	$2 \cdot 5$ 2.5	3.45 $3 \cdot 45$	2.0	$3 \cdot 43$ 3.43	- 1.9		
22.	4.00	8.3 10.9	3.90 3.85	$5 \cdot 9$	$3 \cdot 55$ $3 \cdot 55$	2.5 2.5	$3 \cdot 45$ $3 \cdot 45$	$2 \cdot 0$ $2 \cdot 0$	$3 \cdot 43$ $3 \cdot 42$	1.9 1.9		
23.	4.05	10.2	3.85 3.80	$5 \cdot 2$ $4 \cdot 5$	$3 \cdot 55$ $3 \cdot 55$	$2 \cdot 5$ 2.5	$3 \cdot 45$ $3 \cdot 42$	2.0 1.9	$3 \cdot 42$ $3 \cdot 42$	1.9 1.9		
24.	4.20 4.20	18.7 18.7	3.80 3.75	$4 \cdot 5$ $4 \cdot 0$	$3 \cdot 55$ $3 \cdot 55$	$2 \cdot 5$ 2.5	$3 \cdot 42$ $3 \cdot 41$	1.9 1.8	$3 \cdot 42$ $3 \cdot 45$	1.9 2.0		
25.	$4 \cdot 20$	18.7	$3 \cdot 75$	$4 \cdot 0$	$3 \cdot 55$	$2 \cdot 5$	$3 \cdot 41$	$1 \cdot 8$	$3 \cdot 45$	$2 \cdot 0$		
26.	$4 \cdot 20$	18.7	$3 \cdot 75$	$4 \cdot 0$	3.55	$2 \cdot 5$	3.41	1.8	$3 \cdot 45$	$2 \cdot 0$		
27.	$4 \cdot 20$	18.7	$3 \cdot 75$	$4 \cdot 0$	3.55	$2 \cdot 5$	$3 \cdot 41$	1.8	$3 \cdot 45$	$2 \cdot 0$		
28.	$4 \cdot 20$	18.7	$3 \cdot 75$	$4 \cdot 0$	$3 \cdot 51$	$2 \cdot 3$	$3 \cdot 40$	1.8	$3 \cdot 45$	$2 \cdot 0$		
29.	$4 \cdot 20$	18.7	$3 \cdot 75$	$4 \cdot 0$	3.50	$2 \cdot 2$	$3 \cdot 40$	1.8	$3 \cdot 45$	$2 \cdot 0$		
30.	$4 \cdot 20$	$18 \cdot 7$	$3 \cdot 65$	$3 \cdot 1$	$3 \cdot 50$	$2 \cdot 2$	$3 \cdot 40$	1.8	$3 \cdot 45$	$2 \cdot 0$		
31.	$4 \cdot 25$	$23 \cdot 2$	$3 \cdot 60$	$2 \cdot 8$			$3 \cdot 40$	1.8				

Monthly Discharge of Heffley Creek below Heffley Lake, for 1914.
(Drainage area, 28 square miles.

Month.	Discharge in Second-Feet.				Run-Off.	
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	$\begin{aligned} & \text { Depth } \\ & \text { in inehes } \\ & \text { on } \\ & \text { Drainage } \\ & \text { area. } \end{aligned}$	$\begin{aligned} & \text { Total } \\ & \text { in } \\ & \text { acre-feet. } \end{aligned}$
	$5 \cdot 7$	2.8	$4 \cdot 4$	0.15	$0 \cdot 17$	262
May..	56.5	4.5	19.3	0.7	0.8	1,187
June.	12.2	$5 \cdot 9$ 4.0	7.9 9.6	0.3 0.3	0.33 0.35	470 590
July..	23.2	4.0	${ }^{9 \cdot 6}$	$0 \cdot 3$	0.35	590
August....	23.2 3.1	2.8 2.2	12.3 2.5	0.4 0.09	0.46 0.10	756 149
September	3.1 2.2	2.2 1.8	2.5 2.0	0.09 0.07	0.10 0.08	123
November	2.2	1.9	2.0	0.07	$0 \cdot 08$	119
December.	2.0	1.8	(for period	December 1	to Decemb	er 8.$)$
The period.	56.5	1.8	7.5	$0 \cdot 26$	$2 \cdot 37$	3,656

[^34]SESSIONAL PAPER No. 25e
Heffley Creek, Lower (2018).
Location.-Section 11, township 22, range 17, west 6 th meridian.
Records Available.-August 19 to October 31, 1911; April 3 to September 15, 1912; April 13 to September 15, 1913; April 1 to December 6, 1914.

Drainage Area.-65 square miles.
Gauge.-Vertical staff gauge read daily by Mrs J. Austin.
Channel.-About 15 feet wide with rocky bed. The flow varies from a minimum of zero to a maximum of 55 cubic feet per second. The flow is partly subject to artificial regulation by a dam on Heffley lake.

Discharge Measurements.-Stream is well rated by well-distributed meterings. Winter Flow.-Stream usually frozen over during winter months.
Accuracy.-High. Results computed from a well-rated curve.

Discharge Measurements of Heffley Creek (Lower) at mouth, for 1914.

Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
			Feet.	Sq. ft	Ft. per sec.	Feet.	Sec.-ft.
June 1.	C. B. Corbould	1915	10 8	5.75 5.50 5.	1.30 1.21	1.20 1.10	7.5 6.7
Aug. 14	H Tredero ${ }^{\text {and }}$	1915	8	5.70	1.21	1-15	6.9
Sept. 8.	E. H. Trederoft and C Corbould	1923	$7 \cdot 0$	2.50	0.30	0.80	0.8
Oct. 29.	C. B. Corbould	1673	$7 \cdot 5$	$4 \cdot 60$	$0 \cdot 57$	1.00	$2 \cdot 6$

For further measurements during 1914 on this stream, see Heffley Creek L'pper Station, and for further hydrographic data see Water Resources Papers Nos. 1 and 8.

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Heffley Creek (Lower) near mouth, for 1914.

SESSIONAL PAPER No. 25e
Daily Galge Height and Discharge of Heffley Creek (Lower) at mouth, for 1914.-Con.

Day.	July.		August.		September.		October		November.		December.	
	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height.	Discharge	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height	Dizcharge
	Feet.	Sec.-ft	Feet.	See -ft.								
1	1.07	$4 \cdot 7$ 4.3	1.20 1.30	8.1 11.0	0.77 0.80	0.7 0.8	0.95 0.95	$2 \cdot 5$ $2 \cdot 5$	1.00 1.00	$3 \cdot 2$ $3 \cdot 2$	1.05 1.05	$4 \cdot 3$
$\frac{2}{3} \times$	1.05 1.05	$4 \cdot 3$ $4 \cdot 3$	1.30 1.30	11.0 11.0	0.80 0.80	0.8 0.8	0.95 0.95	$2 \cdot 5$ 2.5	1.00 1.00	$3 \cdot 2$ $3 \cdot 2$	1.05	$4 \cdot 3$
4.	1.05	$4 \cdot 3$	1.36	11.0	0.80	0.8	0.95	2.5	1.00)	$3 \cdot 2$	1.07	4.7
5.	1.02	$3 \cdot 6$	$1 \cdot 30$	$11 \cdot 0$	0.80	0.8	0.95	$2 \cdot 5$	1.00	$3 \cdot 2$	1.07	$4 \cdot 7$
6.	$1 \cdot(00$	$3 \cdot 2$	$1 \cdot 30$	11.0	0.80	0.8	0.95	$2 \cdot 5$	1.00	$3 \cdot 2$	$1 \cdot 07$	4.7
7.	1.00	3.2	$1 \cdot 30$	11.0	0.80	0.8	0.95	$2 \cdot 5$	0.99	$1 \cdot 7$		
8	1.62	$3 \cdot 6$	1.20	8.1	$0 \cdot .80$	0.8	0.95	$2 \cdot 5$	1.00	$3 \cdot 2$		
9	1.00	$3 \cdot 2$	$1 \cdot 30$	11.0	0.80	0.8	0.95	$2 \cdot 5$	1.00	3.2 3.2		
10	1.60	$3 \cdot 2$	1.30	11.0	0.80	0.8	0.95	$2 \cdot 5$	1. 16	3-2		- 1
11	1.00	$3 \cdot 2$	$1-30$	11.0	0.80	0.8	0.95	$2 \cdot 5$	1.00	$3 \cdot 2$		
12.	1.00	$3 \cdot 2$	$1 \cdot 25$	$9 \cdot 5$	0.80	0.8	0.95	$2 \cdot 5$	0.97	$2 \cdot 7$		
13.	0.97	$2 \cdot 7$	1.20	6. 7	e. 80 0.85	0.8 1.3	0.95 0.95	$\frac{2}{2.5}$	0.97 0.97	$2 \cdot 7$		
14	0.97	$2 \cdot 7$	$1 \cdot 15$	$6 \cdot 7$ 6.7	0.85 0.90	1.3 1.7	0.95 0.97	$2 \cdot 5$ 2.7	0.97 0.97	$2 \cdot 7$		
15	0.97	$2 \cdot 7$	1-15	6.7	0.90	1.7	0.97	$2 \cdot 7$	0.97	$2 \cdot 7$		
16.	0.95	$2 \cdot 5$	$1 \cdot 10$	$8 \cdot 1$	0.90	1.7	0.97	2.7	0.97	$2 \cdot 7$,
17.	0.95	$2 \cdot 5$	1.05	$4 \cdot 3$	0.90	1.7	0.97	2.7	1.00 1.02	$3 \cdot 2$ $3 \cdot 6$		
18	0.95	$2 \cdot 5$	1.02	$3 \cdot 6$	0.94	1.7	0.97	2.7	1.02 1.02	3.6 3.6		
19.	0.90	1.7	1.00 0.95	$3 \cdot 2$	0.90 0.95	1.7 2.5	0.97 0.97	$2 \cdot 7$ $2 \cdot 7$	$1 \cdot 02$	3.5 4.7		
20.	$0 \cdot 90$	1.7	0.95	$2 \cdot 5$	0.95	$2 \cdot 5$	0.97	$2 \cdot 7$	1.07	4.7		
21	1.07	$4 \cdot 7$	0.90	1.7	0.95	$2 \cdot 5$	0.97	$2 \cdot 7$	1.00	3.2		
22.	$1 \cdot 10$	$5 \cdot 4$	0.87	1.5	0.92	$2 \cdot 0$	1.00	$3 \cdot 2$	1.00	$3 \cdot 2$		
23.	1.10	$5 \cdot 4$	0.80	0.8	0.92	$2 \cdot 0$	1.00	$3 \cdot 2$	1.02	3.6		
24.	1.15	6.7	0.80	0.8 0.8	0.92	2.0 2.0	1.00 1.00	$3 \cdot 2$ $3 \cdot 2$	1.07 1.07	4.7		1
25.	$1-30$	11.0	0.50	0.8	c.92	$2 \cdot 0$	1.00	$3 \cdot 2$	1.07	$4 \cdot 7$	**	,
26	$1 \cdot 30$	11.0	0.80	0.8	0.95	$2 \cdot 5$	1.00	$3 \cdot 2$	1.05	$4 \cdot 3$		
27	1.27	$10 \cdot 1$	0.82	0.9	0.95	$2 \cdot 5$	1.00	$3 \cdot 2$	1.07	4.7		
28	1.27	$10 \cdot 1$	0.80	0.8	0.95	$2 \cdot 5$	1.00	$3 \cdot 2$	1.07	4.7		
29	1.25	9.5	0.80	0.8	0.95	$2 \cdot 5$	1.60	$3 \cdot 2$	1.00	$4 \cdot 7$		
30..	1.25	9.5	0.80	0.8	0.95	$2 \cdot 5$	1.00	$3 \cdot 2$	$1 \cdot 00$	$3 \cdot 2$		$=$
31	$1 \cdot 20$	8.1	$0 \cdot 77$	0.7			1.00	3.2				-

Monthly Discharge of Heffley Creek (Lower) near mouth, for 1914.
(Drainage area, 65 square miles.

[^35]
 Hafllyy lukw

Ingram Creek (2020).
Location.-Section 23, township 17, range 13, west 6 th meridian.
Records Available.-April 1 to October 4, 1911; April 1 to August 31, 1912; April 1 to September 16, 1913.

Drainage Area.-Twenty-five square miles.
Gauge.-The gauge is a vertical staff gauge read daily by Miss M. King during high water, and tri-weekly at low stages.

Channel.-Channel is straight at measuring section. Bed of stream is rocky and permanent, only one channel at all stages.

Discharge Measurements.-The curve is well defined, measurements having been taken at all stages.

Winter Flow.-Ice conditions usually exist during December, January and February.

Accuracy.-The general accuracy of results is considered high.
Discharge Measurements of Ingram Creek near Grand Prairie, for 1914.

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
			Feet.	Sq. it.	Ft. per sec.	Feet.	Sec.-ft.
May	$\begin{aligned} & \text { E. M. Dann \& E. H. Tred- } \\ & \text { croft } \end{aligned}$	1055	18	13.95	$3 \cdot 14$	1.92	43.9
June ${ }^{23}$	C. B. Corbould	1915	17	7.10 4.90	${ }^{1.70}$	1.25	12.2
Sept. 24.	do	1915	8	4.90 $2 \cdot 80$	0.65 0.40	1.00 0.88	$3 \cdot 2$ 1.1

For further hydrographic data see Water Resources Papers Nos. 1 and 8.

SESSIONAL PAPER No. 25e

Daily Gauge Height and Discharge of Ingram Creek near Grand Prairie, for 1914

	Day.	May.		June.	
		Gauge Height.	Discharge	Gauge Height	Discharge.
		Feet.	Sec.-ft.	Feet.	Sec.-ft.
1.				1.50	22.0
2				1.40 1.50	17.75
4				1.50 1.40	$\xrightarrow{22.0} 17.75$
5.				1.40	17.75
6.		1.92	$43 \cdot 9$	$1 \cdot 50$	22.0
7.				1. 40	17.75
8.				1.40	17.75
9.		$2 \cdot 20$	$61 \cdot 2$	$1 \cdot 35$	15.75
10.		$2 \cdot 40$	74.4	$1 \cdot 35$	15.75
11.		$2 \cdot 30$	$67 \cdot 6$	1.40	17.75
12.		$2 \cdot 40$	74.4	$1 \cdot 40$	17.75
13.		$2 \cdot 30$	$67 \cdot 6$	1.30	13.75
14		$2 \cdot 20$	61.2	$1 \cdot 30$	13. 75
15.		$2 \cdot 40$	$74 \cdot 4$	$1 \cdot 25$	11.8
16		$2 \cdot 50$	81.1	$1 \cdot 20$	9.8
17		2.45	77.7	$1 \cdot 20$	9.8
18	+1.	$2 \cdot 30$	$67 \cdot 6$	$2 \cdot 20$	9.8
19.		$2 \cdot 10$	$54 \cdot 7$	1.20	9.8
20.		$2 \cdot 00$	48.5	1.20	9.8
21.		1.90	42.5	$1 \cdot 20$	9.8
22.	80\%	1.90	42.5	$1 \cdot 15$	$8 \cdot 1$
23.		1.90	42.5	1. 20	9.8
24		1.90	$42 \cdot 5$	1. 20	9.8.
25.		1.90	42.5	1. 20	9.3
26		1.80	36.8	1.20	$9 \cdot 8$
27.		1.80	36.8	1.20	9.8
28		1.70	31.5	1.15	8.1
29	.1) $=$ cri	1.65	29.0	1. 10	$6 \cdot 4$
30.	-11 $\mathrm{xo1}$	1.60	$26 \cdot 5$	$1 \cdot 10$	$6 \cdot 4$
31.		1.55	24.2		

6 GEORGE V, A. 1916
Dally Gauge Height and Discharge of Ingram Creek near Grand Prairie, for 1914 -Con.

Monthly Discharge of Ingram Creek near Grand Prairie, for 1914.
(Drainage area, 25 square miles.)

[^36]SESSIONAL PAPER No. 25e
Jameson Creek (2022).
Location.-Section 21, township 22, range 17, west of the 6 th meridian.
Records Available.-June 22 to October 30,1911; April 3 to October 30, 1912; May 1 to October 1, 1913; January 1 to January 24, and April 1 to December 9, 1914.

Drainage Area.-Sixty-six square miles.
Gauge.-Vertical staff gauge situated above British Columbia Fruitlands Diversion, and read daily by J. Crack, rancher.

Channel.-Is approximately 30 feet in width, with rocky bed.
Discharge Measurements.-Are made from Highway bridge at high water and by wading at low water.

Accuracy.-The accuracy of the returns are considered fairly high, having been compiled from a well-defined curve; meterings have been procured at all stages.

Winter Flow.-Ice conditions on this stream vary considerably. Some years obtaining for two months (January and February) and some years remaining open.

Discharge Measurements of Jamieson Creek near Black Pines, for 1914.

	Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \end{aligned}$	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.	
May 10		E. H. Trederoft E. H. Trederoft \& C. Corbould. E. H. Trederoft	1055	Feet.	Sq. 1t.	Ft. per sec.	Feet.	Sec. ft .	
		28		$63 \cdot 3$	$7 \cdot 50$	3.80	4901		
JuneAug.	30526		1923	30 35	$54 \cdot 1$ $34 \cdot 0$	5.61 1.90	3.50 2.36	$343{ }^{\text { }}$ 65.5	
			C. B. Corbould	1915	24	$39 \cdot 6$	$0 \cdot 60$	$\overline{2} \cdot 00$	$65 \cdot 5$ 26.0
"		E. H. Trederoft \& C. B. Corbould.	1923	20	18.4	0.46	1.81	8.6	

[^37]Daily Gauge Height and Discharge of Jamieson Creek near Black Pine, for 1914.

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Jamieson Creek near Black Pines, for 1914-Con.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge.						
	Feet.	Sec.-ft.										
1.	$2 \cdot 35$ 2.35	60	1.95 1.95	16 16	1.72 1.67	$4 \cdot 5$ $3 \cdot 7$	1.77	$6 \cdot 0$ $6 \cdot 0$	1.87	10.5 13.0	1.77	6.00
3.	$2 \cdot 30$ $2 \cdot 3$	60 53 50	1.95 1.95	16 16	1.67 1.67	$3 \cdot 7$ $3 \cdot 7$	1.77 1.77	$6 \cdot 0$ $6 \cdot 0$	1.92	$13 \cdot 0$ 13.0	1.82 1.82	8.0 8.0
4	$2 \cdot 30$	53	1.95	16	1.67	$3 \cdot 7$	1.77	$6 \cdot 0$	1.92	13.0	1.82	8.0
5.	$2 \cdot 25$	46	1.95	16	1.67	$3 \cdot 7$	1.77	$6 \cdot 0$	1.87	$10 \cdot 5$	1.87	$10 \cdot 5$
6	$2 \cdot 20$	40	1.95	16	1.67	$3 \cdot 7$	$1 \cdot 77$	6.0	1.87	$10 \cdot 5$	1.92	13.0
7	$2 \cdot 20$	40	1.95	16	1.67	$3 \cdot 7$	1.77	$6 \cdot 0$	1.87	10.5	1.92	13.0
8	$2 \cdot 15$	34	1.95	16	1.72	$4 \cdot 5$	1.77	$6 \cdot 0$	1.87	$10 \cdot 5$	1.87	$10 \cdot 5$
9.	$2 \cdot 10$	29	1.95	16	1.77	6.0	1.72	$4 \cdot 5$	1.82	$8 \cdot 0$	1.87	$10 \cdot 5$
10.	2-10	29	1.90	13	1.87	$10 \cdot 5$	1.72	$4 \cdot 5$	1.82	8.0		
11.	$2 \cdot 05$	24	1.90	13	1.77	$6 \cdot 0$	1.77	$6 \cdot 0$	1.82	$8 \cdot 0$		
12.	2.05	24	1.90	13	1.72	$4 \cdot 5$	1.82	$8 \cdot 0$	1.87	$10 \cdot 5$		
13.	1.95	16	1.85	10	1.72	$4 \cdot 5$	1.87	$10 \cdot 5$	1.92	13.0		
14	$2 \cdot 10$	29	1.85	10	1.77	$6 \cdot 0$	1.82	$8 \cdot 0$	1.97	16.0		
15.	2-40	67	1.90	13	1.82	$8 \cdot 0$	1.77	$6 \cdot 0$	1.97	16.0		
16.	$2 \cdot 40$	67	1.90	13	1.77	$6 \cdot 0$	1.77	$6 \cdot 0$	1.92	$13 \cdot 0$		
$17 .$	$2 \cdot 30$	53	1.90	13	1.82	$8 \cdot 0$	1.77	$6 \cdot 0$	1.87	$10 \cdot 5$		
18.	$2 \cdot 25$	46	1.85	10	1.87	$10 \cdot 5$	1.82	$8 \cdot 0$	1.82	$8 \cdot 0$		
19.	$2 \cdot 20$	40	1.85	10	1.87	$10 \cdot 5$	1.87	$10 \cdot 5$	1.87	$10 \cdot 5$		
20.	$2 \cdot 20$	40	1.85	10	1.87	$10 \cdot 5$	1.97	16.0	1.82	$8 \cdot 0$		i1.
21.	$2 \cdot 10$	29	1.85	10	1.87	$10 \cdot 5$	1.92	13.0	1.82	8.0		
22.	$2 \cdot 20$	40	1.85	10	1.87	$10 \cdot 5$	1.92	$13 \cdot 0$	1.82	$8 \cdot 0$		
23.	$2 \cdot 30$	53	185	10	2.07	$24 \cdot 0$	1.87	$10 \cdot 5$	1.82	$8 \cdot 0$	417
24.	$2 \cdot 40$	67	1.85	10	1.92	$13 \cdot 0$	1.87	$10 \cdot 5$	1.82	$8 \cdot 0$. 1.1
25	$2 \cdot 40$	67	1.75	6	1.87	$10 \cdot 5$	1.87	$10 \cdot 5$	1.87	$10 \cdot 5$,
26	$2 \cdot 30$	53	1.80	8	1.87	$10 \cdot 5$	1.82	$8 \cdot 0$	1.87	$10 \cdot 5$		
27.	$2 \cdot 20$	40	1.75	6	1.82	$8 \cdot 0$	1.82	8.0	1.82	8.0	483	84018
28	2.05	25	1.75	6	1.82	$8 \cdot 0$	1.82	8.0	1.82	8.0	+	,
29	2.05	25	1.80	8	1.77	$6 \cdot 0$	1.82	8.0	1.77	$6 \cdot 0$		
30.	1.95	16	1.75	6	1.77	$6 \cdot 0$	1.82	8.0	$1 \cdot 77$	$6 \cdot 0$		
31..	1.90	13	1.75	6			1.82	8.0				13***

Monthly Discharge of Jamieson Creek near Black Pines, for 1914.
(Drainage area, 66 square miles.)

Month.	Discharge in Second-Feet.				RUN-Ory.	
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-levt. } \end{gathered}$
April.	222	20	94	14	1.6	5.393
May.... . . .	1,155	172	506	$7 \cdot 7$	8.9	31.113
	172	40	* 7	$1 \cdot 3$	1.4	3.176
July	67	13	11	$6 \cdot 6$	0.7	2.321
Auguat - . . .	16	6	11	$0 \cdot 2$	$0 \cdot 3$	610
September	24	3.7	7	$0 \cdot 1$	0.1	416
Oetober.. ${ }^{\text {S }}$ -	16	1.5	\checkmark	$0 \cdot 1$	(1). 1	+192
		$6 \cdot 11$	10	$0 \cdot 2$	11.2	398
The period...	1,155	$3 \cdot 7$	95	1.45	13.3	40.582

Note-Summary given under "the period" covern only the monthe of April to Nevember inclunse
Preeipitation probably varien from about 10 inchem at the mouth (630 melow in the hagher whtudew

6 GEORGE V, A. 1916
Louis Creek (2023).
Location.-Section 33, township 23, range 15, west 6th meridian.
Records Available.-July 16 to October 31, 1911; April 1 to November 16, 1912; May 1 to October 14, 1913; April 1 to December 11, 1914.

Drainage Area.- One hundred square miles.
Gauge.-Standard vertical staff gauge read daily during high water, and tri-weekly during low water, by D. G. McKnight.

Channel.-The width of stream averages 25 to 35 feet at measuring section. Control is good.

Discharge Measurements.-Nine well-distributed meterings have been taken on this stream, and curve is well defined.

Winter Flow.-Ice conditions obtain on this stream usually throughout January, February and March.

Accuracy.-Accuracy of returns on the whole is high, and results should fall within 10 per cent.

Discharge Measurements of Louis Creek at Les ie's Ranch, for 1914.

Date.	Hydrographer.	Meter No.	Width.	Area of section	Mean Velocity.	Gauge Height.	Discharge.
Aug. 13	C. B. Corbould.	1,915	Feet. $21 \cdot 0$	Sq. ft. $27 \cdot 3$	Ft. per sec. 1.0	Feet. $0 \cdot 59$	Sec.-ft. 28.0

For further hydrographic data see Water Resources Papers Nos. 1 and 8.

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Louis Creek at Leslie's Ranch, for 1914.

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Louis Creek at Leslie's Ranch, for 1914.-Con.

Monthly Discharge of Louis Creek near mouth, for 1914.
(Drainage area, 100 square miles.)

Month.	Discharge in Second-Feet.				Run-Off.	
	Maximum.	Minimum.	Mean.	$\begin{gathered} \text { Per } \\ \text { square } \\ \text { mile. } \end{gathered}$	Depth in inches on Drainage. area.	Total in acre-feet.
April.	61	26	$43 \cdot 0$	$0 \cdot 4$	0.4	2,559
May......	398	89	$233 \cdot 0$	$2 \cdot 3$	$2 \cdot 6$	14,327
June...	326	130	$225 \cdot 9$	$2 \cdot 2$	2.4	13,442
July	117	30	66.2	$0 \cdot 7$	$0 \cdot 8$	4,070
August...	30	22	$25 \cdot 5$	$0 \cdot 2$	$0 \cdot 2$	1,568
September.	28	20	$24 \cdot 2$	$0 \cdot 2$	$0 \cdot 2$	1,440
October...	28	24	$24 \cdot 9$	$0 \cdot 2$	$0 \cdot 2$	1,531
November...	32	24	$26 \cdot 0$	$0 \cdot 3$	$0 \cdot 3$	1,547
December. .. .						
The period .. .	398	20	$83 \cdot 6$	$0 \cdot 8$	$7 \cdot 1$	56,484

[^38]Monte Creek, Div. to Summit Lake (2026).
Location.-At Graham's ranch.
Records Available.-May 25 to October 2, 1911; June 20 to September 30, 1913; April 1 to November 17, 1914.

Gauge.-Vertical staff gauge read daily by E. C. Lewis.
Channel.-About 10 feet in width, with gravell: bed. This diversion supplements the natural run-off of Summit lake (or Essell creek).

Discharge Measurements.-Gauge height discharge curve, only fairly well defined by three meterings in 1914.

Winter Flow.-Stream frozen up during the winter months.
Accuracy.-Fairly good, within about 10 per cent of true accuracy.

Discharge Measurements of Monte Creek Diversion to Summit Lake, for 1914.

[^39]Daily Gayge Height and Discharge of Monte Creek Diversion to Summit Lake, for 1914.
U'p to June 22nd: old gauge used.

Day.	April.		May.		June.	
	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec. ft .
	0.55 0.55	$3 \cdot 1$ $3 \cdot 1$	1.20 1.40	$25 \cdot 1$ $35 \cdot 9$		11.0 11.0
$\frac{2}{3 \ldots}+\square-\infty$	0.52 0.62	$3 \cdot 1$ $4 \cdot 3$	$1 \cdot 10$ 1.50	$35 \cdot 9$ 41.6		$11 \cdot 0$ 11.0
	0.72	6.5	$1 \cdot 40$	35.9		11.0
5..	0.80	8.7	1-30	$30 \cdot 4$		11.9
6.	0.92	$12 \cdot 7$	$1 \cdot 30$	$30 \cdot 4$		11.0
	1.00	$15 \cdot 9$	$1 \cdot 20$	25.1		11.0
S - -	$1 \cdot 10$	20.1	$1 \cdot 20$	25.1		11.0
	$1 \cdot 25$	27.7	$1 \cdot 30$	$30 \cdot 4$		11.0
	$1 \cdot 30$	$30 \cdot 4$	$1 \cdot 40$	$35 \cdot 9$		$11 \cdot 0$
	$1 \cdot 35$	$33 \cdot 1$	$1 \cdot 40$	35.9		$11 \cdot 0$
	1.40	$35 \cdot 9$	$1 \cdot 30$	$30 \cdot 4$		11.0
13.... -	1.45	38.7	$1 \cdot 10$	$20 \cdot 1$		11.0
14. ${ }^{\text {a }}$ -	$1 \cdot 50$	$41 \cdot 6$	1.20	$25 \cdot 1$		11.0
	1.50	$41 \cdot 6$	$1 \cdot 20$	$25 \cdot 1$		11.0
16.	1.50	41.6	$1 \cdot 00$	15-9		11.0
17.	1.50	41.6	$0 \cdot 90$	$12 \cdot 0$		11.0
	$1 \cdot 50$	$41 \cdot 6$	$0 \cdot 90$	$12 \cdot 6$		11.0
	$1 \cdot 50$	$41 \cdot 6$	$0 \cdot 90$	12.0		11.0
	$1 \cdot 50$	$41 \cdot 6$		11.0		$11 \cdot 0$
21.	$1 \cdot 50$	$41 \cdot 6$		11.0		11.0
	$1 \cdot 50$	$41 \cdot 6$		$11 \cdot 0$	1.00	11.0
	1.50	41.6		11.0	1.00	11.0
	1.40	$35 \cdot 9$		11.0	$1 \cdot 05$	$12 \cdot 4$
25.... .. - - - - - - - - - -	1.40	$35 \cdot 9$		$11 \cdot 0$	$1 \cdot 10$	$13 \cdot 7$
	$1 \cdot 30$	$30 \cdot 4$		$11 \cdot 0$	$1 \cdot 05$	$12 \cdot 4$
	$1 \cdot 20$	$25 \cdot 1$		11.0	1.00	$11 \cdot 0$
28	1.20	25.1		11.0	1.00	11.0
	$1 \cdot 20$	25.1		$11 \cdot 0$	1.00	11.0
	$1 \cdot 20$	$25 \cdot 1$		11.0	1.00	$11 \cdot 0$
31.				$11 \cdot 0$		

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Monte Creek River Div. to Summit Lake, for 1914-Con.

Monthly Discharge of Monte Creek Div. to Summit Lake, for 1914.
(Drainage area, - square miles.)

	Mosth.	Dhehthge in Smcond-Fiet.			Rt S-ovr.
		Maximum.	Minimum	Mean.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-fext } \end{gathered}$
April	,	41.6	31	28.6	1 Nz
Mny ${ }^{\text {alur }}$	=	41.6	11.11	20.5	13 Stal
Junc	-	13.7	11.1)	119	tiliti
July		A.-	11.7	\cdots	175
Ausurt		1.7	0.3	1. 4	29
Noptember		$0 .-$ 2.4	0.1 0.3	${ }^{10.2}$	12
esetober November		12	0.3 0.7	$\underset{\text { Hior jwrichi }}{\text { 0.7 }}$	Niny 1 tot
				Sos 16	
The period	111	41-11	0.1	9.2	3 axtil

Monte Creek, below Div. to Summit Lake (2025).
Location.-Section 22, township 13, range 14, west 6 th meridian.
Records Available.-May 25 to September 30, 1911; April 1 to September 17, 1912; June 20 to September 30, 1913; April 1 to November 17, 1914.

Drainage Area.-Forty-five square miles.
Gauge.-Standard vertical gauge read daily by E. C. Lewis.
Channel.-Width of channel averages 10 feet. Bed of stream gravelly and permanent.

Discharge Measurements.-The curve is well defined, with measurements taken at varying stages.

Winter Flow.-Ice conditions generally prevail throughout winter months.
Accuracy.-Accuracy on the whole is fairly high, and is probably within 10 per cent.

Discharge Measurements of Monte Creek below Summit Lake Div.. for 1914.

| Date. | Hydrographer. | Meter
 No. | Width. | Area of
 Section. | Mean
 Velocity. | Gauge
 Height. | Discharge. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

[^40]SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Monte Creek below Div. Summit Lake, for 1914.

Daily Gauge Height and Discharge of Monte Creek below Div. to Summit Lake, for 1914 -Con.

Monthly Discharge of Monte Creek below Summit Lake Div., for 1914.
(Drainage area, 45 square miles.)

[^41]SESSIONAL PAPER No. 25e
Monte Creek, above Bostock's Diversion (2024).
Location.-Section 25, township 19, range 15, west 6 th meridian.
Records Available.-May 20 to June 30, 1911; August 8, 1911; April 8 to September 7, 1912; April 16 to September 13, 1913; April 1 to December 4, 1914.

Drainage Area.-One hundred and ten square miles.
Gauge.-Standard vertical gauge read semi-weekly by T. F. Teagle.
Channel.-About 15 feet wide, with rocky bed. Flow varies from zero to about 100 cubic feet per second.

Discharge Measurements.-Gauge-height discharge curve is very well defined.

Winter Flow.-Ice conditions prevail during December, January and February.

Accuracy.-High. Results computed from a well-rated curve.

Discharge Measurements of Monte Creek above Bostock's Diversion, for 1914.

	Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section.	Mean Velocity.	Gauge Height	Discharge.
				Feet.	sq. ft .	Ft. per sec.	Feet.	Sec.-ft.
May	${ }^{7}$	C. H. Trederoft.	1055	22 10	28.4	1.71 0.54	1.70 0.90	$4{ }^{4} \cdot 6$
July	21.	C. ${ }_{\text {do }}$	1915	8	7.6	0.32	0.70	$6 \cdot 2$ 2.5
Scpt.	22	do	1915	7	2.9	0.66	0.59	1.9

[^42]6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Monte Creek above Bostock's Diversion, for 1914.

	Day.	April.		May.		June.	
		Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height	Discharge	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge. } \end{gathered}$
		Feet.	Sec.-ft.	Feet.	Sec.ft.	Feet.	Sec -ft.
1.		0.99	8.6 8.7	$1 \cdot 59$	37.1 40.3		20.0 18.7
3.			8.8		44.0	1.22	17.4
4.		1.00	$8 \cdot 9$		47.8		17.9
5.			$10 \cdot 2$	$51 \cdot 5$		18.4
6.			11.5	1.78	55.3	1.25	18.9
7			12.8		$50 \cdot 8$		17.2
8.		1.14	14.0		$46 \cdot 3$		$15 \cdot 6$
10.			15.6	1.61	41.8		14.0
10.			$17 \cdot 2$		$50 \cdot 1$	$1 \cdot 10$	$12 \cdot 3$
11.		$1 \cdot 25$	18.9		58.4		12.6
12.			21.0		66.7		12.9
13.			23.1	1.97	75.0	$1 \cdot 12$	13.1
14.			25.2		71.2		12.4
15.		$1 \cdot 40$	27.3		67.5		11.8
16.			28.0	1.87	63.8		11.2
17			28.6		59.7	$1 \cdot 05$	$10 \cdot 6$
18.		1.43	29.2		55.5		10.0
19.			28.8		51.3		$9 \cdot 4$
20.			28.5	1.68	47.1	1.00	8.9
21.			28.2		$42 \cdot 8$		$8 \cdot 3$
22.		1.41	27.9		38.6		7.7
23.			27.3	1.51	$34 \cdot 4$		7.1
24			26.7		34.6	0.91	$6 \cdot 5$
25.		1-38	$26 \cdot 1$		34.7		6.2
			27.2		34.8		
27.			28.3		35.0	0.87	$5 \cdot 6$
28			29.4	$1 \cdot 52$	$35 \cdot 2$		$5 \cdot 3$
29.		$1 \cdot 45$	30.5 33.8		30.6		$4 \cdot 9$
30.			33.8		$26 \cdot 0$	$4 \cdot 5$
31.				1-30	$21 \cdot 3$		

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Monte Creek above Bostock's Diversion, for 1914.

Day.	July.		August.		September.		Octaber.		November.		December.	
	Gauge Height	Discharge	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge } \end{aligned}$	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge. } \end{gathered}$	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge. } \end{gathered}$
	Feet.	Sec.ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.ft.	Feet.	Sec.-ft	Feet.	Sec.fit.
1.	0.80	$4 \cdot 2$ $4 \cdot 1$	$0 \cdot 60$	1.8 1.8	$0 \cdot 40$	0.3 0.2		1.4		2.7 2.7	0.70	2.8 2.9
${ }_{3}^{2}$.		$4 \cdot 9$		1.7	$0 \cdot 40$	0.4	$0 \cdot 57$	1.5		2.6		3.0
4.	0.77	$3 \cdot 8$		1.6		0.6		1.5	0.67	2.5	0.72	$3 \cdot 1$
5.		3.5	0.57	1.5	0.50	0.8		1.6		$2 \cdot 6$		
6.		$3 \cdot 3$		1.5		0.8		1.7 1.8 1.8		2.7		
8.	0.70	3.0 2.8		1.6		0.8 0.9	$0 \cdot 60$	1.8	$0 \cdot 70$	2.8 2.8		
9.		2.8	0.60	1.8	0.51	0.9		1.9		2.8		
10.		2.8		1.7		$0 \cdot 9$	0. 62	2.0		2.8		
11.	0.70	$2 \cdot 8$		1.5		0.8		2.0	0.70	$2 \cdot 8$		
12.		3.1 3.5	0.55	1.3	$0 \cdot 50$	0.8		$2 \cdot 0$		2.7		
13.		3.5 3.9		1.2		1.0	0.62	2.0 2.0	0.67	$2 \cdot 6$		
15.	0.80	$4 \cdot 2$	0.50	0.8		1.2		$2 \cdot 2$		2.5		
16.		$4 \cdot 0$		0.8	0.55	$1 \cdot 3$		$2 \cdot 4$		$2 \cdot 6$		
17.		$3 \cdot 9$		0.8		1.3	0.67	$2 \cdot 5$		2.7		
18.	0.77	3.8		0.8		$1 \cdot 3$		$2 \cdot 5$	0.70	${ }_{2} 2.8$		
19.		$3 \cdot 6$	0.50	0.8	$0 \cdot 55$	$1 \cdot 3$		$2 \cdot 4$		2.7		
20.		$3 \cdot 3$		0.8		$1 \cdot 3$		$2 \cdot 3$		$2 \cdot 6$		
21.		3.0		0.8		$1 \cdot 3$	$0 \cdot 65$	$2 \cdot 3$	$0 \cdot 67$	2.5		
22.	0.70	2.8	0.50	0.8		1.3		$2 \cdot 3$		${ }_{3}^{2.8}$		
23.		$2 \cdot 7$		0.8	0.55	$1 \cdot 3$		$2 \cdot 4$		$3 \cdot 2$		
24.		$2 \cdot 5$		0.7		$1 \cdot 3$	0.67	$2 \cdot 5$		3.5		
25.	0.65	$2 \cdot 3$		0.6		$1 \cdot 4$		2.5	0.77	3.8		
26.		2.1	$0 \cdot 45$	0.5	C. 57	1.5		2.5		3.5		
28.		2.0		0.5		$1 \cdot 4$		2.5		$3 \cdot 1$		
29.	0.60	1.8	0.45	0.5		1.3	$0 \cdot 67$	2.6	$0 \cdot 70$	3.8		
30.		1.8		0.5	0.55	$1 \cdot 3$		2.7		2.8		
31.		1.8		$0 \cdot 4$			0.70	2.8				

Monthly Discharge of Monte Creek above Bostock's Diversion, for 1914.
(Drainage area, 110 square miles.)

Montie.	Discharge in Second-Fezt.		
	Maximum.	Minimum.	Mean.
April.	33.8	8.6	22.0
May.	75.0	21.3	116.7
	23.0	+3	11.3
	4.3 1.8	1.8 4	3.1 1
September .-	$1 \cdot 5$	$0 \cdot 2$	1.1)
October	-8.8	1.7	3.1
	$3 \cdot 8$	$2 \cdot 5$	2.8
	bre	,	
The periont	$75 \cdot 0$	(1)2	$11 \cdot 3$

Nores.-Smamary for "the period" covers Aprit to November (inchasive).
 from Monto ('resek to Summit liske.

Jainfall varien from 10 tose inchow mamally.

Myrtle River.

The Myrtle river rises in Myrtle lake just a mile west of the Blue River divide. Myrtle lake is surrounded by fairly level country, and is at an elevation of about 3,000 feet. Its superficial area is about 15 square miles. No information has been obtained regarding the storage facilities of the lake; however, it is interesting to note that with the area given above, a 5 -foot dam

Myrtle River, Dawson Falls
Photograph by F. R. Archibald One of the many natural power sites on the Myrtle river. This photograph, taken at a low water stage shows Dawson falls, which are about four miles upstream from Helmeken Falls.
would give an increased storage capacity of 48,000 acre-feet (at least), which would mean an increase in minimum flow for continuous power of about 80 second-feet (assuming a shortage of water for 300 days). The wonderful latent power possibilities of the river warrant a much more thorough investigation.

SESSIONAL PAPER No. 25e

The following are the more important power sites:-

Name of Falls.	Natural Head.	Distance from mouth of Myrtle River and Location.
Helmeken falls	450 feet (triangulated).	1 mile; in lot 3210.
Dawson falls..	Three lower falls 20 feet each (approx. Upper fall 50 feet (approx.)	
Un-named falls.	25 feet (approx.)	10 miles; in lot 3494.
Horseshoe falls	35 feet (approx.)	12 miles; in lot 3499.
Meadow falls .	20 feet (approx.) 40 feet	13 miles: in lot 3998 , miles: a mile or two below lake
Un-named falls..	Said to be about 40 feet	20 miles: a mile or two below lake outlet.

Helmeken Falls and Myrtle river canyon.
Photograph lyy F. R. Archibuld.
This photograph of Heturcken falls on the Myrtle river is one of the first ever taken of what is probably one of the fmest natural power sites of British ('olumbia's vast hinterland. I sheer fall of tion) feet (triangulated) over which a stream plunges whose estimated minimum flow is 400 see. -ft., und whose maximum is prohnbly 10,000 seec,-ft., is an unusual sight and one which for majestie gromdear is prohblaly unsurpassed in the Dominion, Studies of the flow of the Myrtle river have been eommenced and a yeur's cycle will be complete on Sept. 1, 1915.

For a matter of historic reeod it should be stated that Hehmeken falls (a photograph of which is printed eleswhere) were diseovered by two members of a land survey party in charge of Mr. R. H. Lee, of liamloeps, in the summer of 1913 (Messrs. Lace and Hossack). Although they were sad to be known to the Indians, whe spoke of them as "the falls wheh are two hige eedars high," these two men are the first white men whieh are known to have seen the falls. For seenic beanty this womderful matural power-site is probably without a peer, and will sooner or later beeome a meea for tomists from varions parts of the world.

$$
251: \quad 18 \frac{1}{2}
$$

The total length of Myrtle river is about 22 miles between the lake and the river's confluence with the Clearwater.

A gauge was established on the Myrtle river on September 1, 1914, by Messrs. E. H. Trederoft and C. B. Corbould, and a meter measurement made showing a flow of 800 second-feet. After further measurements are made, a year's cycle of records will be available on September 1, 1915. Gauge readings are taken by Mr. P. McDougall weekly. Owing to the inaccessibility of the station, it has been impossible to procure more readings, but, since the stream's behaviour is fairly regular, it is thought that fairly reliable results will be obtained. A very rough estimate, made by comparison of the Myrtle drainage area with that of the Clearwater, places the minimum flow at 400 and the maximum at 10,000 second-feet.

Paul Creek (2032).

Location.-Section 31, township 20, range 16, west 6th meridian.
Records available.-July 1 to October 6, 1911; May 12 to September 25, 1912; May 18 to September 30, 1913; April 20 to September 27, 1914.

Drainage area.-Sixty-five square miles.
Gauge.-Vertical staff gauge read weekly by E. L. Ridout.
Channel.-Channel is rocky, and current is very swift at high stages.
Discharge measurements.-The gauge-height curve is fairly well defined. The flow is artificially controlled by a dam on Paul lake.

Winter flow.-Stream usually dries up during winter, or else ice conditions obtain.

Accuracy.-Accuracy, with the exception of flood times, is considered high.
Discharge Measurements of Paul Creek below Paul Lake, for 1914.

Date.	' Hydrographer.	Meter No.	Width.	Area of Section.	Mcan Velocity.	Gauge Height.	Discharge.
			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
April 27.	E. M. Dann.	1505	$5 \cdot 5$	$4 \cdot 60$	$9 \cdot 02$	$2 \cdot 25$	41.4
May. 19...	C. B. Corbould	1673	5.7	6.05 2.70	$11 \cdot 50$ $5 \cdot 50$	2.75	$69 \cdot 9$
July ${ }_{\text {. }} 14 \ldots$	C. B. Corbould E. Dann and C. E. Webb.	1915	7.0 5.8	2.70 1.98	5.50 6.44	1.95 1.73	$14 \cdot 8$ $12 \cdot 7$
Aug. 8.	C. B. Corbould...............	1915	6.0	$3 \cdot 26$	$7 \cdot 90$	$2 \cdot 12$	$25 \cdot 7$

[^43]S'ESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Paul Creek below Paul Lake, for 1914.

Day.	April.		May.		June.		July.		August.		September.	
	Gauge Height	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge	Gauge Height	Discharge	Gauge Height.	Discharge.	Gauge Height.	Discharge.
	Feet.	Sec.-ft	Feet.	Sec-ft.	Feet.	Sec. ft .	Feet.	See.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1.				$42 \cdot 9$ 45.4		14.9		30.8 30.0		12.0		13.2
2.				$45 \cdot 4$ $48 \cdot 0$		$17 \cdot 4$ $20 \cdot 0$		30.0 29.2	1.72	11.7 13.0		$12 \cdot 7$ $12 \cdot 2$
4.			$2 \cdot 50$	50.5		22.5		28.4		$14 \cdot 2$		11.7
5....				$55 \cdot 0$		$25 \cdot 0$	$2 \cdot 15$	27.6		$15 \cdot 5$		11.2
6.				59.5		27.5		26.8		$16 \cdot 6$		$10 \cdot 7$
7.				64.0	$2 \cdot 20$	30.2 31.8		25.9		17.9	$1+65$	$10 \cdot 2$
8.				68.5 $73 \cdot 0$		31.8 33.4		25.0		19.2		9.5
10.			$2 \cdot 85$	$77 \cdot 6$		35.0		$23 \cdot 2$	2-00	$20 \cdot 5$		8.8 8
11.	11...			79.4		$36 \cdot 6$		22.3		$20 \cdot 5$		7-4
12.				81.2 83.0		38.2 39.8		21.4		20.5 20.5		6.7
14.				83.0 84.7		$39 \cdot 8$ 41.4	$2 \cdot 00$	$20 \cdot 5$ 19.8		20.5 20.5	1.49	$6 \cdot 0$
15......				86.5	2.4	$43 \cdot 0$		19.2		$2 \mathrm{C} \cdot 5$		5.6 5.2
16.				$88 \cdot 3$		45.1		$18 \cdot 6$	$2 \cdot 00$	20.5		4.8
17.			$3 \cdot 00$	$98 \cdot 0$ 87.1		47.3 49		18.9	2	$20 . \mathrm{C}$		$4 \cdot 4$
18.				87.1 84.2		49.4 51.6		17.4		19.5		3.9
19.	$1 \cdot 10$	$2 \cdot 6$		$84 \cdot 2$ $81 \cdot 3$		51.6 53.7	1.90	$16 \cdot 8$ $16 \cdot 3$		$19 \cdot 0$ 18.4		3-5
	$1 \cdot 10$	$2 \cdot 6$		81.3		53.7		$16 \cdot 3$		18.4	$1 \cdot 15$	$3 \cdot 1$
21.		7.2		78.4		$55 \cdot 8$		15.9		17.9		2.7
22.		11.8 16.4		$75 \cdot 5$	$2 \cdot 60$	58.0		15.4		17-3		2.4
23.		16.4 21.0		$72 \cdot 6$ 69.7		53.9 49.8		15.0	1.90	16.8		$2 \cdot 0$
24.		21.0 25.6	$2 \cdot 75$	$69 \cdot 7$		$49 \cdot 8$		14.5		$16 \cdot 5$		1.7
25.		$25 \cdot 6$		$61 \cdot 6$		$45 \cdot 7$		$14 \cdot 1$		$16 \cdot 1$		1.4
26.	$2 \cdot 20$	$30 \cdot 2$		53.4		41.5	1.80	$13 \cdot 7$		$15 \cdot 7$		
27.		$32 \cdot 7$		$45 \cdot 2$		37.4		13.5		$15 \cdot 3$	0.90	$0 \cdot 7$
28.		35.2 37.8		37.0 98	$2 \cdot 25$	33.3		$13 \cdot 2$		14.9	,	0
29. 30		$37 \cdot 8$...	28.8		$32 \cdot 4$		12.9		$1+5$		
30.	$40 \cdot 3$		$20 \cdot 6$		$31 \cdot 6$		$12 \cdot 6$		$14 \cdot 1$		
31.			$1 \cdot 75$	$12 \cdot 4$				$12 \cdot 3$	1.80	$13 \cdot 7$		

Monthly Discharge of Paul Creek below Paul Lake, for 1914.
(Drainage area, 65 square miles.)

Montil.	Discharge in Second-Fzet.				Run-Ofr.	
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { nere-feet } \end{gathered}$
May.	90. 0	$12 \cdot 4$	64.0	0.95	11	
June....	58.0	14.9	38.1	0.6	7	2,26i7
July Aurust	30.8 20.5	12.3	11.8	$0 \cdot 3$.3	1,217
August, ${ }^{\text {Aeptomber }}$ S	20.5 13.2	11.7	17.2	0.26	-3	1.057
Soptember ()etober	13.2					-325
November	1.181					
Docember....						
Tlue period	(10.1)	0.7	29.1	(1).012	32	S.N1

Nome-- Premipitation 10 to 50 inehee manually
F'low artificially controlled by th dam on l'mul luhe.
The entimated flow for April in 600 uero lest, whle durme the winter mont he the run off as prowticully mi

Raft River (2055).
Location.-Raft river, Water District No. 2.
Records Available.-June 1, 1914, to December 14, 1914.
Drainage Area.-One hundred and twenty-five square miles.
Gauge.-Standard chain gauge on highway bridge, graduated in feet and tenths, having a range from 3.0 to 9.0 , and read by J. Mc̣ennan, Raft River P.O.

Channel.-Average width of channel 150 feet. Bed of stream composed of rock, sand, and gravel, and permanent as far as can be ascertained.

Discharge Measurements.-Only three discharge measurements were taken on this river during 1914 owing to its being situated in country only just being opened up by this survey, but all results of these measurements point to a high degree of accuracy eventually being obtained.

Winter Flow.-Ice conditions obtain on this river during the latter half of December, throughout January, and during the first half of February.

Accuracy.-The accuracy of returns is doubtful, since stream is not completely rated.

Raft River.

Raft river, which joins the North Thompson 76 miles above Kamloops and 5 miles above the mouth of the Clearwater river, rises in the hills about 40 miles north of its mouth.

The lowest half-mile of the river has a sluggish flow, its banks are low and liable to overflow in freshet. Above this point is a canyon about 500 feet wide at its widest section; in the canyon are a series of falls, the two highest being about three-quarters of a mile from the stream's mouth, the lower having a natural drop of 15 feet, and the upper one, 25 feet. No information relating to the upper section of the river is at present available.

A station was established at MacLennan's ranch, half a mile from the mouth, by Mr. E. H. Trederoft on June 2, 1914. Although it was impracticable to thoroughly rate the stream during the year, further meterings will be taken in 1915, and more complete returns made public at the close of that year.

Discharge Measurements of Raft River near mouth, for 1914.

[^44]
SESSIONAL PAPER No. 25 e

Daily Gauge Height and Discharge of Raft River, 1 mile above mouth, for 1914.

Daily Gatge Height and Discharge of Raft River 1 mile above mouth, for 1914-Con.

Monthly Discharge of Raft River at 1 mile above mouth, for 1914.
(Drainage area, 125 square miles.)

	Month.	Discharge in Second-Feet.				RUN-Off.	
		Maximum.	Minimum.	Mcan.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	Total in acre-feet.
June.		2,940	1,240	1,499	$12 \cdot 0$	$13 \cdot 39$	89,196
July .		1,310	205	538	$4 \cdot 3$	$4 \cdot 9$	33,080
August.		155	35	81	$0 \cdot 65$	0.75	4,984
September		370	20	160	1.3	1.45	9,520
October ...		505	155	271	$2 \cdot 2$	2. 54	16.663
November.		370	115	203	1.6	1.78	12,679

[^45]SESSIONAL PAPER No. 25e

Siwash Creek (2058).

Location.-Section 12, township 22, range 16, west 6th meridian.
Records Available.-June 7 to July 28, 1914.
Drainage Area.-Seven square miles.
Gauge.-Standard vertical staff gauge installed by Cippoletti weir and read daily by J. S. Wardell.

Channe'.-Straight above weir. Velocity, medium.
Discharge Measurements.-Three discharge measurements have been taken during 1914 at varying stages.

Winter Flow.-Stream usually runs dry during August.
Accuracy.-Accuracy of results compiled from weir discharge table considered very high, probably within 5 per cent.

Discharge Measurements of Siwash Creek, above Heffley Lake, for 1914

[^46]6 GEORGE V, A. 1916
Daily Guage Height and Discharge of Siwash Creek, near Heffley Creek, for 1914.

Monthly Discharge of Siwash Creek above Heffley Lake, for 1914.
(Drainage area, 7 square miles.)

Note.-Station was established on June 7. Water stopped coming down the creek on July 30. Cippoletti weir station.

Thompson River at Kamloops (2040).

Location.-Section 7, township 20, range 17, west 6th meridian.
Records Available.-April 1 to September 30, 1911; March 24 to December 31, 1912; April 1 to December 31, 1913; January 1 to December 31, 1914.

Drainage Area.- 14,400 square miles.

SESSIONAL PAPER No. 25e

Gauge.-Standard staff gauge on traffic bridge, read daily by Geo. Clapperton.

Channel.-Width of channel varies from 750 to 850 feet at the station. While at high-water depth is from 12 to 17 feet higher than at low stages.

Discharge Measurements.-The curve for this river is well defined, measurements having been taken at various stages.

Winter Flow.-River generally freezes over about 1st January, and remains so until early in March.

On March 5, 1912, a metering was made under ice cover and showed a discharge of 3,980 second-feet.

Accuracy.-The accuracy on the whole is high.

Daily Gauge Height and Discharge of Thompson River at Kamloops, for 1914.

Day.	January.		February.		March.		April.		May.		June.	
	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge	Gauge Height.	Discharge	Gauge Height.	Discharge.	Gauge Height	Discharge
	Feet.	Sec. ft .	Feet.	Sec.-ft.	Feet.	Sec. ft .	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec, -ft.
1.	0.10 0.20	5, 300 5, 690	0.10 0.10	5,300 $5 \cdot 300$	0.20 0.20	3,600	0.10 0.20	5,300	3.70	18,950	8.10	45,000
3.	0.20 0.20	5,690 5.600	- 0.10	5.300	0.20	5,600	0.20	5,600	$4 \cdot 10$	20, 800	$8 \cdot 4$	47,300
4.	$0 \cdot 30$	5,900	$0 \cdot 10$	$5 \cdot 300$	$0 \cdot 20$	5,600	0.10	5,600	4-70	23,800	8.6	45, 800
5.	$0 \cdot 30$	5,900	C.C	5,000	$0 \cdot 20$	5,600	$0 \cdot 20$	3,600	5.90	$3 \mathrm{C}, 440$	$10 \cdot 0$ $10 \cdot 6$	60,200 65,200
6	$0 \cdot 20$	5,600	$0 \cdot 0$	5,000	$0 \cdot 20$	5,600	C. 20	5,600	5.60	28,600	$10 \cdot 6$	65, 200
7.	0-30	5,900	0.0	5,000	$0 \cdot 20$	5,606	$0 \cdot 20$	5.600	$5 \cdot 30$	26,800	$10 \cdot 2$	61,500
8.	$0 \cdot 50$	6,600	$0 \cdot 6$	5,000	$0 \cdot 30$	5,900	$0 \cdot 30$	5.970	5.50	25.000	$10 \cdot 0$	60. 200
9.	$0 \cdot 50$	6,600	$0 \cdot 0$	5,000	$0 \cdot 20$	5,600	$0 \cdot 30$	6, 600	5.60	28.600	$9 \cdot 8$	55.500
10.	$0 \cdot 30$	5,900	$0 \cdot 0$	5,000	0.20	5,600	$0 \cdot 60$	6,950	$5 \cdot 50$	25.000	$9 \cdot 5$	56.000
11.	0.40	6,250	C.0	5,000	$0 \cdot 20$	5,600	0-80	7.550	$5 \cdot 80$	29,800	$9 \cdot 5$	56,100
12	0-30	5,900	0:0	5,000	$0 \cdot 20$	5,600	$0 \cdot 90$	7.900	$6 \cdot 20$	32, 110	9-8	5s. 5010
13.	$0 \cdot 30$	5, 900	$0 \cdot 0$	5,000	$0 \cdot 30$	5,900	$1 \cdot 10$	8.500	6.60	34, 660	$9 \cdot 3$	59.501
14	$0 \cdot 20$	5,690	$0 \cdot 0$	5,000	0.40	6,250	$1 \cdot 20$	8.950	6.80	$35,8 \%$	$10 \cdot 0$	60, 210
15	$0 \cdot 20$	5,600	$0 \cdot 2$	4,500	$0 \cdot 30$	5,900	$1 \cdot 60$	10,350	$7 \cdot 60$	41.400	$10 \cdot 4$	63,514)
16.	0.30	5,900	0.2	4,500	$0 \cdot 20$	5,600	1.90	11,500	$8 \cdot 60$	48, 800	10.9	67.7 (0)
17	$0 \cdot 40$	6,250	$0 \cdot 2$	4,500	$0 \cdot 20$	5,600	$2 \cdot 41$	13.4190	$9 \cdot 20$	33,610	11.4	72.40×1
18	$0 \cdot 30$	5,900	$0 \cdot 2$	4,500	0-30	5.9:10	$2 \cdot 50$	13,800	9.20	53,610	$11 \cdot 8$	23.510
19.	$0 \cdot 30$	5,940	$0 \cdot 2$	4.500	$0 \cdot 20$	5.640	$2 \cdot 50$	13,8(0)	9.041	52.000)	12.0	\%, 301
20	$0 \cdot 20$	5,600	$0 \cdot 2$	4.300	$0 \cdot 20$	5,600	$2 \cdot 80$	15,000	8.70	49, 700	12.0	7-1, 314
21.	$0 \cdot 20$	5,600	0.2	4,500	$0 \cdot 20$	5,6c0	2.80	15.000	8. 50	4S, 050	11.6	73.700
22.	$0 \cdot 20$	5,6t0	$0 \cdot 2$	+,500	0.2 C	5,600	$2 \cdot 80$	15.000	8. 60	45,800	$11 \cdot 2$	7 $0,3(x)$
23.	$0 \cdot 20$	5,600	$0 \cdot 2$	4,500	$0 \cdot 20$	5,660	3.00	15, 800	8.90	51.200	11.4	72,040
24	$0 \cdot 20$	5, 61,0	$0 \cdot 2$	4.500	$0 \cdot 30$	5,9,0	$2 \cdot 90$	15,400	9.20	53, 610	$10 \cdot 6$	65, 201
25	$0 \cdot 20$	5,600	$0 \cdot 2$	4,500	$0 \cdot 20$	5,610	2.90	15. 400	$9 \cdot 60$	56., 10	$10 \cdot 1$	61.700
26	$0 \cdot 20$	5,600	$0 \cdot 1$		$0 \cdot 20$	5.600	$3 \cdot 10$	16.250)	9-80	5s, 500	$9 \cdot 8$	5*, 500
27.1-4\%	0. 10	5, 300	$0 \cdot 1$	4.750	0. 10	5. $3(\mathrm{k})$	$3 \cdot 30$	17.151	$9 \cdot 60$	56, sku)	9.8	5x, .3(4)
28. - -	0. 10	5,300	$0 \cdot 2$	5,600	$0 \cdot 10$	5,3(x)	$3 \cdot 40$	17 Bix	9 - 314	7) 4 (0)	10.1	60, 2 ¢4
24	$0 \cdot 10$	5,3e0	-		(1).20	5.64)	$3 \cdot 30$	17,1511	$8 \cdot(6)$	51,200	$10 \cdot 1$	(01). 210
30.	$0 \cdot 20$	5.650		.	0.6	5,100	$3 \cdot 50$	18,050)	\$ 50	4. 4.050	10.1	61.60
31.	$0 \cdot 20$	5,6\%0	\% 6	81	$0 \cdot 0$	5.1810	+ .		\& 30	46,500)		

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Thompson River at Kamloops, for 1914.

Monthly Discharge of Thompson River at Kamloops, for 1914.
(Drainage area, 14,400 square miles.)

Month.	Discharge in Second-Feet.				Rex-Off.	
	Maximum.	Minimum.	Mean.	$\begin{gathered} \text { Per } \\ \text { square } \\ \text { mile. } \end{gathered}$	Depth in inches Drainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$
January	6,600	5,300	5,755	$0 \cdot 40$	0.46	353, 860
February	5,300	4,500	4.850	0.33	$0 \cdot 34$	269,360
March.	6,250	5,006	5,621	C.39	0.45	345.622
April..	18,050	5,300	11,051	0.76	$0 \cdot 85$	657, 580
May.	58,500	18,950	40,879	$2 \cdot 81$	$3 \cdot 27$	2.513,519
June.	77,300	45,000	62,510	4.34	4.84	3,719,600
July...	67,700 34	34,600	53, 909	3.74	4.31	3,314,752
August.	34,000	19,400	25,842	1.79	2.06	1,588,962
September.	20,300	12,200	16.028	$1 \cdot 11$	1.24	953, 727
October....	21, 300	12,600	15,187	${ }_{1}^{1.05}$	1.21	933,807
November.	16,700 12,600	10,700 5,000	13,803 7,124	0.95 0.49	1.06 0.56	821,377 438.038
The year.	77,600	4.500	21,879	1.51	20.65	15,910,204

[^47]
Tranquille River (2043).

Location.-Section 36, township 20, range 19, west 6 th meridian.
Records Available.-July 4 to October 21, 1911; March 29 to September 7, 1912; May 1 to October 31, 1913; May 3 to November 14, 1914.

Drainage Area.-Two hundred and thirty square miles.
Gauge.-Standard vertical gauge read daily by Eug. Cooney.
Channel-Straight at. the gauge section, about 20 feet wide. Bed of stream composed of stone and boulders and control is good.

Discharge Measurements.-Gauge-height discharge curve is well defined-
Winter Flow.-Ice conditions prevail during December, January, and February.

Accuracy.-High, results compiled from a well-rated curve.

Discharge Measurements of Tranquille River near mouth, for 1914.

	Dute.	Hydrographer.	Meter No.	Width.	Area of Section.	Mevan Velocity.	Gauge Height.	Discharge.
				Fiest.	Siq. ft .	Fit. peor she	Fiet.	Siere ft
May	30.	C. 13. Corbould	1915	18.5	31.0	+ 1.24	$1 \cdot 35$	123.0
Aug.	1	C. 13, Corbould	1915	15	115	U-59	(1).65	56

[^48]6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Tranquille River at Cooney's, Ranch, for 1914.

SESSIONAL PAPER No. 25e

Daily Gauge Height and Discharge of Tranquille River at Cooney's Ranch, for 1915.

Diy.	July.		August.		September		October.		Norember.	
	Gauge Height.	Discharge.	Gauge Height.	Discharge	Gauge Height.	Discharge.	Gauge Height.	Discharge	Gauge Height.	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec. ft .
1.	1.02	34	0.70 0.67	10	C.44	4	0.39 0.61	7	0.69 0.69	10
$\frac{2}{3}$	1.00 0.97	31 28	0.67 0.67	9	0.44 0.44	4	0.61 0.61	7	0.69 0.69	10 10
3...	0.97 0.92	28	0.67 0.65	9	0.44	4	0.61 0.59	7	0.69 0.71	10
5.	0.90	21	$0 \cdot 64$	8	0.44	4	$0 \cdot 59$	7	0.74	12
6.	0.90	21	0.61 0.64	7	0.44	4	0.59 0.59	7	0.74	12
7.	0.87 0.87	19 19	0.64 0.66	8	c.44 0.54	4	0.59 0.59	7	0.71 0.71	10
8.	0.87 0.85	19	0.66 0.64	9	0.54 0.56	6	0.59 0.59	7	0.71 0.71	10
$10 \ldots-2$	0.85	18	$0 \cdot 64$	8	0.56	6	$0 \cdot 59$	7	0.71	10
	0.82	16	$0 \cdot 64$	8	$0 \cdot 56$	6	0.59	7	0.71	10
11.	0.80	15	$0 \cdot 61$	7	$0 \cdot 56$	6	0.59	7	0.71	10
$12 \ldots \ldots$.	0.80	15	$0 \cdot 61$	7	0. 56	6	$0 \cdot 64$	8	0.71	10
	0.77	13	$0 \cdot 59$	7	$0 \cdot 56$	6	0.61	7	0.71	10
	$0 \cdot 80$	15	$0 \cdot 56$	6	0.59	7	$0 \cdot 61$	7	$0 \cdot 79$	14
15 . . . - - -	0.82	16	$0 \cdot 56$	6	$0 \cdot 59$	7	$0 \cdot 61$	7		
	0.82	16	C. 54	6	0. 59	7	$\theta \cdot 61$	7		
17.4180	$0 \cdot 80$	15	$0 \cdot 54$	6	0. 59	7	$0 \cdot 61$	7
18.	0.77	13	$0 \cdot 51$	5	0.59	7	C. 61	7	\cdots	...
19....	0.75	12	C. 51	5	0.61	7	$0 \cdot 64$	8	+1.	-1/-
20.. -1	$0 \cdot 72$	11	$0 \cdot 49$	5	$0 \cdot 59$	7	$0 \cdot 64$	s	T.	
21.	0.77	13	0.49	5	0.59	7	0.64	8		
22.	0.75	12	$0 \cdot 54$	6	$0 \cdot 59$	7	0.64	8		-1)
23.	0.72	11	$0 \cdot 51$	5	$0 \cdot 59$	7	$0 \cdot 64$	5	...	- 1
$24 \ldots$ - + - 1 -	0.80	15	$0 \cdot 49$	5	$0 \cdot 59$	7	$0 \cdot 64$	8		
	0.75	12	0.49	5	C. 61	7	$0 \cdot 64$	8		
26......	$0 \cdot 70$	10	$0 \cdot 49$	5	$0 \cdot 61$	7	$0 \cdot 64$	8		-10\%
	0.70	10	0.46	4	0.59	7	0.64	8	- 10	-1)
	0.70	10	0.46	4	0.59	7	$0 \cdot 64$	s		
$29 \ldots \ldots .$.	0.70	10	$0 \cdot 46$	4	$0 \cdot 59$	7	$0 \cdot 64$	s		- ${ }^{\text {a }}$
30.	$0 \cdot 70$	10	0.44	4	$0 \cdot 59$	7	$0 \cdot 64$	8	$1=$	1-17\%
	0.70	10	$0 \cdot 44$	4			0.64	8		-

Monthly Discharge of Tranquille River, near Cooney's Ranch, for 1914.
(Drainage area, 230 square miles.)

	Mosth.	Discharge in Second-Feet.				Ruseory	
		Maximum.	Minimum.	Меan.	$\begin{gathered} \text { Per } \\ \text { square } \\ \text { mile. } \end{gathered}$	Depih in inches on Drainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$
May		577.0	84.0	314.0	1.36	1.57	19,307
		95.0	38.0	66.0 16.0		0.32	3.927
Juty..			10.0	16.0	0.07	${ }^{10.15}$	9s
August		10.0	+0	$6 \cdot 3$	0.03	0.ta	157
Soptomber		7.0 8.0	+0 7.0	6.1 7.4	0.013 0.03 0.03	10.9 0.13	363 455
October		8.0	7.0				
The period		577.0	4.0	$69 \cdot 3$	$0 \cdot 30$	$2-16$	23.423

 are large evaporation losess in Dubeir, I'ass, and Tranquille lahon

KAMILOOPS DIVISION.

Adams River (2005).
Location.-Section 6, township 23, range 12, west 6 th meridian.
Records Available-July 1 to August 31, 1911; January 1 to December 31, 1912; January 1st to December 31, 1913; January 1 to December 31, 1914.

Drainage Area.-One thousand six hundred square miles.
Gauge.-Standard vertical staff gauge read by Mrs. Sturgill, Chase, B.C., up to October 17, 1914.

On October 17, a Gurley automatic water stage recorder No. 630 was put into operation, at a point 50 feet below the old staff gauge. A series of readings on both gauges at the same instant gives a definite relationship between old and new gauge readings.

Channel.-The channel varies in width from 300 to 500 feet above the dam where meterings are made. The velocities are uniform, the mean never exceeding 3.0 feet per second at the measuring section. The run-off is artificially controlled by a dam near the outlet of Adams lake.

Discharge Measurements.-The gauge-height discharge curve is fairly well rated by well distributed meterings.

Winter Flow.-Partial ice conditions exist during winter months, but the river is seldom frozen over at the gauge sufficiently to have material effect on the accuracy of returns.

Accuracy. -The accuracy of returns on the whole is fairly high, the only possibility of error being in the gauge heights, sudden changes in which, owing to the opening and closing of the Adams River Lumber Company's dam may have escaped the observer's notice. This error will be entirely overcome in 1915.

Adams Lake.
Photograph by Eyre M. Dann.

[^49]SESSIONAL PAPER No. 25e

Almms River Automutic Gauge House.
Photograph ly Liyre M Dunn. The gatue house is of timber construction mad is covered by galvonized fron whe fing for fire protection. The wedl linimg is un Inget iren culvert (24 inch dimeneter) in wheth the that and wemghes opernte. The colvert stamds in the middle of a timber and roch-fill eribhomg upon whelt the house is built. A 21 inch cast iron feed pipe to the bottom of the river, keeps the water in the well constanty at the kime elevation as the river. Although zero wenther oererreal turimg the winter the temperat ine in the well was never low enough to cunse the whter to frewere
$25 \mathrm{~b}=19$

Adams River-Automatic Water Stage Register.
Photograph by Eyre M. Dann.
The Gurley Automatic Gauge shown in this photograph is so well known to engineers as to require little explanation. A float suspended from a copper ribbon passes over a drum which indieates the height of water surface. The clock and paper winding apparatus are actuated by weights, and the time and gauge height (to hundreths of feet) are printed every fifteen minutes. The gauge and elock will run without attention for thirty days.

SESSIONAL PAPER No. 25e
Discharge Measurements of Adams River near Adams Lake, for 1914.

Date.	Hydrographer.	$\begin{gathered} \text { Meter } \\ \text { No. } \end{gathered}$	Width.	Area of Section.	$\begin{aligned} & \text { Mean } \\ & \text { Velocity. } \end{aligned}$	Gauge Height.	Discharge.
July 3.	E. H. Trederoft	1,923	Feet. 443.0	$\begin{aligned} & \text { Sq. ft. } \\ & 2,354 \cdot 0 \end{aligned}$	Ft. per sec. $2 \cdot 41$	Feet. $4 \cdot 7$	Sec.-ft. $5,650 \cdot 0$

Station rated 1911 and 1912. Gauge height in terms of newly installed automatic gauge, 5.41.

Daily Gadge Height and Discharge of Adams River near Adams River Lumber Co's. Dam, for 1914.

Day.	January.		February.		March.		April.		May.		June.	
	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge } \end{aligned}$	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge } \end{aligned}$	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height	Dis- charge
	Feet.	Sec.-ft.	Feet.	Sec.fit.								
1	$2 \cdot 25$	1,060	2.55	1,282	2.66	1,368	$4 \cdot 30$	3,370	$4 \cdot 20$	3,175	5.01	$\begin{array}{r}5,139 \\ 5 \\ \hline 130\end{array}$
2	2.25	1,060	2.55	1,282	2.66 2.55	1,368	4.30 4.30	3,370	4.20 4.30	3,175 3 3 3	$5 \cdot 11$	5,430 5,430
4.	$2 \cdot 25$	1,060	${ }_{2}^{2} 55$	1,282	$2 \cdot 55$	1,282	4.40	3,575	$4 \cdot 30$	3,370	$5 \cdot 11$	5,430
5	$2 \cdot 25$	1,060	$2 \cdot 45$	1,207	$2 \cdot 55$	1,282	$4 \cdot 40$	3,575	4.30	3,370	$5 \cdot 11$	5,430
6.	2.25	1,060	$2 \cdot 45$	1,207	2.55	1,282	$4 \cdot 40$	3,575	$4 \cdot 40$	3,575	$5 \cdot 11$	5,430
7	$2 \cdot 15$	990	$2 \cdot 45$	1,207	$2 \cdot 55$	1,282	$4 \cdot 40$	3,575	$4 \cdot 40$	3,575	$5 \cdot 21$	5,730
8	$2 \cdot 15$	990	$2 \cdot 45$	1,207	- 2.55	1,282	4.50	3,810	4.40	3,575	$5 \cdot 21$	5,730
9.	$2 \cdot 15$	990	$2 \cdot 45$	1,207	$2 \cdot 55$	1,282	4.50	3,810	$4 \cdot 40$	3,575	$5 \cdot 21$	5,730
10.	$2 \cdot 15$	990	$2 \cdot 45$	1,207	2.55	1,282	4.50	3,810	4.50	3,810	$5 \cdot 21$	3,730
11.	$2 \cdot 15$	990	$2 \cdot 45$	1,207	2.55	1,282	4. 50	3,810	4.50	3,810	$5 \cdot 21$	5,730
12	$2 \cdot 15$	990	$2 \cdot 45$	1,207	2.55	1,282	$4 \cdot 50$	3,810	4.50	3,810	$5 \cdot 21$	5,730
13	$2 \cdot 15$	990	$2 \cdot 45$	1,207	2.55	1,282	1.84	786	$4 \cdot 60$	4,050	$5 \cdot 21$	5.730
14.	$2 \cdot 15$	990	$2 \cdot 45$	1,207	$2 \cdot 55$	1,282	1.84	786	$4 \cdot 60$	4,050	$5 \cdot 21$	5,730
15.	3.07	1,704	2.45	1,207	2.55	1,282	1.84	786	$4 \cdot 60$	4,050	$5 \cdot 31$	6,030
16.	3.07	1,704	2.45	1,207	$0 \cdot 15$	105	1.84	786	4.60	4.050	$5 \cdot 31$	6,030
17	3.07	1,704	$2 \cdot 66$	1,368	0.15	105	1.95	857	4.70	4,300	$5 \cdot 31$	6,030
18	3.07	1.704	$2 \cdot 66$	1,368	$0 \cdot 15$	105	1.95	857	4.81	4,587	$5 \cdot 31$	6,030
19.	$2 \cdot 96$	1,611	$2 \cdot 66$	1,368	$0 \cdot 15$	105	1.95	857	4.81	4,587	$5 \cdot 31$	6,030
20	2.96	1,611	$2 \cdot 66$	1,368	$0 \cdot 25$	125	$2 \cdot 05$	922	4.91	4,855	$5 \cdot 31$	6,030
21.	2.96	1,611	2.66	1,368	0. 25	125	4.30	3,370	4.91	4,858	$5 \cdot 31$	6.030
22.	2.86	1,528	$2 \cdot 66$	1,368	$0 \cdot 25$	125	$4 \cdot 30$	3,370	$5 \cdot 01$	5,139	$5 \cdot 31$	6,030
23.	2.86	1,528	${ }^{2} \cdot 66$	1,368	0.25	125	$4 \cdot 30$	3,370	5.01	5. 139	$5 \cdot 41$	6,330
24	2.86	1,528	$2 \cdot 66$	1,368	0.25	125	$4 \cdot 20$	3,175	$5 \cdot 11$	5,430	$5 \cdot 41$	6,330
25.	2.86	1,528	$2 \cdot 66$	1,368	$0 \cdot 25$	125	4.20	3,175	5-11	5,430	5.41	6,330
26.	2.86	1,528	$2 \cdot 66$	1,368	0.25	125	4.20	3,175	5.11	5. 430	5.41	6.330
${ }_{28}^{27}$	${ }^{2} \cdot 56$	1,528	${ }^{2 \cdot 66}$	1,368	0.25	125	$4 \cdot 20$	3,175	$5 \cdot 31$	6,1030	5.41	6,330
28	2.65	1,360	$2 \cdot 66$	1,368	$0 \cdot 35$	145	4.10	3,000	5.31	6,030	5-41	6,330
30	$2 \cdot 65$	1,360			0.35	145	$4 \cdot 10$	3, 1070	5-21	5,730	5.41	6,330
30	$2 \cdot 65$	1,360			0.35	145	$4 \cdot 20$	3,175	5.11	5,430	5-41	6.330
31.	2.65	1.360			0.35	145			5.01	5.139		

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Adams River near Adams River Lumber Co's. Dam, for 1914.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height.	Discharge	Gauge Height.	Dis- charge charge	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge } \end{aligned}$	Gauge Height	Discharge	Gauge Height	Discharge.
	Feet.	Sec.-it.	Feet.	Sec.-ft.								
1.	$5 \cdot 41$	6,330	3.59	2,248 2,248		4,830 4,830		${ }_{962}^{962}$	$\begin{aligned} & 4 \cdot 19 \\ & 4 \cdot 16 \end{aligned}$	$3,157$	$\begin{aligned} & 2.71 \\ & 2.70 \end{aligned}$	1,408 1,400
2	$5 \cdot 41$	6,330 6,030	3.59 3.59	2,248 2,248		4,830 4,830		962 1,025 1	$4 \cdot 16$ $3 \cdot 53$	3,105 2,176	2.70 2.69	1,400 1,392
4	$5 \cdot 31$	6,030	$3 \cdot 59$	2,248		4,830		1,025	3.69	2,373	2. 69	1,392
5.	$5 \cdot 31$	6,030	3.59	2,249		4,830	$2 \cdot 30$	1,095	3.81	2,539	$2 \cdot 67$	1,376
6	4.91	4,858	3.59	2,248		5,110	$2 \cdot 35$	1,132	4.23	3,233	2. 66	1,368
7	4.91	4,858	3.59	2,248		5. 1110	3.07	1,704	4.51	3, 834	$2 \cdot 64$	1,352
8	4.91	4,858	$3 \cdot 59$	2,248		5,110	3.76	2,469	3.89	2,656	2. 62	1,336
9	4.91	4,858	3. 59	2,248		5,110	$2 \cdot 35$	1,132	$4 \cdot 20$	3,175	2. 60	1,320
10.	5.01	5,139				5,110	$2 \cdot 3$	1,095	3.92	2,702	$2 \cdot 57$	1,297
11.	5.01	5,139				5,110	1.44	570	3.91	2,686	$2 \cdot 55$	1,282
12	5.01	5,139				5,110	$4 \cdot 50$	3, 810	${ }^{3 \cdot 86}$	2,612	$2 \cdot 52$	1,260
13	5.01	5,139			5.01	5,139	4.30	3,370	$3 \cdot 83$	2,568	${ }^{2} \cdot 51$	1,252
14.	5.01	5,139				2,176	$4 \cdot 30$	3,370	3.83	1,940	$2 \cdot 49$	1,237 1,222
15	5.01	5,139			$2 \cdot 12$	969	3.90	2,670	$2 \cdot 93$	1,585	$2 \cdot 47$	1,222
16	5.01	5,139					3.80 3	${ }_{2}^{2,525}$	${ }_{2}^{2.92}$	1,577	${ }_{2}^{2.45}$	1,207
17.	5.01	5,139					3.84 3.84	${ }_{2}^{2,583}$	2.90 2.46	1,560	2.43	1,192
18	5.01	5,139					3.84 3.83 3	${ }_{2}^{2,583}$	${ }_{2}^{2.46}$	1,215	$2 \cdot 41$	1,177
19	5.01	5,139					3.83 3.81	$\stackrel{\text { 2,568 }}{ }$	2.85	1,520	2.39	1,162
20.	5.01	5,139					$3 \cdot 81$	2,539	2.84	1,512	$2 \cdot 37$	1,147
21	3.48	2,116					3.81	2,539	2.84	1,512	$2 \cdot 35$	1,132
22.	$3 \cdot 48$	${ }^{2,116}$					${ }^{3} 78$	${ }^{2,497}$	2.82	1,496	2.33	1,117
23	$3 \cdot 48$	2,116					$3 \cdot 77$	2,483	2.80	1,480	$2 \cdot 31$	1,102
24	3.48	2,116					3.59	2,248	2.78	1,464	2. 29	1,088
25.	$3 \cdot 48$	2,116	4.70	4,300				2,260	2.76	1,448	$2 \cdot 27$	1,074
26	$3 \cdot 48$	2,116		4,560				2,260	2.77	1,456	$2 \cdot 25$	1,060
27	$3 \cdot 48$	2,116		4.560			$3 \cdot 65$	2,322	$2 \cdot 76$	1,448	$2 \cdot 23$	1,046
28.	$3 \cdot 48$	2,116		4,560			$4 \cdot 11$	3,017	${ }^{2} \cdot 74$	1,432	$\stackrel{20}{ }$	1,025
29	$3 \cdot 48$	2,116		4,560			$3 \cdot 54$	2,188	$2 \cdot 73$	1,424	$2 \cdot 15$	990
30	$3 \cdot 48$	2,116		4,560			$4 \cdot 32$	3,410	$2 \cdot 72$	1,416	$2 \cdot 13$	976
31	3.59	2,248		4,560			$4 \cdot 23$	3,232				

Monthly Discharge of Adams River near Adams Lake, for 1914.
(Drainage area, 1,600 square miles.)

Note.-Summary is for a ten-month period, omitting August and September, for which time it was impossible to procure a gauge reader

Precipitation over the Adams river drainage area probably varies from 20 to 40 inches per annum, while large evaporation losses occur on Adams lake.

Ashnola River, near Keremeos (2065).
Location.-Near Ashnola, Water District No. 4.
Records Available.-June 27 to December 19, 1914.
Drainage Area.-Four hundred and eighty square miles.
Gauge.-Standard chain gauge read daily by H. Atherton.
Channel.-The channel is straight for about 100 yards above and below measuring section. Velocity is fairly high. The bed of the stream is composed of rocks and gravel. Only one channel at all stages. Average depth at high water, 5 feet.

Discharge Measurements.-Are made by wading at low water and by cable carrier at high water.

Winter Flow.-No records have been kept during winter months, but ice conditions are known to exist during January and February.

Accuracy.-The accuracy of returns is low, only three measurements having been obtained and these at low water.

Ashnola River.

Ashnola river is the largest tributary of the Similkameen below Princeton. It rises in the high mountains of the Cascade range south of the boundary, and joins the Similkameen at Ashnola half-way between Hedley and Keremeos, and has a total length of about 40 miles. It has a number of small tributaries from the surrounding mountains, the largest of which is the East Fork from the south, which joins it 5 miles from the mouth. The other tributaries, six in number, are small unnamed creeks.

The drainage area from the 1912 map of the Department of Lands of British Columbia is 480 square miles.

The river and its tributaries flow through deep narrow valleys with steep slopes on both sides, like all streams in this district. Little is known of the headwaters of this river, as the upper part of its course is difficult of access.

The precipitation at the mouth is about 10 inches per annum. Water is taken from Ashnola river by the South Keremeos Land Company for use on the ranches in the neighbourhood of Keremeos, 10 miles away on the north side of the Similkameen river. The water runs in an earth ditch most of the way: It crosses the Similkameen at Ashnola in a 40 -inch wood stave pipe supported on the highway bridge at this point. Ashnola river at low stages carries more than this system can carry. Discharge records of the river taken by this survey in 1914 show a minimum flow of 65 c.f.s. on August 25 . The maximum flow is over 1000 c.f.s. With storage there is sufficient water in the river to irrigate large areas of land in the Similkameen valley below Keremeos.

Discharge Measurements of Ashola river near Ashola, 1914.

Date.	Hydrographer.	Metor No.	Width.	Aren of suetion.	$\begin{aligned} & \text { Meun } \\ & \text { Valocity } \end{aligned}$	Giauge llvight.	1hacharge.
			Fiect.	Sif. ft.	Ft perme	Fieet	Ser ft
Juty 28.	K. (i. Chimholat	1,913	87.11	111.11	1.73	-0.10	(12. 21
Aug. 1, ...	${ }_{\square}{ }^{\text {¢ }}$	1.013	+1 11	-40.1)	1. 5.4	-0.61	71.0
10e. 1.		1,673	40.1)	$50 \cdot 0$	1.36	$=0 \cdot 33$	

All offort will be mado to completely rate thim ntation durime 1015.

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Ashnola River near Keremeos, for 1914.

SESSIONAL PAPER No. 25 e
Daily Gatge Height and Discharge of Ashnola River near Keremeos, for 1914.

Monthly Discharge of Ashnola River near Keremeos, for 1914.
Drainaze area, 480 square miles.

Month
M
Maximum.

Boundary Creek (2048).
Location.-At Greenwood, Water District No. 4.
Records Available.—January 1 to December 7, 1914.
Drainage Area.-One hundred and twenty-five square miles.
Gauge.-Vertical staff gauge graduated in feet and tenths, situated on upstream side of traffic bridge, read daily by P. H. McCarrach.

Channel.-Channel is straight for about 300 feet above and below measuring section. Bed of stream is rocky and permanent.

Discharge Measurements.-Four discharge measurements have been obtained during 1914 at varying stages.

Winter Flow.-No records have been kept on this stream during winter months, but ice conditions are known to exist during January and February.

Accuracy.-The accuracy of results is considered good, and should fall within 10 per cent.

Discharge Measurements of Boundary Creek at Greenwood, B.C., 1914.

Date,	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section.	$\begin{aligned} & \text { Mean } \\ & \text { Velocity. } \end{aligned}$	Gauge Height.	Discharge.
			- Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
May 20.	C. E. Richardson and C. Varcoe.		41.5	99.8	$3 \cdot 8$	$2 \cdot 9$	379
June 8..	E. M. Dann and K. Chisholm	1913	39.0	$84 \cdot 0$	3.2	$2 \cdot 5$	269
July 20 .	" ${ }_{\text {a }}$	1913	39.0	41.0	1.28	1.21	52.6
Aug. 26.		1913	$17 \cdot 0$	$15 \cdot 6$	$0 \cdot 77$	$0 \cdot 77$	$12 \cdot 0$

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Boundary Creek near Greenwood, for 1914.

Day.	January.		February.		March.		April.		May.		June.	
	Gauge Height	Discharge.	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height.	Discharge.	Gauge Height.	Discharge	Gauge Height.	Discharge.
	Feet.	Sec.-ft.	Feet.	See.-ft.	Feet	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1.	0.90	20	$0 \cdot 90$	20	$0 \cdot 90$	20	1. 20	45	$2 \cdot 90$	350	2.80	352
2.	0.90	20			0.90	20	$1 \cdot 20$	45	$3 \cdot 35$	504	2.90	380
3.	0.90	20			$0 \cdot 90$	20	1.30	55	$3 \cdot 50$	546	$3 \cdot 30$	491
4.	0.90	20			0.90	20	1.40	66	$3 \cdot 30$	491	3.00	407
5.	0.90	20			0.90	20	1.50	78	$3 \cdot 20$	463	3.00	407
6.	0.90	20			0.90	20	$1 \cdot 60$	90	3.00	407	$2 \cdot 80$	352
7.	1.00	28			$0 \cdot 90$	20	1.80	117	2.90	380	2.70	325
8.	1.00	28			0.90	20	2.00	150	2.90	380	$2 \cdot 60$	297
9.	1.00	28			0.90	20	$2 \cdot 10$	170	3.00	407	$2 \cdot 60$	297
10.	1.00	28			0.90	20	$2 \cdot 25$	204	$3 \cdot 00$	407	$2 \cdot 50$	270
11.	$0 \cdot 95$	24			0.90	20	$2 \cdot 60$	297	3.00	407	$2 \cdot 50$	270
12.	$0 \cdot 90$	20	0.90	20	$0 \cdot 90$	20	$2 \cdot 80$	352	$3 \cdot 10$	435	$2 \cdot 40$	243
13.	$0 \cdot 90$	20	0.90	20	0.90	20	$2 \cdot 90$	380	$3 \cdot 15$	449	$2 \cdot 40$	243
14.	0.90	20	$0 \cdot 90$	20	0.95	24	3.00	407	$3 \cdot 20$	463	$2 \cdot 50$	270
15.	0.90	20	0.90	20	0.95	24	$3 \cdot 40$	518	$3 \cdot 40$	518	$2 \cdot 60$	297
16.	0.90	20	0.90	20	$1 \cdot 00$	28	3.45	532	$3 \cdot 55$	559	2.70	325
17.	$0 \cdot 90$	20	0.90	20	1.00	28	$3 \cdot 55$	560	3.20	463	$2 \cdot 80$	352
18.	0.90	20	0.90	20	1.00	28	$3 \cdot 40$	518	$3 \cdot 00$	407	$2+80$	352
19.	0.90	20	$0 \cdot 90$	20	1.00	28	$3 \cdot 40$	518	$3 \cdot 00$	407	$2 \cdot 70$	325
20.	0.90	20	0.90	20	$1 \cdot 10$	36	$3 \cdot 50$	546	$3 \cdot 00$	407	$2 \cdot 50$	270
21.	0.90	20	0.90	20	$1 \cdot 10$	36	$3 \cdot 30$	491	$3 \cdot 00$	407	$2 \cdot 40$	243
22.	0.90	20	0.90	20	$1 \cdot 10$	36	$3 \cdot 20$	463	$3 \cdot 00$	407	$2 \cdot 30$	217
23.	0.90	20	$0 \cdot 90$	20	$1 \cdot 10$	36	$3 \cdot 20$	463	$3 \cdot 30$	491	2-10	170
24.	1.00	28	0.90	20	1.20	45	$3 \cdot 30$	491	$3 \cdot 30$	491	2. 10	170
25.	$0 \cdot 90$	20	$0 \cdot 90$	20	$1 \cdot 20$	45	$3 \cdot 20$	463	$3 \cdot 30$	491	$2 \cdot 10$	170
26.	0.90	20	0.90	20	$1 \cdot 15$	40	$3 \cdot 10$	435	2.95	394	$2 \cdot 00$	150
27.	$0 \cdot 90$	20	$0 \cdot 90$	20	1.20	45	$3 \cdot 10$	435	2.90	380	2.00	150
28.	$0 \cdot 90$	20	0.90	20	1.20	45	3.60	407	2.80	352	1.90	133
29.	$0 \cdot 90$	20			1. 20	45	2.90	380	2. 70	325	1.90	133
30.	$0 \cdot 90$	20			1.20	45	$2 \cdot 90$	380	$2 \cdot 70$	325	1.90	133
31...	0.90	20			$1 \cdot 20$	45			2.70	325		

Daily Gauge Height and Discharge of Boundary Creek near Greenwood, for 1914.

DAY.	July:		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height	Discharge.	Gauge Height	Discharge	Gauge Height.	Discharge	Gauge Height.	Discharge
	${ }^{4}$ Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1.	1.90	133	1.00	28	$0 \cdot 40$	2	$0 \cdot 90$	20	1.15	40	$1 \cdot 10$	36
2	1.80	117	1.00	28	$0 \cdot 40$	$\stackrel{2}{9}$	0.85	17	$1 \cdot 15$	40	$1 \cdot 10$	36
3	1.90	133	1.00	28	$0 \cdot 40$	2	0.85	17	1.20	45	$1 \cdot 01$	36
4	1.80 1.70	117 103	0.90 0.90	20 20	0.40 0.40	2 2	0.85 0.85	17	1.20 1.20	45	1.10 1.05	36
5	1.70	103	$0 \cdot 90$	20	$0 \cdot 40$	2	$0 \cdot 85$	17	1.20	45	1.05	32
6	1.70	103	0.90	20	$0 \cdot 40$	2	$0 \cdot 80$	14	$1 \cdot 20$	45	1.05	32
7	$1 \cdot 60$	90	0.90	20	$0 \cdot 4 \mathrm{C}$	2	$0 \cdot 80$	14	$1 \cdot 20$	45	$1 \cdot 65$	32
8	$1 \cdot 60$	90	0.90	20	$0 \cdot 60$	5	$0 \cdot 50$	14	$1 \cdot 20$	45		
9.	1.50	78	0.90	20	$0 \cdot 60$	5	$0 \cdot 80$	14	$1 \cdot 20$	45		
10.	$1 \cdot 50$	78	0.90	20	C. 60	5	0.80	14	$1 \cdot 15$	40		
11.	$1 \cdot 40$	66	0.80	14	0.60	5	0.90	20	$1 \cdot 10$	36		
12	$1 \cdot 40$	66	0.80	14	$0 \cdot 50$	3	$0 \cdot 90$	20	$1 \cdot 10$	36		
13	1.40	66	$0 \cdot 50$	14	$0 \cdot 50$	3	$0 \cdot 90$	20	$1 \cdot 20$	45		
14.	1.40	66	0.80	14	0.55	4	$0 \cdot 90$	20	$1 \cdot 20$	45		
15.	$1 \cdot 40$	66	0.80	14	$0 \cdot 70$	9	0.90	20	$1 \cdot 20$	45		
16.	$1+30$	55	0.80	14	$0 \cdot 70$	9	0.90	20	$1 \cdot 15$	40		
17.	$1 \cdot 30$	55	0.80	14	$0 \cdot 70$	9	0.95	24	$1 \cdot 15$	40		
18.	$1 \cdot 25$	50	0.70	9	0.70	9	1.00	2 S	$1 \cdot 15$	40		
19.	$1 \cdot 20$	45	0.70	9	0.75	11	1.00	28	$1 \cdot 20$	45		
20.	$1 \cdot 20$	45	0.70	9	0.80	14	$1 \cdot 00$	28	$1 \cdot 20$	45		
21.	1.20	45	0. 70	9	$0 \cdot 80$	14	$1 \cdot 00$	28	$1 \cdot 20$	45.		..
22.	$1 \cdot 20$	45	0.70	9	$0 \cdot 80$	14	1.00	28	$1 \cdot 20$	45		
23.	1.20	45	$0 \cdot 60$	5	$0 \cdot 80$	14	1.00	28	$1 \cdot 26$	45		
24.	$1 \cdot 20$	45	$0 \cdot 69$	5	0.80	14	$1 \cdot 00$	28	$1 \cdot 15$	40		
25.	1. 20	45	$0 \cdot 60$	5	0.70	9	1.00	28	$1 \cdot 15$	40		
26.	$1 \cdot 16$	36	0.60	5	0.70	9	$1 \cdot 00$	28	$1 \cdot 15$	40		
27.	$1 \cdot 10$	36	$0 \cdot 50$	3	0.90	20	$1 \cdot 00$	28	$1 \cdot 15$	40		
28.	$1 \cdot 10$	36	$0 \cdot 50$	3	1.00	28	1.05	32	$1 \cdot 15$	40		
29.	1-09	28	0.50	3	$0 \cdot 95$	24	1.05	32	$1 \cdot 15$	40		***
30.	1.00	25	$0 \cdot 50$	3	0.90	20	$1 \cdot 10$	36	$1 \cdot 15$	40	
31.	1.00	28	$0 \cdot 50$	3			$1 \cdot 15$	40				

Monthly Discharge of Boundary Creek near Greenwood, for 1914.
(Drainage area, 125 square miles.)

Sore.-Winter conditions obtained after Deecmber 7.
From Getober 1, 1912, to September 30, 1913, precipitation at Greenwood was 14.7 inches. This is probably somewhat fower than the mean annual precipitation over the whole drainage area.

SESSIONAL PAPER No. 25e
Celeste Creek (20050).
Location.-Near Albas, Water District No. 2.
Drainage Area.-Eighty square miles.
Records Available.-March 1 to December 31, 1914.
Gauge.-Standard vertical staff gauge, graduated in feet and tenths. Read by H. C. Harris three times per week.

Channel.-Average width 25 feet. Bed of stream very rocky.
Discharge Measurements.-Two meterings only have been obtained.
Winter Flow.-Creek generally freezes over during winter months.
Accuracy-The results as shown are very approximate, since it has been impossible to rate the station completely during 1914.

Discharge Meastrements of Celeste Creek near Albas, B.C., 1914.

Measurements made at strean's mouth. regular section not suitable for low water.
An effort will be made to completely rate this station during 1915.

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Celeste Creek, near Shuswap Lake, for 1914.

Day.	February.		March.		April.		May.		June.	
	Gauge Height	Discharge.	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height	Discharge.	Gauge Height	Discharge.
	Feet.	Sec.-ft.		Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
$\frac{1}{2} .$			$0 \cdot 65$	66	0.70	75	1.75	289	$1 \cdot 95$	335
3.			0.65	66					$2 \cdot 15$	382
5......			0.65	66	75	83	$1 \cdot 85$	312	$2 \cdot 15$	382
6.					0.75	83	1.95	335		
8.........			$0 \cdot 65$	66	0.80	92	1.95	335	$2 \cdot 05$	359
${ }_{10}^{9 \ldots \ldots .11 . . .}$			$0 \cdot 65$	66						
11.					0.85	101	$2 \cdot 00$	347		
12.	\ldots		0.65	66		101	$2 \cdot 00$		2.05	359
13.							$2 \cdot 25$	405		
14.			0.65	66	0.95	120				
15.							2-35	429	$2 \cdot 05$	359
16.			$0 \cdot 65$	66	1.00	130				
17.										
18.					$1 \cdot 15$	160	$2 \cdot 35$	429	$2 \cdot 10$	370
19.			$0 \cdot 65$	66	1.25	181	$2 \cdot 35$	429	2.00	347
21.			$0 \cdot 65$	66						
22.	$0 \cdot 65$	66			$1+30$	191				
23.			$0 \cdot 65$	66	1.80		$2 \cdot 25$	405	1.90	324
25.	0.65	66			1.80	300	$2 \cdot 25$	405	
26.			$0 \cdot 65$	66					1.80	300
27.					$1 \cdot 65$	267				
28.	$0 \cdot 65$	66	$0 \cdot 65$	66			$2 \cdot 15$	382	
29.							
30...				$1 \cdot 65$	267	$2 \cdot 15$	382	1.80	300
31.			$0 \cdot 70$	75						

SESSIONAL PAPER No. 25e

Daily Gauge Height and Discharge of Celeste Creek, near Shuswap Lake. for 1914.

Monthly Discharge of Celeste Creek near Shuswap Lake, for 1914.
(Drainage area, so square miles.)

Month.	Discharge in Second-Feet.				Renctry.	
	Maximum.	Aınimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { syunre } \\ & \text { mile } \end{aligned}$	Depth in inches on Drainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { nere feet } \end{gathered}$
Murch.	75	66	66.6	11.8		
April ${ }^{\text {May }}$	3109 +29	-75	157.7	1.9	2.1 5.1	2.354
May - ${ }_{\text {Mare }}$	439 382	259 3010	375.7 349.8	$1 \cdot 7$ 1	5.1 4.8	
	278	92	169.0	2.1	4	年11808
	75	is	50.0)	i8.6	(1.)	3, 10:4
Neptember	36	9	19.0	0.2	$0 \cdot 2$	1, 1si
	150	43	14.6	13	14	$5 \mathrm{Sl7}$
Niovember Dicember	${ }_{101}^{151}$	${ }_{38} 5$	$113-7$ 78.0	1.1 111	16 1	
	101	58	is.0			
The period.	+21	\%	1473	1.	30.8	(9) 11 :

 from Ifum-u mitt lake.

Crazy Creek (2051).
Location.-Section 28, township 23, range 5, west of the 6th meridian.
Drainage Area.-Forty-five square miles.
Records Available.-March 8, to December 13, 1914.
Gauge.-Standard vertical staff gauge situated on C.P.R. siding bridge.
Channel.-The channel averages about 75 feet in width. Bed of stream is rocky, and velocities are high.

Winter Flow.-Ice conditions exist on this stream during November, December, January and February.

Accuracy.-The accuracy of returns is considered on the whole to be fairly high. Four discharge measurements have been obtained at varying stages, and the curve is well defined.

Miscellaneous.-The British Columbia Forest Mills Co., Ltd., hold records on this stream for 9 cubic feet per second. The water is used to run a smal hydro-electric plant comprising : One Pelton bucket wheel and one Can. Gen. Electric dynamo (2,000 volts, 50 amps), replaced during winter months by steam plant for purpose of operating saw-mill.

Discharge Measurements of Crazy Creek at Taft, B.C., for 1914.

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
Oct. 25.	E. M. Dann and K. G. Chisholm	1055	46	57-8	$2 \cdot 05$	$1 \cdot 60$	$118 \cdot 3$
Mar. 1914.	K. G. Chisholm.	1505	33	21.8	$1 \cdot 11$	$0 \cdot 72$	24.3
May 18	E. H. Tredcroft	1055	77	124.7	$3 \cdot 0$	$2 \cdot 30$ 2	$370 \cdot 7$
July 15.	E. H. Trederoft	1923	$78 \cdot 5$	151 -2	4.09	$2 \cdot 80$	$619 \cdot 5$

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Crazy Creek near Taft, B.C., for 1914.

Dat.		March.		April.		May.		June.	
		Gauge Height	Discharge	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height	Discharge	Gauge Height	Diccharge
		Feet.	Sec.-ft.	Feet.	Sec.ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
$\begin{aligned} & 1 . \\ & 2 . \end{aligned}$				1.00 0.90		2.00 2.40	${ }_{4}^{24} 4$	$2 \cdot 30$ $2 \cdot 60$	3.1 517
3				1.00	35	2.50	467	3.00	722
4.				1. 10	43	$2 \cdot 25$	348	$2 \cdot 60$	517
5				$1 \cdot 40$	82	$2 \cdot 00$	242	$2 \cdot 35$	394
6				1.60	115	1.90	205	$2 \cdot 30$	
7				1.75	156	1.90	205	2.00	242
8.		0.60	24	1.80	${ }_{173}$	i.s.	205	2.00	242
9.		0.75	25	1.80	173	2.10	$2 ¢ 2$	$2 \cdot 10$	282
10.		$0 \cdot 60$	24	1.80	173	$2 \cdot 25$	345	2.20	325
11.		0.70	25	1.85	189	$2 \cdot 20$	325	$2 \cdot 40$	417
12.		$0 \cdot 80$	${ }_{28}^{26}$	1.90	205	$2 \cdot 30$	371	$2 \cdot 35$	394
13.		0.85	28	2.00	242	$2 \cdot 40$	417	2.50	467
14.		0.80	26	2.05	262	${ }^{2} \cdot 65$	542	$2 \cdot 60$	517
15.		0.85	28	$2 \cdot 15$	303	$2 \cdot 60$	517	$2 \cdot 65$	542
16.		0.85	28	$2 \cdot 20$	325	$2 \cdot 65$	542	$2 \cdot 70$	
17.		0.80	26	2.00	245	2.60	517	${ }^{2} \cdot 75$	59.3
18.		0.95	32	1.90	205	$2 \cdot 30$	371	2. 70	
19.		0.90 0.95	29	2. ${ }_{2}$. 10	$\stackrel{242}{ }$	2.25 2.20	348	2.50	
20.		0.95	32	$2 \cdot 10$	282	$2 \cdot 20$	325	$2 \cdot 35$	394
21		1.C0	35	2.00	242	$2 \cdot 30$	371	- 15	303
22.	.	1.10	43	1.90	${ }^{205}$	2.40	417	${ }_{2}^{2} \cdot 10$	282
23		$1 \cdot 10$	43	1.80	173	$2 \cdot 55$	492	2.10	232
24		$1 \cdot 20$	${ }_{43}$	1.90	${ }_{173}$		542	$2 \cdot 15$ 2.20	
25		$1 \cdot 10$	43	1.80	173	$2 \cdot 50$	467	$2 \cdot 20$	325
26.		$0 \cdot 60$	24	1.80	173	$2 \cdot 35$	394	${ }^{2} \cdot 50$	
27.		$0 \cdot 65$	24	1.80	173	${ }_{2}^{2} \cdot 10$	${ }_{2} 25$	${ }_{2}^{2.35}$	394
28		0.70	25	1.80	173	2.00	242	$2 \cdot 25$	345
29.		$0 \cdot 90$	29	1.75	158	1.90	205	$2 \cdot 30$	371
30	(1......	1.00	35	1.80	173	1.80	173	$2 \cdot 30$	371
31.		1-10	43			1.95	223		

Daily Gauge Height and Discharge of Crazy Creek near Taft, B.C., for 1914.

Monthly Discharge of Crazy Creek at Taft, B.C., for 1914.
(Drainage area, 45 square miles.)

Month.	Discharge in Second-Feet.				Run-Off.	
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	Total in aere-feet.
Mareh	53	24	31.7	0.7	0.8	1.949
April	325	29	178.8	$3 \cdot 97$	4.43.	$10,640$
May.	542	173	356.2	$7 \cdot 90$	$9+10$ $10 \cdot 10$	21.902
June... - .	722	242	411.8	$9 \cdot 10$	$10 \cdot 10$	$25,504$
July ..	619	82	$243 \cdot 4$ $43 \cdot 0$	$5 \cdot 40$	6.20 1.09	$14,966$
August	82	26	$43 \cdot 0$ 48.4	0.95	1.09 1.19	$2,644$
September.	189	25 +3	$48 \cdot 4$ $65 \cdot 0$	$1 \cdot 07$	$1 \cdot 19$	$2,8 \times 0$
Oetober	118 189	43 43 4	$65 \cdot 0$	$\begin{aligned} & 1.40 \\ & 1.70 \end{aligned}$	$\begin{aligned} & 1.60 \\ & 1.00 \end{aligned}$	$3,997$
November.	189	43	$78 \cdot 0$	1.70	1.90	$\text { ber } 13 .)^{4,641}$
	722	24	161.8	$3 \cdot 57$	36.41	89,123

Note.-Winter conditions obtained after December 13.
The mean annual precipitation at Revelstoke is given as 42.99 ineles (Meteorologieal Serviee, Department of Marire and l'isheries) which is probably slightly less than the preeipitation over the Crazy ereek drainage area.

The gauge reader, Mr. J. Lidstone, states that from his observation of the amount of snow on hills during the winter of 1913-14 that the total run-off of the stream during 1914 is about 33 per cent less than in average years

S'ESSIONAL PAPER No. 25e
Eagle River, at Malakwa, (2010).
Location.-Section 9, township 23, range 6, west 6 th meridian.
Records Available.-May 14 to December 31, 1913; January 8, to December 12, 1914.

Drainage Area.-Four hundred and twenty square miles.
Gauge.-Standard chain gauge situated on highway bridge and read daily by P. C. Col-1.

Channi.-The channel is uniform and straight for 100 yards above and below the gavge.

Discharge Measurements.-Are made from upstream side of highway bridge. Velocities are uniform and not too high.

Winter Flow.-Partial ice conditions exist on the river during January and February.

Accuracy. - The accuracy of results is considered to be very high, nine measurements have been obtained at varying stages, but during March, April, and May, 1914, gauge readings were not considered to be very reliable.

Discharge Meastrements of Eagle River at Malakwa, for 1914.

Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
Nov. 7	E. M. Dann \& K. G. Chisholm	1,505	111.0	$454 \cdot 0$	1.36	2.61	$620 \cdot 0$
Mar. 3	K. G. Chisholm..	1,505	$125 \cdot 0$	206.5	1.24	1.80	257.0
May July J 18.	E. H. Trederoft...	1,055 1,923	111.0 119.5	${ }_{718}^{717.7}$	3.98 4.14	4.90 $5 \cdot 05$	$2,860 \cdot 0$ $2,972.0$

[^50]6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Eagle River near Malakwa, for 1914.

Day.	January.		February.		March.		April.		May.		June.	
	Gauge Height	Discharge	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge } \end{aligned}$	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge. } \end{aligned}$	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge } \end{aligned}$	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge } \end{aligned}$
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1.		320	2.00	320	1.80	${ }_{256}^{256}$	${ }_{2}^{2.25}$	422	4.50	${ }_{3}^{2,285}$	6.69 6.30	6,500
$\begin{aligned} & 2 . \\ & 3 . \end{aligned}$		320 320	1.95 1.95 1	302 302	1.80 1.80	256 256	2.20 2.25	4	$5 \cdot 20$ $5 \cdot 20$	3,280 3,280	6.30 6.20	5, 4,00
4		355	1.95	302	1.80	256	$2 \cdot 35$	470	$5 \cdot 10$	3.125	$5 \cdot 30$	3,460
5.		355	$1 \cdot 85$	270	1.80	256	$2 \cdot 80$	725	4.70	2,550	$5 \cdot 05$	3,047
6.		355		270	1.80	256	$3 \cdot 05$	904	$4 \cdot 45$	2,225	$5 \cdot 00$	2,970
7		400		270	1.80	256	$3 \cdot 35$	1,127	+ 30	2,050	4.90	2,825
8	$2 \cdot 20$	400		270	1.70	225	3.55	1,292	$4 \cdot 45$	2,225	4.55	2,350
9	$2 \cdot 25$	422		256	1.75	240	$3 \cdot 65$	1,380	4.65	2,482	+65	2,482
10	$2 \cdot 20$	400		256	1.75	240	3.70	1.425	$5 \cdot 00$	2,970	5.30	3,460
11	$2 \cdot 20$	400		256	1.80	256	3.75	1,472			$5 \cdot 40$	3.645
12.	$2 \cdot 20$	400		256	1.80	256	3.85	1,570			5.45	3,737
13.	${ }_{2}^{2 \cdot 15}$	377		256	1.90	285	4.20	1,935			5.90	4.655
14	$2 \cdot 10$	355		256	1.90	285	+ 20	1,935			6. 10	5,145
15.	$2 \cdot 10$	355		256	1.95	302	4.50	2,285			6. 65	6,650
16.	$2 \cdot 10$	355			1.95	302	4.50	2,285			6.25	5,527
17.	$2 \cdot 10$	355		256	1.95	302	$4 \cdot 30$	2,050	$5 \cdot 60$	4,025	6.40	5,925
18	$2 \cdot 10$	355		256	$2 \cdot 05$	337	$4 \cdot 15$	1,880		4,025	6. 70	6,800
19	$2 \cdot 15$	377		270	2.05	337	$4 \cdot 35$	2,107	5.00	2,970	6.00	4,900
20.	$2 \cdot 20$	400		270	2-10	355	4.45	2,225	4.95	2,597	5. 60	4,025
21	$2 \cdot 10$	355		270	$2 \cdot 20$	400	4.30	2,050	$5 \cdot 15$	3,202	$5 \cdot 15$	3,202
22	$2 \cdot 10$	355	1.85	270	$2 \cdot 25$	422	$4 \cdot 20$	1,935	5.30	3,460	$5 \cdot 00$	2,970
23.	$2 \cdot 10$	355	1.80	256	$2 \cdot 30$	445	3.95	1.670	$5 \cdot 35$	3,552	4.90	2, 825
24	$2 \cdot 10$	355	1.80	256	${ }_{2}^{2 \cdot 30}$	445	4.00	1,720	$5 \cdot 40$	3,645	$4 \cdot 85$	2,755
25	2-10	355	1.85	270	$2 \cdot 20$	400	4.00	1,720	5.55	3,927	5-10	3.125
26		337	1.80	256	2.25	422	3.95	1,670			$5 \cdot 55$	3,927
27	$2 \cdot 05$	337	1.80	256	$2 \cdot 30$	445	3.90	1,620			$5 \cdot 35$	3,352
28	2.00	320	$1 \cdot 80$	256	${ }_{2} 2 \cdot 2$	400	4.20	1,935	4-40	2,165	5.30	3,460
29	$2 \cdot 10$	355			$2 \cdot 20$	400	$4 \cdot 30$	2,050			$5 \cdot 20$	3,280
30	$2 \cdot 10$	355			$2 \cdot 20$	400	$4 \cdot 35$	2,107			$5 \cdot 40$	3,645
31.	$2 \cdot 15$	377			$2 \cdot 25$	422						

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Eagle River near Malakwa, for 1914.

Day.	July .		August.		September.		October.		November.		December.	
	Gauge Height.	Dis charge.	Gauge Height	Dis charge	Gauge Height.	Discharge.	Gauge Height,	Discharge.	Gauge Height.	Discharge	Gauge Height	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	See. -ft .	Feet.	Sec.-ft.	Feet.	Sec. -ft .
1	$5 \cdot 55$	3,927	3.50	1,250	2.60	605	$3 \cdot 30$	1,090	$3 \cdot 20$	1,015	2-60	605
2	$5 \cdot 85$	4,542	3.50	1,250	$2 \cdot 60$	605	3.25	1,052	$3 \cdot 90$	1,620	$2 \cdot 55$	577
3.	$5 \cdot 80$	4,430	$3 \cdot 55$	1,292	$2 \cdot 65$	632	$3 \cdot 10$	940	$3 \cdot 60$	1,335	$2 \cdot 60$	605
4	5.70	4,225	3.50	1,250	2.65	632	$2 \cdot 90$	795	3.45	1,207	$2 \cdot 45$	522
5.	$5 \cdot 40$	3,645	$3 \cdot 30$	1,090	$2 \cdot 60$	605	2.95	830	$3 \cdot 40$	1,165	$2 \cdot 30$	445
6	$5 \cdot 20$	3,280	$3 \cdot 40$	1,165	$2 \cdot 40$	495	$2 \cdot 80$	725	$3 \cdot 35$	1,127	$2 \cdot 40$	495
7	$5 \cdot 05$	3,047	$3 \cdot 30$	1,090	$2 \cdot 60$	605	2. 80	725	$3 \cdot 20$	1,015	$2 \cdot 30$	445
8	4.95	2,897	$3 \cdot 30$	1,090	2.90	795	2.70	660	$3 \cdot 30$	1,090	$2 \cdot 20$	400
9	4.85	2,755	3.20	1,015	2.90	795	$2 \cdot 70$	660	$3 \cdot 15$	977	$2 \cdot 30$	445
10.	$4 \cdot 90$	2,825	3.00	865	2-60	605	$2 \cdot 60$	605	3.05	902	$2 \cdot 10$	355
11.	$5 \cdot 00$	2,970	$2 \cdot 90$	795	$2 \cdot 75$	692	$2 \cdot 60$	605	$3 \cdot 10$	940	$2 \cdot 20$	400
12.	$5 \cdot 10$	3,125	$3 \cdot 10$	940	2.65	632	2. 60	605	3.00	865	$2 \cdot 10$	335
13	$5 \cdot 00$	2,970	$2 \cdot 90$	795	$2 \cdot 55$	577	$2 \cdot 60$	605	$2 \cdot 80$	725		
14	$5 \cdot 50$	3,830	3.00	865	$2 \cdot 60$	605	$2 \cdot 55$	577	$2 \cdot 70$	660		
15.	$6 \cdot 65$	6,650	3-05	902	$2 \cdot 40$	495	$2 \cdot 50$	550	$2 \cdot 60$	605		
16	$5 \cdot 10$	3,125	3.00	865	$2 \cdot 30$	445	$2 \cdot 65$	632	$2 \cdot 50$	550		
17	4.50	2,285	2.90	795	$2 \cdot 35$	470	3.90	1,620	$2 \cdot 50$	550		
18	$4 \cdot 40$	2,165	$2 \cdot 95$	830	2.70	660	3.70	1,425	$2 \cdot 55$	577		
19	$4 \cdot 40$	2,165	$2 \cdot 95$	830	3.40	1,165	$3 \cdot 65$	1,380	$2 \cdot 40$	495		
20.	$4 \cdot 60$	2,415	$3 \cdot 00$	865	3.00	865	$3 \cdot 50$	1,250	$2 \cdot 40$	495		
21	4.00	1,720	3.00	865	2.85	760	$3 \cdot 25$	1,052	$2 \cdot 35$	470		
22	3.75	1,472	2.90	795	2.80	725	$3 \cdot 10$	940	$2 \cdot 30$	445		
23	$3 \cdot 60$	1,335	$2 \cdot 90$	795	$2 \cdot 80$	725	3.00	865	$2 \cdot 25$	422		- $\cdot 1$
24	3.60	1,335	2.70	660	2.90	795	2.90	795	$2 \cdot 30$	445		-
25.	$3 \cdot 60$	1,335	$2 \cdot 80$	725	2.90	795	$2 \cdot 80$	725	$2 \cdot 50$	550		
26	$3 \cdot 50$	1,250	$2 \cdot 70$	660	$2 \cdot 95$	830	2.80	725	$2 \cdot 60$	605		187\%
27	$3 \cdot 40$	1,165	2.80	725	$4 \cdot 30$	2,050	2.75	692	$2 \cdot 60$	605		
28	$3 \cdot 30$	1,090	2.80	725	$3 \cdot 45$	1,207	2.70	660	$2 \cdot 80$	725		
29	$3 \cdot 30$	1,090	2.75	692	$3 \cdot 35$	1,127	2.70	660	$2 \cdot 80$	725		
30.	$3 \cdot 40$	1,165	$2 \cdot 70$	660	$3 \cdot 30$	1,090	$2 \cdot 90$	795	$2 \cdot 70$	660		***
31.	$3 \cdot 65$	1,380	$2 \cdot 65$	632			$3 \cdot 30$	1,090				-

Monthly Discharge of Eagle River near Malakwa, for 1914.
(Drainage area, 420 square miles.)

 thes reeorde for thense two munthe are lews rehable than for the remaimher of tho your

$25 \mathrm{E}-20 \frac{1}{2}$

Granite Creek (2064).
Location.-Near Coalmont, Water District No. 4.
Records Available.-June 19 to December 31, 1914.
Drainage Area.-Forty square miles.
Gauge.-Standard vertical staff gauge graduated in feet and tenths, situated on footbridge. Read daily by Miss Emily Cook.

Channel.-Channel is straight for 100 feet above and 500 feet below measuring section. Velocity high. Bed of stream is composed of gravel and rock, considered permanent.

Discharge Measurements.-Four discharge measurements were obtained during 1914. Highest recorded flow 300 cubic feet per second.

Winter Flow.-No records have been obtained during winter months on this stream, but ice conditions are expected to prevail throughout January and February.

Accuracy.-The accuracy of returns will eventually be high, but several more measurements are required to define curve satisfactorily.

Discharge Measurements of Granite Creek near Coalmont, 1914.

Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section.	$\begin{gathered} \text { Mean } \\ \text { Velocity. } \end{gathered}$	Gauge Height.	Discharge.
			Feet.	Sq.ft.	Ft. per sec.	Feet.	See.-ft.
June 18..	K. G. Chisholm.	1,913	68.0	92.0	${ }_{0}^{3.26}$	2.22 1.32	300.0 31.0
	"	1,913 1,913	27.0 26.0	${ }_{20 \cdot 1}^{44 \cdot 0}$	${ }_{0}^{0.61}$	${ }_{1}^{1 \cdot 05}$	31.0 12.2
Nov. 26.	"	1,913	37.0	36.0	0.86	1.4	31.0

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Granite Creek near mouth, for 1914.

Day.	June.		July.		August.		September.		October.		November.	
	Gauge Height	Dis-	Gauge Height.	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height	Discharge	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height	Discharge
	Feet.	Sec.ft.	Feet.	Sec.ft	Feet.	Sec.-ft.	Feet.	Sec.-ft	Feet.	Sec.-ft	Feet.	Sec.-ft.
3.			1.85	115	1.20	21	1.05	12	1.20	21	1.40	39
4			1.75	90	1.15	18	1.05	12	1.20	21	1.40	39
5.			1.70	79	$1 \cdot 15$	18	1.05	12	1.20	21	$1 \cdot 45$	45
6.			1.70	79	$1 \cdot 15$	18	1.05	12	$1 \cdot 20$	21	1.35	34
7.			1.70	79	$1 \cdot 20$	21	1.05	12	1.20	${ }_{21}^{21}$	1.30	29
8.			1.65	71	$1 \cdot 25$	25	1.10	15	1.20	21	1.30	29
${ }_{10}^{9}$			1.60	63	$1 \cdot 25$	25	$1 \cdot 20$	21	$1 \cdot 25$	25	1.35	34
10.			1.50	63	$1 \cdot 20$	21	$1 \cdot 15$	18	1.25	25	$1 \cdot 30$	29
11.			1.55	56	$1 \cdot 15$	18	$1 \cdot 15$	18	1.20	21	1.50	50
12.			$1 \cdot 55$	56	1.15	18	$1 \cdot 15$	18	$1 \cdot 20$	21	1.35	34
14.			1.50	50	1.15	18	$1 \cdot 10$	15	$1 \cdot 20$	21	$1 \cdot 30$	
15			1.50 1.50	50	$1 \cdot 10$	15	1.20	21	${ }_{1}^{1 \cdot 15}$	$\stackrel{21}{18}$		
16.			$1 \cdot 45$	45	$1 \cdot 10$	15	$1 \cdot 20$	21	$1 \cdot 15$	18		
17.			1.45	45	$1 \cdot 10$	15	$1 \cdot 20$	21	1.15	18		
18			$1 \cdot 40$	39	$1 \cdot 10$	15	$1 \cdot 25$	25	1.20	21		
19.	$2 \cdot 20$	280	$1 \cdot 40$	39	$1 \cdot 10$	15	$1 \cdot 30$	29	$1 \cdot 30$	29		
20.	$2 \cdot 10$	215	$1 \cdot 40$	39	$1 \cdot 10$	15	$1 \cdot 20$	21	$1 \cdot 25$	25		
21.	${ }_{2}^{2.05}$	191	1.40	39	1.15	18	1.20	21	$1 \cdot 25$	25		
${ }_{23}^{22}$.	2.00	168	1.40	39	$1 \cdot 10$	15	$1 \cdot 15$	18	1.20	21		
${ }_{24}^{23}$	2.00	168	$1 \cdot 35$	34	$1 \cdot 10$	15	$1 \cdot 15$	18	$1 \cdot 20$	21		
${ }_{24}^{24 .}$	2.00	168	$1 \cdot 35$	34	$1 \cdot 10$	15	$1 \cdot 15$	18	$1 \cdot 20$	${ }_{21}^{21}$	$1 \cdot 20$	21
25.	2.05	191	1.30	29	$1 \cdot 10$	15	$1 \cdot 10$	15	$1 \cdot 20$	21		
26.	2.00	168	$1 \cdot 30$	29	$1 \cdot 10$	15	$1 \cdot 10$	15	$1 \cdot 20$	21	1.40	
27.	2.00	168	1.30	29	$1 \cdot 10$	15	$1 \cdot 15$	18	$1 \cdot 20$	21	1.40	39
28	1.95	148	$1 \cdot 30$	29	$1 \cdot 05$	12	$1 \cdot 25$	5	$1 \cdot 20$	21	1.40	39
30.	1.95	148	$1 \cdot 25$	25	1.00	10	1.15	18	1.20	21	1.30	29
31.			$1 \cdot 25$	25	1.00	10			$1 \cdot 30$	29		

Monthly Discharge of Granite Creek at mouth, for 1914.
(Drainage area, 40 square miles.)

[^51]Kettle River, North Fork (2052).
Location.-At Grand Forks, Water District No. 5.
Records Available.-June 1 to December 31, 1914.
Drainage Area.-Six hundred and forty square miles.
Gauge.-Standard vertical staff gauge situated on foot bridge, graduated in feet and tenths, and read daily by Geo. O'Keefe.

Channel.-Channel is straight for 100 yards above and below measuring section. Velocity high.

Discharge Measurements.-Five discharge measurements have been obtained in 1914. Meterings are made by cable suspension from foot bridge.

Winter Flow. - No records have been obtained on this river during winter months.

Accuracy.-The accuracy will eventually be high. The present results should fall well within 15 per cent. Results for June may be inaccurate since slag from the Granby Smelter is sometimes carried downstream to the gauging section prior to the freshet, not being carried out until the spring floods are at their height.

Discharge Measurements of Kettle River, North Fork, at Grand Forks, 1914.

Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width	Area of Section.	Mean Velocity.	Gauge He.ght.	Discharge.
			Feet.	Sq. ft.	Ft. per sec	Feet.	Scc.ft.
May 19.	C. E. Richardson	1527	130	1.100	$4 \cdot 59$	5.08	5,050
June 9.	K. G. Chisholm.	1913	132	817	2.77	4.00	2,348
July 22.		1913	123	${ }_{274}^{47}$	$0 \cdot 99$	1.48	426
Aug. 22.	"				0.35 0.35		868

SESSIONAL PAPER No. 25e

Daily Gayge Height and Discharge of Kettle Piver, North Fork, near Grand Forks, for 1914.

Daily Gauge Height and Discharge of Kettle River, North Fork, near Grand Forks, for 1914.

Day.	July		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge	Gauge Height	Discharge.	Gauge Height	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec-ft.	Feet.	Sec.-ft.
1.	$3 \cdot 60$	1,875	$1 \cdot 00$	220	0.45	78	1.30	340	$2 \cdot 00$	695	1.50	435
2	$3 \cdot 50$ $3 \cdot 50$	1,780	1.00 1.00	220	0.45 0.45	77	1.25 1.25	320 320	$2 \cdot 15$ $2 \cdot 35$	780 900	1.50 1.50 1.50	435 435
3	$3 \cdot 50$ $3 \cdot 35$	1,780	1.00 0.90	220 180	0.45 0.40	78	1.25 1.20	320 300	$2 \cdot 35$ $2 \cdot 50$	900 995	1.50 1.50 1.50	435 435
4.	$3 \cdot 35$ $3 \cdot 36$	1,640 1,595	0.90 0.90	180 180	$0 \cdot 40$ $0 \cdot 40$	70	1.20 1.20	300 300	$2 \cdot 50$ $2 \cdot 50$	995 995	$1 \cdot 50$ 1.50	435 435
5	$3 \cdot 36$	1,595	$0 \cdot 90$	180	$0 \cdot 40$	70	$1 \cdot 20$	300	$2 \cdot 50$	995	1.50	435
6.	$3 \cdot 10$	1,430	$0 \cdot 80$	150	0.40	70	$1 \cdot 20$	300	$2 \cdot 50$	995	1.46	385
7.	$2 \cdot 85$	1,235	0.70	120	$0 \cdot 40$	70	$1 \cdot 15$	280	$2 \cdot 50$	995	$1 \cdot 40$	385
8	$\stackrel{2}{ } 70$	1,130	0.40	70	$0 \cdot 45$	77	$1 \cdot 15$	280	$2 \cdot 40$	930	$1 \cdot 30$	340
9.	$2 \cdot 55$	1,025	$0 \cdot 40$	70	0.45	78	$1 \cdot 10$	260	$2 \cdot 30$	870	$1 \cdot 20$	300
10.	$2 \cdot 40$	930	$0 \cdot 50$	85	$0 \cdot 50$	85	$1 \cdot 10$	260	$2 \cdot 30$	870	$1 \cdot 10$	260
11.	$2 \cdot 30$	870	0.50	85	$0 \cdot 50$	85	$1 \cdot 10$	260	$2 \cdot 20$	810	1.00	220
12.	$2 \cdot 20$	810	$0 \cdot 60$	100	$0 \cdot 55$	93	$1 \cdot 1 \mathrm{C}$	260	$2 \cdot 20$	810	0.90	180
13.	$2 \cdot 10$	750	$0 \cdot 60$	100	0.55	92	$1 \cdot 10$	260	$2 \cdot 10$	750	0.90	180
14.	$2 \cdot 10$	750	$0 \cdot 60$	100	0.55	93	$1 \cdot 15$	280	$2 \cdot 1 \mathrm{C}$	750	0.90	180
15.	$2 \cdot 00$	695	$0 \cdot 60$	100	$0 \cdot 60$	100	$1 \cdot 15$	280	$2 \cdot 20$	810	$0 \cdot 90$	180
16.	$2 \cdot 00$	695	$0 \cdot 60$	100	$0 \cdot 60$	100	$1 \cdot 20$	300	$2 \cdot 20$	810	0.90	180
17.	1.90	640	$0 \cdot 60$	100	0.70	120	$1 \cdot 35$	362	1.90	640	0.90	180
18.	1.80	585	$0 \cdot 60$	100	0.70	120	1.55	460	1.80	585	$0 \cdot 90$	180
19.	$1 \cdot 70$	535	$0 \cdot 60$	100	0.70	120	1.90	640	$1 \cdot 80$	585	$0 \cdot 90$	180
20.	$1 \cdot 60$	485	$0 \cdot 60$	100	0.85	165	$2 \cdot 10$	750	$1 \cdot 80$	585	0.90	180
21.	1.50	435	$0 \cdot 60$	100	1.05	240	$2 \cdot 10$	750	1.80	585	0.90	180
22.	1.40	385	$0 \cdot 60$	100	1.15	280	$2 \cdot 00$	695	1.80	585	$0 \cdot 90$	180
23.	$1 \cdot 40$	385	$0 \cdot 55$	92	$1 \cdot 10$	260	1.85	613	1.80	585	$0 \cdot 90$	180
24.	$1 \cdot 30$ $1 \cdot 30$	340 340	0.55 0.55	92	$1 \cdot 10$ $1 \cdot 10$	260 260	1.80 1.80	585 585	1.80 1.70	585 535	0.90 0.90	180 180
25.	$1 \cdot 30$	340	$0 \cdot 55$	93	$1 \cdot 10$	260	1.80	585	1.70	535	$0 \cdot 90$	180
26.	1.30 1.20	340 300	0.50 0.50	85 85	$1 \cdot 10$ 1.20	260 300	1.80 1.70	585	1.70 1.60	535 485	0.90 1.00	180
27.	1.20 1.20	300 300	$0 \cdot 50$ 0.50	85	1.20 1.20	300 300	1.70 1.70	535	$1 \cdot 60$ $1 \cdot 60$ 1.60	485	1.00 1.00	220
29.	1.10 1.10	260	0.50	85	1.30	340	1.70	535	1.60 1.60	485	1.00	220
30.	$1 \cdot 10$	260	$0 \cdot 50$	85	$1 \cdot 30$	340	$1 \cdot 70$	535	1.60	485	1.00	22.
31.	1.00	220	$0 \cdot 50$	85			1.85	613			1.00	220

Monthly Discharge of Kettle River, North Fork, near Grand Forks, for 1914.
(Drainage area, 640 square miles.)

Mosth.	Discharge in Second-Feet.				RtN-Off.	
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$
June.	13,625	1,780	4,483	$7 \cdot 0$	7.8	266, 757
July.	1,875	220	800	1.2	$1 \cdot 4$	49,190
August.	220	70	112.5	$0 \cdot 2$	$0 \cdot 2$	6,917
September.	340	70	$156 \cdot 0$	$0 \cdot 24$	$0 \cdot 27$	9.283
October...	750	260	$431 \cdot 5$	$0 \cdot 7$	$0 \cdot 8$	26,532
November..	995	485	$717 \cdot 0$	$1 \cdot 1$	$1 \cdot 2$	42,664
December. .	435	180	254	$0 \cdot 4$	0.5	15,620
The period.	13,625	70	$993 \cdot 4$	1.55	$12 \cdot 17$	416,963

Note.-No precipitation records available.
Mr. George O'Keefe, gauge reader, states that only in very severe winters does the north fork of the Kettle river freeze at this point. Hestates that it has not been frozen over once during the period of his residence at Grand Forksfourteen years.

Kettle River, West Fork (2045).
Location.-Near Westbridge, Water District No. 5.
Records Available.-February 23 to September 30, 1914.
Drainage Area.-Six hundred and ninety square miles.
Gauge.-Standard vertical staff gauge, graduated in feet and tenths, read daily by R. Demazes.

Channel.-Channel is straight for 500 feet above and below measuring section. Bed composed of gravel and boulders. Velocity varies with stage of water. Highest recorded mean velocity 4 feet per second. Highest recorded discharge 1,235 cubic feet per second.

Discharge Measurements.-Are obtained from bridge. Three measurements were procured during 1914 at varying stages.

Winter Flow.-No records have been taken on this river during winter months. Partial ice conditions prevail during January and February.

Accuracy-Accuracy of returns is considered to be fairly high, and results should fall within 10 per cent.

Discharge Measurements of Kettle River, West Fork, at Westbridge, for 1914.

Date.	Hydrographer.	Meter No.	Width.	Area of Section	Mean Velocity.	Guage Height.	Discharge.
			Feet.	Sq. ft. .	Ft. per sec.	Feet.	Sec.-ft.
June	E. M. Dann and K. G. Chisholm		97.5	$304 \cdot 0$	4.05	1.78	1,235.0
July 20.	K. G. Chisholm	1,913	97.0	122.0	$1 \cdot 43$	-0.09	174.0
Aug. 27.	"	1,913	41.0	35.0	$1 \cdot 20$	-0.71	$42 \cdot 0^{1}$

[^52]6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Kettle River, West Fork, near mouth, for 1914.

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Kettle River, West Fork, near mouth, for 1914.

Montmly Discharge of Kettle River, West Fork, near mouth, for 1914.
(Drainage area, $690-0$ square miles.)

Note. Prosipitation is prolubly from 20 (1) 30 inchen manully
 rentiugs.

Kettle River near Nicholson's Bridge (2046).
Location.-Near Kettle Valley, Water District No. 5.
Records Available.-March 1 to December 11, 1914.
Drainage Area.-Two thousand, one hundred and eighty square miles.
Gauge.-Standard vertical staff gauge, graduated in feet and tenths, situated on pier of highway bridge, and read daily by F. Whiting (rancher).

Channel.-The channel is straight for about 500 feet above and below measuring section. Average width, 150 feet. Bed of river is composed of gravel and sand, and considered permanent. Velocity high and control is good.

Discharge Measurements.-Four discharge measurements were obtained during 1914. Highest recorded discharge 6,215 feet per second.

Winter Flow.-Ice conditions exist during January and February.
Accuracy.-Considered to be very high, and results should be within 5 per cent, except at extreme high water.

Discharge Measurements of Kettle River at Nicholson's Bridge, for 1914.

Date.	Hydrographer.	$\begin{gathered} \text { Meter } \\ \text { No. } \end{gathered}$	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
May 20.	C. E. Richardson \& C. Varcoe.	1,527	178.0	1,063.0	5.75	5.00	6,104.0
June 7.	E. M. Dann \& K. G. Chisholm	1,913	$162 \cdot 0$ 154.0	869.0 329.0	4.86 2.93	3.79 0.36	$4,225 \cdot 0$ $668 \cdot 0$
July ${ }^{\text {Aug. }} 19$.	" *	1,913 1,913	$154 \cdot 0$ 137	$329 \cdot 0$ $184 \cdot 0$	2.93 0.78		$668 \cdot 0$ $144 \cdot 0$

S'ESSIONAL PAPER No. 25e

Daily Gauge Height and Discharge of Kettle R ver near Nicholson's Bridge, Rock Creek, for 1914.

Day.	January.		February.		March.		April.		May.		June.	
	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge	Gauge Height.	Discharge	Gauge Height.	Discharge.	Gauge Height.	Discharge.
	Feet.	Sec.-ft.										
1					-0.6	200	0.5	735	$4 \cdot 1$	4,675	$4 \cdot 40$	5,140
2					-0.6	200	$0 \cdot 5$	735	$4 \cdot 7$	5,610	4.90	5.930
3					-0.6	200	$0 \cdot 5$	735	5. 5	6,910	$6 \cdot 40$	8,410
4					-0.6	200	$0 \cdot 5$	735	$5 \cdot 1$	6,250	$6 \cdot 35$	8,655
5					-0.5	230	0.55	765	$4 \cdot 55$	5,370	$5 \cdot 35$	6,660
6					-0.4	265	0.8	930	$4 \cdot 35$	5,060	$4 \cdot 35$	5,060
7					-0.4	265	1.35	1,320	4.00	4,520	$3 \cdot 90$	4,520
8					-0.4	265	1.75	1,645	3.95	4,445	$3 \cdot 60$	3,920
9					-0.4	265	$2 \cdot 05$	1,920	4.05	4,595	$3 \cdot 55$	3, 845
10.					-0.4	265	$2 \cdot 25$	2,125	$4 \cdot 20$	4,830	$3 \cdot 45$	3,700
11.	-0.3	300			-0.4	265	$2 \cdot 55$	2,460	$4 \cdot 60$	5,450	$3 \cdot 50$	3,775
12.	-0.3	300			-0.4	265	$2 \cdot 80$	2,780	$4 \cdot 85$	5,850	$3 \cdot 55$	3,845
13.	-0.3	300			-0.4	265	$3 \cdot 10$	3,195	$5 \cdot 05$	6,175	$3 \cdot 85$	4,295
14	-0.25	320			-0.3	300	$3 \cdot 45$	3,700	$5 \cdot 60$	7,075	$4 \cdot 35$	5,060
15.	-0.25	320			-0.2	340	3.70	4,070	6.45	8,490	$4 \cdot 45$	5,215
16.	-0.25	320			-0.1	390	4.00	4,520	$6 \cdot 85$	9.150	$4 \cdot 35$	5,060
17.	-0.25	320			$0 \cdot 0$	440	4.00	4,520	$6 \cdot 10$	7,915	$4 \cdot 40$	5,140
18.	-0.3	300			$0 \cdot 0$	440	3.90	4,370	$5 \cdot 60$	7,075	$4 \cdot 05$	4. 595
19.	-0.3	300			0.0	440	$3 \cdot 50$	3,775	$5 \cdot 30$	6,580	$3 \cdot 60$	3,920
20.	-0.3	300			0.0	440	$4 \cdot 15$	4,750	5.00	6,095	$3 \cdot 35$	3,555
21.	-0.3	300			$0 \cdot 1$	495	$4 \cdot 10$	4,675	$5 \cdot 00$	6,095	3. 10	3,195
22.	-0.3	300			$0 \cdot 15$	525	$3 \cdot 80$	4,220	4.95	6,010	2.90	2,410
23.					$0 \cdot 3$	610	$3 \cdot 60$	3,920	$5 \cdot 20$	6,415	$2 \cdot 45$	2,345
24					$0 \cdot 4$	670	3.90	4,370	$5 \cdot 25$	6,495	$2 \cdot 40$	2,290
25.					0.45	700	$3 \cdot 80$	4,220	$5 \cdot 05$	6,175	$2 \cdot 40$	2,290
26.					$0 \cdot 5$	735	$3 \cdot 60$	3,920	$4 \cdot 75$	5,690	2. 40	2,290
27.					$0 \cdot 5$	735	$3 \cdot 50$	3,775	$4 \cdot 10$	4,675	$2 \cdot 35$	2,235
28.					$0 \cdot 5$	735	3.50	3,775	3.95	4,445	$2 \cdot 30$	2,180
29.					$0 \cdot 5$	735	$3 \cdot 40$	3,630	$3 \cdot 55$	3,845	$2 \cdot 27$	2,145
30.					0.5	735	$3 \cdot 60$	3,920	$3 \cdot 40$	3,630	$2 \cdot 20$	2,092
31.					$0 \cdot 5$	735			$3 \cdot 80$	4,220		

Daily Gauge Height and Discharge of Kettle River near Nicholson's Bridge, Rock Creek, for 1914.

D.x.	July.		August.		September.		Oetober.		November.		Deeember.	
	Gauge Height	Diseharge.	Gauge Height.	Diseharge.	Gauge Height	Discharge.	Gauge Height.	Diseharge	Gauge Height	Discharge	Gauge Height.	Diseharge.
	Feet.	See.-ft.	Feet.	See.-ft.	Feet.	See.-ft.	Feet.	See.-ft.	Feet.	Sec.-ft	Feet.	See.-ft.
1.	2.00	1,870	-0.4	265	-0.85	130	$0 \cdot 15$	520	$0 \cdot 5$	735	-0.1	390
2.	1.80	1,690	-0.4	265	-0.90	120	0.02	451	0.55	765	-0.1	390
3	1.80	1,690	-0.4	265	-0.90	120	$0 \cdot 0$	440	0.7	865	-0.2	340
4.	1.70	1,600	-0.45	250	-0.90	120	$0 \cdot 0$	440	$0 \cdot 6$	800	-0.2	340
5.	$1 \cdot 60$	1,520	-0.50	230	-0.90	120	$0 \cdot 0$	440	$0 \cdot 68$	852	-0.2	340
6.	1.45	1,400	$-0 \cdot 50$	230	-0.90	120	-0.02	430	0.77	910	-0.2	340
7.	$1 \cdot 30$	1,280	-0.50	230	-0.90	120	-0.10	390	$0 \cdot 69$	845	-0.2	340
8	$1 \cdot 15$	1,175	-0.55	215	-0.85	130	-0.15	365	$0 \cdot 55$	765	-0.2	340
9	1.05	1,105	-0.55	215	-0.80	140	-6. 20	340	0.50	735	-0.2	340
10.	$0 \cdot 85$	965	$-0 \cdot 55$	215	-0.80	140	-0.22	330	0.42	683	-0.2	340
11.	0.70	865	-0.55	215	-0.75	155	-0.25	320	-0.37	652	-0.22	332
12.	$0 \cdot 65$	830	-0.55	215	-0.75	155	-0.25	320	$0 \cdot 30$	610	
13.	$0 \cdot 50$	735	-0.60	200	-0.70	170	-0.20	340	$0 \cdot 25$	580		.
14.	$0 \cdot 60$	800	$-0 \cdot 60$	200	-0.65	185	-0.15	365	$0 \cdot 20$	550		
15.	0.70	865	-0.60	200	-0.60	200	-0.05	415	$0 \cdot 20$	550		
16	0.45	700	-0.60	260	-0.60	200	-0.05	415	$0 \cdot 20$	550		
17.	0.40	670	-0.60	200	-0.50	230	0.02	451	$0 \cdot 20$	550		
18	0.40	670	-0.65	185	-0.40	265	0.38	658	$0 \cdot 15$	520		
19.	$0 \cdot 40$	670	$-0 \cdot 65$	185	$-0 \cdot 20$	340	$0 \cdot 65$	832	$0 \cdot 10$	495		
20.	$0 \cdot 40$	670	-0.65	185	$-0 \cdot 10$	390	$0 \cdot 60$	800	$0 \cdot 10$	495		
21.	$0 \cdot 40$	670	-0.65	185	$0 \cdot 0$	440	$0 \cdot 50$	734	$0 \cdot 0$	440		
22	$0 \cdot 30$	610	-0.70	170	$0 \cdot 0$	446	$0 \cdot 40$	670	$0 \cdot 0$	440		
23.	$0 \cdot 30$	610	-0.70	170	-0.5	415	0.32	622	0.0	440		
24.	$0 \cdot 25$	580	-0.80	140	-0.15	365	$0 \cdot 27$	592	-0.05	415		
25.	$0 \cdot 20$	550	-0.80	140	-0.25	320	0.25	580	-0.05	415		
26.	$0 \cdot 15$	520	-0.80	140	-0.15	365	$0 \cdot 20$	550	$-0 \cdot 10$	390		
27.	$0 \cdot 05$	465	-0.80	140	-0.15	365	$0 \cdot 20$	550	$-0 \cdot 10$	390		
28	-0.10	390	-0.80	140	$0 \cdot 0$	440	0.17	533	-0.10	390		
39.	$-0 \cdot 20$ -0.30	340 300	-0.85	130	0.15 0.20	520	0.15 0.20	522	-0.10 -0.10	390		
30.	-0.30	300	-6.85	130	$0 \cdot 20$	550	$0 \cdot 20$	550	-0.10	390		
31.	-0.40	265	-0.85	130			$0 \cdot 27$	592				

Monthly Discharge of Kettle River at Nicholson's Bridge, Rock Creek, for 1914.
-(Drainage area, 2,180 square miles.)

Month.	Discharge in Second-Feet.				Rux-Off.	
	Maximum.	Minimum.	Mean.	Per square mile.	Depth in inehes on Drainage area.	Total in aere-feet.
Mareh.	735	200	430	$0 \cdot 2$	$0 \cdot 2$	26,476
April.	4,750	735	3,007	1.4	$1 \cdot 6$	178,930
May..	9,150	3,630	5,800	$2 \cdot 7$	$3 \cdot 1$	356,660
June.	8,655	2,092	4,142	1.9	$2 \cdot 1$	246,492
July ...	1,870	- 265	873	$0 \cdot 4$	$0 \cdot 5$	53,679
August....	265	130	193	$0 \cdot 1$	$0 \cdot 1$	11,876
Neptember.	550	120	259	$0 \cdot 1$	$0 \cdot 1$	15,412
Oetober...	832	320	502	$0 \cdot 2$	$0 \cdot 2$	30, 867
November....	910	390	587	$0 \cdot 3$	$0^{0.3}$	34,929
Deeember.....	390	332	(for the peri	od Dee. 1	to Dee. 11)	
The year...........	9,150	120	(estimated)	0.8	$\begin{gathered} 8 \cdot 7 \\ \text { (estimated) } \end{gathered}$	$\begin{array}{r} 1,008,000 \\ \text { (estimated) } \end{array}$

[^53]Kettle River at Carson (2049).
Location.-At Carson, Water District No. 5.
Records Available.-September 5 to December 31, 1913; January 1 to 22, February 25 to December 9, 1914.

Drainage Area.-Three thousand and ten square miles.
Gauge.-Gauge is a movable staff gauge situated on downstream side of highway bridge, 4 miles from Grand Forks.

Channel.-Straight at measuring section; bed of stream, gravel and sand; control good.

Discharge Measurements.-Measurements are made from highway bridge. Four meterings were obtained during 1914. Highest recorded discharge 7,840 second-feet.

Winter Flow.-Partial ice conditions prevail during December, January, and February.

Accuracy.-Accuracy is considered gocd, and results should fall within 10 per cent.

Kettle River.

The Kettle river has its source in the southern portion of the Gold range, and drains the district between the Okanagan and Arrow lakes. It discharges into the Columbia at Marcus, in the state of Washington. From its source it follows a southerly course to Westbridge, a distance of 75 miles, where it is joined by the West Fork entering from the northeast. From Midway to Rock creek the course is southerly. The river here takes a turn to the southeast and crosses into United States territory at Midway, 10 miles below. After a wide semi-circular loop it crosses the boundary into Canadian territory at Danville, below Grand Forks. At Grand Forks the North Fork joins it. From Grand Forks it flows due east in a line about a mile north of boundary to Cascade. It turns south here across the boundary towards its confluence with the Columbia.

The North Fork and the West Fork are the chief tributaries. Boundary creek and Rock creek are next in size. Boundary creek joins at Midway from the north, Rock creek comes in at the village of Rock Creek from the west. Christina creek discharges into the Kettle near Cascade, draining Christina lake.

The total drainage area in British Columbia is about 3,160 square miles. The drainage area of the North Fork is 640 square miles; of Boundary creek, 125 square miles; of the West Fork, 690 square miles; and of the main river above the West Fork, 1, 175 square miles.

The water is used for irrigation in the viemity of Grand Forks, Cascade, and Rock creek. These are the principal agricultural areas in the district, the most important being that around Grand Forks, where some 2,000 acres are planted in fruit trees. With exception of the localities mentioned there is little agricultural land in the district. The tributary valleys and the major portion of the main valley being narrow and the slopes steep. The plateaus are abowe the altitude limit for agriculture.

From Crand Forks to Caseade, a distance of 12 miles, the valley of the Léttle river is wide and flat and snitable for irrigation by pumping. Several pumping plants are in operation. The transmission lines from the caseade Power and Light Company's plant and from the Bomington Falls plant rums through the valley. Power may be hatd at 3 cents per killowatt hour.

There are three hydro-electric developments in the distriet. The cise:ade Power and Light Company's phant at Cascade developes 5, (OUO horm-power mader a head of 155 feet. This is auxiliary to the Bomington Finlls phant on the

Kootenay below Nelson. Power from these plants is used at Grand Forks, Phoenix, and Creenwood for town lighting and for use at the smelters and mines. The Granby Company develop about 700 horse-power under a 30 -foot head from the North Forks near Grand Forks for use in its smelter. The city of Greenwood is lighted from a plant of 250 horse-power capacity under 130 -foot head at Boundary falls.

Very little data as to climatic conditions are available, precipitation and temperatures vary greatly over the district owing to the irregular formation. The mean annual precipitation in the vicinity of Grand Forks is probably about 15 inches. In the higher altitudes it is greater.

The northern portion of the district is well timbered with cedar, hemlock, and pine. Considerable logging is carried on, the total drive of the Kettle river and its tributaries being over twenty million feet in 1913.

Regular gauging stations have been established at the following places:At Carson, above the North Fork, on the North Fork near its mouth; on Boundary creek at Greenwood; on the Kettle below Rock creek; and on the West Fork at Westbridge.

Discharge Measurements of Kettle River at Carson, for 1914.

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
May 19.	C. E. Richardson and C Varcoe.	1527	169	1,460	$5 \cdot 37$	$7 \cdot 15$	7,840
June 9.	K. G. Chisholm.	1913	158	1,161	$3 \cdot 62$	8.95	4,200
July 23.	"	1913	153	693	0.99	$12 \cdot 09$ 12.09	684
Aug. 24.	"	1913	120	560	$0 \cdot 39$	$12 \cdot 09$	221

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Kettle River at Carson, for 1913.

Monthly Discharge of Ket̂tle River, at Carson, for 1913.
' (Drainage area, 3,010 square miles.)

Month.		Discharge in Segond Feet.				ReN-Ofr.	
		Maximum.	Minimum.	Merar.	$\begin{aligned} & \text { Per } \\ & \text { squire } \\ & \text { mile. } \end{aligned}$	Deptis in inclues on Drainage ares.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { Here-fient } \end{gathered}$
September		1,070	+130	$5853-3$	0.2	(1)29	3. 319
Oetober		1.070	$4: 50$	$623 \cdot 13$	$0 \cdot 2$	(1.23	34, 53
November	\%	7601	430	6414.3	(1.2)	10.23	35,958
December	, ${ }^{\text {a }}$,						

[^54]6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Kettle River, at Carson, for 191.

DAx.	January.		February.		March.		April.		May.		June.	
	Gauge Height.	Dis charge.	Gauge Height	Discharge	Guage Height	Di-s charge.	Gauge Height	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft	Feet.	Sec.-ft.	Feet.	Sec.-ft.
,	$12 \cdot 4$	490			$12 \cdot 5$	430	12.0	760	8.90	4,275	8.30	5,380
2	12.5	430			$12 \cdot 5$	430	$12 \cdot 0$ $12 \cdot 05$	760	8.50 7.50	5,000	8.00	5,985
3	12.5	430			12.5 12.6	430 375	$12 \cdot 05$ 11.9	822	7.50	7,065 8,400	$7 \cdot 50$ $7 \cdot 70$	7,065 6,625
4	12.5 12.5	430 430			$12 \cdot 6$ $12 \cdot 6$	375 375	11.9 11.9	835 835	$6 \cdot 90$ $7 \cdot 65$	8.400 6,735	7.70 7.90	6,625 6,195
6	$12 \cdot 5$	430			$12 \cdot 6$	375	11.6	1,070	7.90	6, 195	8.20	5,575
7	$12 \cdot 4$	490			12.6	375	$11 \cdot 2$	1,435	8. 20	5,575	8.60	4,810
8	$12 \cdot 3$	555			12.7	320	$10 \cdot 7$	1,930	8. 50	5, 000	8.70	4,630
9	$12 \cdot 3$	555			12.7	320	10.4	2,235	8.20	5,575	8.90	4,275
10	$12 \cdot 4$	490			12.7	320	$10 \cdot 2$	2,450	$7 \cdot 90$	6,195	9.00	4,105
11	$12 \cdot 5$	430			12.7	320	9.9	2,800	7.65	6,735	9.00	4,105
12	$12 \cdot 55$	402			12.6 12.6	375 375	$9 \cdot 75$ $9 \cdot 35$	2,995 3,555	7.70 7.40	6,625	9.00 8.90	4.105 4.275
13.	12.6 12.4	375 490			$12 \cdot 6$ 12.6	375 375	$9 \cdot 35$ $9 \cdot 10$	3,555 3,945	7.40 7.20	7,285 7,730	8.90 8.50	4,275 5,000
14	$12 \cdot 4$ $12 \cdot 45$	490 460			12.6 12.5	375 430	$9 \cdot 10$ $9 \cdot 00$	3,945 4,105	7.20 6.25	7,730 $\mathbf{9 , 9 2 0}$	8.50 8.30	5,000 5,380
15	$12 \cdot 45$	460										
16	12.4	490			12.5	430	8.90	4,275	5. 20	13,470	$8+35$	5,285
17.	12.4	490			12.5	430	$8 \cdot 30$	5,380	$5 \cdot 90$	10,760	8.40	5,190
18.	$12 \cdot 4$	490			12.5	430	8.50 8.70	5,000	7.00	8.175	8.60	4,810
19.	$12 \cdot 5$	430			12.5	430	8.70 8.20	4,630	7.15 7.30	7,840	8.90	4,275
20.	12.5	430			12.4	490	$8 \cdot 20$	5,575	$7 \cdot 30$	7,510	$9 \cdot 11$	3,945
21	$12 \cdot 6$	375			12.4	490	$8 \cdot 20$	5,575	$7 \cdot 50$	7,065	$9 \cdot 30$	3,630
22.	$12 \cdot 6$	375			$12 \cdot 3$	555	8.50	5,000	7.40	7,285	$9 \cdot 50$	3,340
23.					$12 \cdot 25$	587	8.60	4,810	7.50	7,065	$9 \cdot 60$	3,200
24					$12 \cdot 0$	760	$8 \cdot 60$	4.810	$7 \cdot 40$	7,285	9.70	3,060
25.			$12 \cdot 5$	430	11.9	835	$8 \cdot 40$	5,190	$7 \cdot 30$	7,510	$9 \cdot 70$	3,060
			$12 \cdot 55$	402	11.9	835	8.70	4,630	7. 20	7,730	9.70	3,060
$\begin{aligned} & 26 \\ & 27 . \end{aligned}$			$12 \cdot 5$	430	12.0	760	8.60	4, 810	7.70 8.20	6,625	9.90	2,800
28.			$12 \cdot 5$	430	12.0	760 760	8.70	4,630	8.20	5,575	$10 \cdot 0$	2,680
29.					12.0	760 760	8.80 8.90	4,450 4,275	8.50	5,000	$10 \cdot 1$	2,560
30.					$12 \cdot 0$	760	8.90	4,275	8.70	4,630	$10 \cdot 1$	2,560
31					$12 \cdot 0$	760			8.40	5,190		

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Kettle River, at Carson, for 1914.

Monthly Discharge of Kettle River, at Carson, for 1914.
(Drainage area, 3,010 square miles.)

[^55]
Niskonlith Creek (2031).

Location.-Section 5, township 21, range 13, west 6 th meridian.
Records Available.-September 1 to December 31, 1911; April 1 to September, 13, 1912; May 1 to September 30, 1913; April 1 to December 11, 1914.

Drainage Area.-Fifty square miles.
Gauge.-Vertical staff gauge read semi-weekly by H. Hoffman.
Channel.-The stream bed is composed of large rocks and boulders. Velocities are high and the control is good.

Winter Flow.-Ice conditions prevail during last half of December, January, February, and March.

Accuracy.-The accuracy is only medium, more measurements being required.

Discharge Measurements of Niskonlith Creek at mouth, 1914:-
For Meter measurements and further hydrographic data see Water Resources Paper Nos. 1 and 8.

Daily Gauge Height and Discharge of Niskonlith Creek at mouth, for 1914.

SESSIONAL PAPER No. 25e

Daily Gauge Height and Discharge of Niskonlith Creek at mouth, for 1914.

Day.	July .		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge.	Gauge Height.	Discharge	Gauge Height.	Discharge.	Gauge Height.	Discharge	Gauge Height.	D1scharge.	Gauge Height.	Discharge
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.		Sec.-ft.	Feet.	Sec.-ft.		Sec.-ft.
1.	1.05	$17 \cdot 5$					0.42	$0 \cdot 6$			0.32	$0 \cdot 1$
3			0.57	$2 \cdot 6$	$0 \cdot 50$	1.4			0.40	0.4		
4							0.42	$0 \cdot 6$			$0 \cdot 40$	$0 \cdot 40$
6	1.0	15.0	0.57	$2 \cdot 6$					$0 \cdot 40$	$0 \cdot 4$		
8					0.47	1.0					0.60	$3 \cdot 0$
9.	0.45	$0 \cdot 9$					$0 \cdot 42$	$0 \cdot 6$	0.40	$0 \cdot 4$		
10.		0.85	$9 \cdot 8$								
11.					0.45	0.9					$0 \cdot 40$	0.4
13.	0.45	0.9	$0 \cdot 85$	$9 \cdot 8$			0.45	0.9	0.40	$0 \cdot 4$		
14.												
15.					0.42	$0 \cdot 6$						
16.							$0 \cdot 42$	$0 \cdot 6$			0.40	
17.	$0 \cdot 45$	$0 \cdot 9$	0.55	$2 \cdot 2$	0.40	0.4			$0 \cdot 37$	$0 \cdot 3$	0.40	
19.						$0 \cdot 4$	0.40	$0 \cdot 4$			$0 \cdot 40$	
20.....											\ldots	8
21.	0.45	$0 \cdot 9$	0.55	$2 \cdot 2$	$0 \cdot 37$	$0 \cdot 3$			$0 \cdot 30$	$0 \cdot 1$		-
22..												-
23.	0.40	$0 \cdot 4$	0.52	1.8			$0 \cdot 40$	$0 \cdot 4$			$0 \cdot 37$	
25.					$0 \cdot 32$	0.2			$0 \cdot 35$	$0 \cdot 2$		
26											$0 \cdot 35$	
27.							0.40	$0 \cdot 4$	0.35	0.2		
28.	$0 \cdot 40$	$0 \cdot 4$	$0 \cdot 52$	1.8	0.40	0.4		
31.	$0 \cdot 57$	$2 \cdot 6$	$0 \cdot 52$	1.8								

Monthly Discharge of Niskonlith Creek at mouth, for 1914.
(Drainage area, 50 square miles.)

Month.	Dlacharge in Second-Fret				Res Orr.	
	Naximuan	Minimum	Mexn	$\begin{aligned} & \text { P'er } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drannage area.	Total in nene-feet.
	26.5	$3 \cdot 0$	$9 \cdot 4$	0.10	0.21	539
	66.0.	$35 \cdot 6$ 17.5	51.4 38.5	1. 103	119	3, 1611
June . .	57.0	17.5	38.5	(1.77	0. e 06	2.291
July, ${ }_{\text {Aukust }}$	17.5 9.8	11.4 1.8	1.4 3.8	$0 \cdot 119$	0.10	270
Aukust Septomber may hay	9.8	1.8	3.8 11.85	0.118	0.19	234
	1.4 0.9	0.2 0.4	0.65 (1.54	10.01 0.61	0.01 0.01	30 38
November	0.4	0.1	(1). 30	(1). 11	0.01	Is
Irwomber						\pm
The period	$66 \cdot 11$	0.1	13-62	10.27	243	6,64

[^56]Okanagan River (2052).
Location.-Near Fairview, Water District No. 4.
Records Available.-April 8 to December 31, 1914.
Drainage Area.-Three thousand square miles.
Gauge.-Standard 6-foot vertical staff gauge, read four times a week by A. S. Hatfield.

Channel.-Average width of channel at measuring section is seventy-five feet. Channel above the station curves gently from the southwest. Below the station the channel is straight for 50 feet, then curves to the southeast.

Bed of stream is composed of gravel and sand, and constant shifting of channel at the station has resulted.

Discharge Measurements.-Meterings have been obtained at all stages of flow, and were well distributed throughout at the season, thus making it possible to make adjustments for the change in area due to scouring.

Winter Flow.-No winter records have been made on this stream, but partial ice conditions are believed to exist during January and February.

Accuracy.-In spite of the adverse conditions, results are thought to be fairly high. It will be necessary to establish a new station in 1915.

Okanagan River.

The Okanagan river rises in Okanagan lake, a large body of water, 65 miles long and from 2 to 4 miles wide and, flowing southerly for 100 miles, joins the Columbia in the state of Washington. From Penticton, where the river leaves Okanagan lake, to the international boundary is 35 miles. Through the greater part of this distance it is a sluggish stream, expanding into three lakes. Dog lake, Masseaux lake, and Osoyoos lake. The international boundary cuts across the lower part of the last. From the falls at the foot of Dog lake to Vaseaux lake, a distance of 5 miles, the stream is swift.

The drainage basin in Canada has an area of 3,000 square miles. It is a long narrow valley, lying north-and-south in the eastern portion of the dry belt, and includes one of the best fruit-growing districts in British Columbia. Irrigation is of course necessary, the precipitation varying from 15 inches in the northern parts to 8 inches in the south. The mountains on both sides of the valley are steep in most places, timbered on the upper slopes. The lower slopes are partly covered with light timber, but for the most part are open and covered with bunch grass. In places they give way to rolling hills and benches. The soil is fine and very fertile when it can be watered. On the whole the land is difficult of irrigation, chiefly because of its topography, and also because there are no large tributaries north of the border. The inflowing streams are small, flowing in deep gulleys from the mountains. In the spring they are rushing torrents. In the summer they become nearly dry, and in most cases there are no storage possibilities. From Penticton south to the boundary there are large tracts of land which only need a water supply to become exceedingly productive.

The one large tributary of the Okanagan is the Similkameen. It flows in from the west, and though it joins the Okanagan at Oroville, in Washington, by far the major part of its course is through Canadian territory. It is a larger stream than the Okanagan above the junction, but lacks the steadying influence of any lakes and is therefore subject to much greater fluctuations. In 1914 the minimum flow of the Okanagan was 485 second-feet, and of the Similkameen 160 second-feet. The maximum flow, however, was 1,500 second-feet for the Okanagan and 15,500 for the Similkameen.

SESSIONAL PAPER No. 25e
There is one good power site on the Okanagan. This is at Okanagan falls, at the foot of Dog lake. The river here is narrowly confined between two rock bluffs, and drops some 15 feet almost vertically. Dog lake and Okanagan lake act as natural reservoirs. A cheap development is possible at this point, and it is probable that here is a solution of the irrigation problem for large areas at present barren.

A gauge was installed on the Okanagan near Fairview by the Hydrographic Survey in April, 1914. Daily flow records are available from that date.

Discharge Measurements of Okanagan River near Fairview, for 1914.

Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width	Area of Section.	$\begin{gathered} \text { Mean } \\ \text { Velocity. } \end{gathered}$	Gauge Height	Discharge.
			Feet.	Sq. It.	Ft. per sec.	Feet.	Sec.-ft.
April 7.	E. M. Dann.	1505	75	276	1.90	0.71	524
May 11.	K. Chisholm.	1505	75	456	${ }^{2 \cdot 63}$	2.43	1.199
June 5	"	1913	76	520	2.76 2.51	3.28	1,436
Aug. 14.	E. M. Dann	1913	75	354	${ }_{2 \cdot 20}$	1.31	${ }^{1} .796$
" 28.	K. G. Chisholm	1913	76	320	$2 \cdot 20$	1.08	704
Nov 21.		1673	74	309	1.85	0.84	575

Shifting condition of channel existed during freshet season.
Daily Gauge Height and Discharge of Okanagan River near Fairview, for 1914.

	Day.	April.		May:		June.	
		Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge } \end{aligned}$
		Feet	Sec.-ft.	Feet.1.80	$\begin{array}{r} \text { Sec. } \mathrm{ft} \\ 945 \end{array}$	Feet.	See -ft.
1 2 3						3. 10	1,3*3
3 4 4						3.20 3.25	1,415 $1,+25$
5.				$2 \cdot 10$	1,065	${ }_{3} \cdot 30$	1, 1.40
6.				$2 \cdot 10$	1.065	3.30	1,4+1)
7.				$2 \cdot 05$	1,045		
8.		0. 80	560575595	$2 \cdot 10$	1,065	$3 \cdot 30$	1.441
${ }_{10}^{9}$		0.850.90					
10.					\%	$3 \cdot 20$	1.415
11						$3 \cdot 20$	1.415
12.				2.50	1.210	3.20	1. +15
13.				2.60)	1.240		
14 15.		1.20	710	2.96	1.325		
15.		1.30	750	3.30)	1.440		
16		1.351.35	705705	\%	18.60	3-50	1.3400
17.					(1-4)	3. 50	
18					1.415	$3 \cdot 411$$3 \cdot 310$	1.4:411
19				$3 \cdot 20$			
20.	(1)	4	4	3.11	1,355		
21		1.45	vi05 8015 0.5	3.20 3.210	$\begin{aligned} & 1.415 \\ & 1.145 \end{aligned}$		
22		1.45					
23		1.5(4)	-			3.40	1.415$1+15$1.5
24						3. ${ }^{2} 10$	
25.						3.10	13 sis
26			$\begin{aligned} & \text { sNs } \\ & \text { sis } \\ & \text { k×.5 } \end{aligned}$	$\begin{aligned} & 3 \cdot(160 \\ & 3 \cdot 01 \\ & 2 \cdot 101 \\ & 2 \cdot(100 \\ & 2 \cdot(6) \end{aligned}$	$\begin{aligned} & 1.335 \\ & 1.353 \\ & 1.325 \\ & 1.325 \end{aligned}$	3.101	1,355
27		$\begin{aligned} & 1.06 \\ & 1.101 \\ & 1.105 \end{aligned}$					
28							\%
29.							
30	II					2,*3	1.311

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Okanagan River near Fairview, for 1914.

DAY.	July.		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge.	Gauge Height	Discharge	Gauge Height	Discharge.	Gauge Height.	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec. -ft .								
1.	$2 \cdot 80$	1,295			1.07	685	0.90	610			0.82	575
2.	${ }_{2} \cdot 7.75$	1,280			1.05	675			0.90	610	0.85	585
3..	$2 \cdot 70$	1,270	1.62	900	$1 \cdot 02$	665			0.90	610	0.87	595
4			1.60	890					0.90	610		
5.			1.57	890			0.85	585	$0 \cdot 90$	610		
6	$2 \cdot 50$	1,210	$1 \cdot 55$	880			0.84	585				
7	2.45	1,195			0.92	620	$0 \cdot 82$	575			0.85	58.5
8.	$2 \cdot 40$	1,180			0.90	610	0.82	575			0.85	585
9.	$2 \cdot 35$	1,165			0.87	595			0.90	610	0.82	575
10.			1.45	840	0.85	585			0.90	610	0.82	575
11.			1.42	830					0.90	610		
12.			1.40	820	0.79	565	0.85	585	0.90	610		
13.	$2 \cdot 30$	1,155	$1 \cdot 37$	810	0.80	565	$0 \cdot 85$	585				
14	$2 \cdot 30$	1,155			0.82	575	0.85	585			$0 \cdot 80$	565
15.	$2+27$	1,145			$0 \cdot 82$	575	0.85	585			0.80	565
16.	$2 \cdot 25$	1,140							0.90	610	$0 \cdot 77$	550
17.			1.30	785					0.87	595	0.77	550
18.			$1 \cdot 27$	775					$0 \cdot 87$	595
19.			1.25	765			0.95	630	$0 \cdot 87$	595		
20.	$2 \cdot 12$	1,085	1.22	755			0.94	630				
21.	$2 \cdot 10$	1,075			0.80	565	0.92	620			0.72	530
22.	2.07	1,065			$0 \cdot 80$	565	0.92	620			$0 \cdot 67$	505
23.	$2 \cdot 05$	1,055			0.80	565			0.85	583	$0 \cdot 65$	495
24.	$2 \cdot 00$	1,040	1.12	720	0.80	565			0.82	575	$0 \cdot 65$	493
25.			$1 \cdot 10$	715					$0 \cdot 80$	565		
26.			1.07	705			0.88	600	0.80	565		
27.	1.90	1,000	$1 \cdot 65$	695			0.88	600				
28.	1.85	1,980			0.92	620	0.88	600				485
29.	1.80	96.5			0.92	620	0.88	600			$0 \cdot 62$	485
30.	1.77	955			0.90	610			0.82	575	0.62	485
31.			$1 \cdot 10$	700							0.62	485

Monthly Discharge of Okanagan River near Fairview, for 1914.
(Drainage area, 3,000 square miles.)

Month.	Discharge in Second-Feet.				Rux-Off.	
	Maximum.	Minimum.	Mean.	$\begin{gathered} \text { Per } \\ \text { square } \\ \text { mile. } \end{gathered}$	Depth. in inches on Drainage area.	Total in acre-feet.
April.	885	569	761	$0 \cdot 25$	0.28	45,282
May.... .-.	1,440	945	1,258	$0 \cdot 42$	0.48	77,350
June...	1,500	1,310	1,421	$0 \cdot 47$	0.52	84,559
July	1,295	955	1,120	$0 \cdot 37$	$0 \cdot 43$	68,870
August.......	900	695	792	C. 26	$0 \cdot 30$	+8,698
September..	685	565	601	0.20	0.22	35, 762
October.... . .	630	575	598.2	0.20	$0 \cdot 23$	36,782
November... .n . Wrur .	610	565	596-5	$0 \cdot 20$	$0 \cdot 22$	$35,494$
Dccember.	595	485	540-5			33,234
	1,500	485	$854 \cdot 2$	$0 \cdot 28$	$2 \cdot 85$	466.031

[^57]Similkameen River (2054).
Location.-Near Ashnola, Water District No. 4.
Records Available.-April 8 to December 31, 1914.
Drainage Area.-Two thousand three hundred and twenty square miles.
Gauge.-Standard vertical staff gauge, read by Harry Atherton of Keremeos.
Channel.-Average width of channel at measuring section is about 210 feet. Channel is straight at the station. Bed of stream is very rocky and water turbulent even at low stages.

Discharge Measurements.-The gauge-height discharge curve is very well rated by well-distributed meterings.

Winter Flow.-No winter records have been made on this stream. Partial ice conditions are believed to exist during January and February.

Accuracy.-Very high. Results compiled from a well-rated curve.

Similkameen River.

Two main streams unite at Princeton to form the Similkameen, the South Similkameen and the Tulameen rivers. The South Similkameen has its source in the Hogameen mountains of the Cascade range, some 15 miles south of the International boundary, and flows north for a distance of 50 miles to its confluence. The Tulameen heads in the Hope mountains of the Cascade range, and starting in a northerly direction, follows a curved line, finally joining in a southeast direction. Very few elevations are established in this district. The peaks of the Cascades at the international boundary obtain an altitude of 8,000 feet above sea-level. The highest points in the Hope range are not over 7,600 feet. At the confluence of the two main tributaries at Princeton the elevation of the river is about 2,100 feet. From this point the similkameen flows in a southeasterly direction for 75 miles, joining the Okanagan at Oroville. The last 20 miles are in the state of Washington.

From the right going upstream, the main tributaries are: Keremeos creek at Keremeos, Twenty-mile creek at Hedley, and Five-mile and One-mile creeks at 5 and 1 miles, respectively, downstream from Princeton. From the left, Ashnola river at Ashnola, half-way between Keremeos and Hedley; is the chief tributary.

The similkaneen river is fairly swift. In the 25 miles between Princeton and Hedley the drop is 440 feet, giving an average grade of 19 feet to the mile. Approximately the same grade obtains for the 20 miles from Hedley to Keremeos. Below this point to the boundary the current is sluggish.

At Hedley the Daly Reduction Company, owners of the Niekle Plate mine, have taken advantage of the steep grade of the river for power purposes. By means of a dam and 3 miles of flume, a maximum head of 67 feet is obtained and a plant installed with a eaparity of 1,800 horse-power. This new plant takes the place of a combination plant using water from twenty-mile creek and auxiliary steam engine. The plant was eompleted in 1914, and man deliver 2,000 horse-power. The drainage hasin above the international boundary has an area of abont 2,500 square miles. The river euts right across the southern part of the Okanagan range in a V-shaped glacial valley, the mountains on eath side rising steeply to an altitute of 5,000 or 6,000 feet. The southern slopes of the hills are open and grassy in many places, and afford exeellent pasturage and, where timbered, the trees do not grow close together. The nerthern slopes are more thickly wooded. Precipitation varies with the altitudes. The average of four years at Hedley gives 10 . 8 inches for the annual precipitation. At the Nickel Plate mine, 3 miles away and 4 ,000) feet higher up, figures for the same four years show 21.8 inches.

The only agricultural land in the district is the bottom of the valley. Above Keremeos this is very narrow, but below that point it widens out and there are a number of fine fruit ranches.

A regular gauging station was established at Ashnola, below Ashnola creek, on April 8, 1914.

Discharge Measurements of Similkameen River at Ashnola, 1914.

Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
			Feet.	Sq. ft .	Feet.	Ft. per sec.	Sec.-ft.
April 8	E. M. Dann.	1505	${ }_{202}^{162}$	552	3.41 6.69	1.35 3.92	1,881
May 10.	K. G. Chisholm	1505	202	1,097	6.69	3.92	7,326
June 10.		1913	195	913	$5 \cdot 14$	3. 10	4.697
" 24	"	1913	194	856	$4 \cdot 51$	2.75	3,870
July 29	"	1913	171	${ }_{2615}^{382}$	2.24	$0 \cdot 30$	858
Aug. 30.	"	${ }_{1673}$	125	${ }_{375}^{261}$	$\xrightarrow{1.38} 2$	-0.47 -0.20	360
Nov. 23.	"	1673	152	375	$2 \cdot 04$	0.20	764

Daily Gauge Height and Discharge of Similkameen River at Ashnola, for 1914.

Dar.		April.		May.		June.	
		Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge } \end{aligned}$	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge. } \end{aligned}$
		Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1.				2.75 3.50	3,870	4.50 5.20	9,450
3.				$3 \cdot 55$ 4	5,880 8,895	5-45	${ }_{12,945}^{12,020}$
4.				3.95	7,440	$4 \cdot 60$	9,815
5				3.55	6,045	4.00	7,620
6.				3.30	5,270	$3 \cdot 65$	6.380
7.				$3 \cdot 25$	5,125	$3 \cdot 45$	5,725
8.		1.35	1,880	$3 \cdot 15$	4.840	$3 \cdot 25$	5,125
9.		$1 \cdot 65$	2,240	$3 \cdot 35$	5,420	$3 \cdot 20$	4,980
10.		1.85	2,480	$3 \cdot 80$	6,900	$3 \cdot 15$	4.840
11.		$2 \cdot 15$	2,870	4.05	7,800	$3 \cdot 30$	5,270
12.		$2 \cdot 15$	2,870	$4 \cdot 30$	8,710	3.60	6,210
13.		$2 \cdot 35$	3,165	$4 \cdot 60$	9,815	$4 \cdot 15$	8.160
14.		$2 \cdot 65$	3,675	5. 50	13,130	4-40	9,080
15.		2.90	4,185	$6 \cdot 15$	15,525	$4 \cdot 60$	9,815
16.		2.85	4,075	$5 \cdot 90$	14,600	$4 \cdot 80$	10,550
17.		$2 \cdot 65$	3,675	$5 \cdot 35$	12,575	$4 \cdot 80$	10,550
18.		$2 \cdot 40$	3,240	$5 \cdot 25$	12, 205	4.50	9,450
19.		${ }^{2} \cdot 40$	3,240	4.85	10,735	4.60	7,620
20.		$2 \cdot 95$	4,305	4.75	10,365	3.70	6,550
21.		2.55	3,490	4.90	10,920	$3 \cdot 40$	5,570
22.		$2 \cdot 35$	3,165	4.90	10,920	$3 \cdot 10$	4,700
23		$2 \cdot 35$	3,165	$5 \cdot 25$	12,205	$3 \cdot 10$	4,700
24.		$2 \cdot 20$	2,940	$5 \cdot 35$	12,575	3.00	4,420
25.		$2 \cdot 10$	2,800	5. 10	11,655	$2 \cdot 80$	3,970
26.		$2 \cdot 10$	2,800	4.50	9,450	2.75	3,870
		$2 \cdot 15$	2,870	$4 \cdot 05$	7,800	$2 \cdot 85$	4,080
28.		$2 \cdot 10$	2,800	3.80	6.990	2.75	3,870
29.		1.95	${ }^{2} .605$	$3 \cdot 60$	6.210	2.70	3,770
30.		$2 \cdot 10$	2,800	3.65	6,380	$2 \cdot 85$	4,080
31.				$4 \cdot 00$	7,620		

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Similkameen River at Ashnola, for 1914.

Day.	Juty.		August.		September		Oe:ober.		November.		December.	
	Gauge Height-	Discharge	Gauge Height.	Di=charge.								
	Feet.	Sec.-ft.	Feet.	See. -ft .	Feet.	Sec.-ft.	Feet.	Sec. -ft .	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1	$2 \cdot 90$	4,185	0.20	795	-0.53	338	-0.15	543	$0 \cdot 1$	720	$0 \cdot 00$	645
2	$2 \cdot 80$	3,970	$0 \cdot 15$	755	-0.58	318	-0.18	523	$0 \cdot 12$	735	0-05	680
3	2-65	3,675	$0 \cdot 15$	755	-0. 55	330	-0.20	510	$0 \cdot 0$	645	$0 \cdot 17$	755
4	$2 \cdot 70$	3,770	$0 \cdot 10$	710	-0.55	330	-0.18	523	$0 \cdot 02$	660	$0 \cdot 02$	645
5.	$2 \cdot 45$	3,320	$0 \cdot 05$	680	-0.55	330	-0.19	516	$0 \cdot 1$	720	-0.07	610
6.	$2 \cdot 15$	2,870	$0 \cdot 05$	680	-0.55	330	-0.22	498	$0 \cdot 15$	757	$0 \cdot 00$	645
7	$2 \cdot 00$	2,670	$0 \cdot 05$	680	-0.50	350	-0.20	516	$0 \cdot 12$	735	-0.05	610
8	1.90	2,545	$0 \cdot 00$	645	-0.45	375	-0.24	486	$0 \cdot 20$	795	0.15	547
9	$2 \cdot 00$	2,670	$0 \cdot 00$	645	-6.40	400	-0.28	462	$0 \cdot 25$	832	-0.37	425
10.	1.75	2,360	0.00	645	$0 \cdot 30$	450	-0.22	498	$0 \cdot 27$	847	-0.55	330
11.	1.60	2,180	0.00	645	-0.30	450	-0.12	562	0.27	847	-0.77	250
12.	1.40	1,940	-0.10	575	-0.30	450	-0.04	617	0.47	1,009	-0.90	190
13	$1 \cdot 50$	2, 260	-0.10	575	-0.30	450	-0.04	617	$0 \cdot 37$	926	-0.95	175
14	1.70	2,300	-C. 10	575	-0.30	450	-0.06	603	$0 \cdot 17$	772	-1.00	160
15.	1-50	2,060	-0.20	510	-C.33	435	-0.12	562	$0 \cdot 15$	757	-0.85	210
16.	$1 \cdot 30$	1,820	-0.20	510	-0.33	435	-0. 20	510	0.02	660	-0.67	290
17.	1.15	1,655	-0.20	510	-0.28	462	-0.19	516	-0.03	624	-0.60	310
18.	1.10	1,605	-0.15	545	-0.28	462	-C.07	596	-0.00	645	-0.52	350
19.	1.00	1,500	-0.15	545	-0.13	556	-0.04	617	-0.00	645	-0.40	400
20.	0.90	1,400	-0.20	510	C. 05	680	-0.00	645	0.01	652	-0.32	450
21.	0.85	1,350	-C. 20	510	-0.03	624	-0.00	645	$0 \cdot 25$	832	-0.32	450
22.	0.75	1,255	-0.20	510	-0.13	556	-0.03	624	0.27	847	-0.32	450
23.	$0 \cdot 60$	1,120	-0.30	450	-0.19	516	-0.10	575	$0 \cdot 20$	795	-0.30	450
24.	$0 \cdot 55$	1,075	-0.40	400	-0.20	510	-0.08	589	0.15	757	-0.30	450
25.	$0 \cdot 50$	1,035	-0.45	375	-0.28	462	-0.00	645	$0 \cdot 15$	757	-0.27	450
26.	$0 \cdot 50$	1,035	-0.50	350	-0.23	492	-0.00	645	0.37	926	-0.25	480
27	0.40	1,950	-0.50	350	-0.04	617	-0.08	589	0.47	1,009	- 0.27	480
28	$0 \cdot 35$	910	-0.55	330	C. 10	720	-0.00	645	$0 \cdot 42$	967	-0.27	4×0
29	$0 \cdot 30$	870	-0.55	330	-0.03	624	-0.03	624	$0 \cdot 37$	926	-0.27	4×0
30.	$0 \cdot 25$	830	-0.45	375	-0.13	556	0.01	720	$0 \cdot 20$	795	-0.25	480
31.	$0 \cdot 20$	795	-0.53	338			0.01	720			-0.22	510

Monthly Discharge of Similkameen River at Ashrola, for 1914.
(Drainage area, 2.320 square miles.)

Month.	Dischirge in Second-Feet.				Res-Orf.	
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { s!uare } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet } \end{gathered}$
	4,305	1,540	3. 1111.5	1.33	1-5	184, 350
May wion +	15,525	3, 570	8,960-6	3.86	+15	3.51, 906\%
June	12, 14.45	3.770	6,539-5	2.95	3.29	(1186, 4×1
July \quad O \quad O	+.185	795	1, 99\%-0	0.86	(1.99	122.543
August ${ }^{\text {d }}$	795	3311	542.5	(1.23	(1.26	33, 358
Keptember mathather	720	315	4158	(1.1)2	(1-2)	27, 521
October ${ }^{\text {Nover }}$	- 720	462	575.5	0.95 0.35	0.29	33,5711 $46, ~ 51111$
November Derember	1. $\begin{array}{r}\text { th64 } \\ 75.5\end{array}$	624 1 kik	$7813-5$ 477		$\begin{aligned} & 0.37 \\ & 0.22 \end{aligned}$	$\begin{aligned} & 46,5011 \\ & 27,5013 \end{aligned}$
The period	13,525	16)	2,633-3	113	11.37	1. 436,153

[^58]Shuswap River at Enderby (2034).
Location.-Section 26, township 18, range 9, west of the 6 th meridian.
Records Available.-August 25 to November 10, 1911; March 1 to December 31, 1912; April 1 to December 31, 1913; January 1 to December 31, 1914.

Drainage Area.-One thousand six hundred and fifty square miles.
Gauge.-A standard vertical staff gauge situated on highway bridge, and read daily by D. Mowat.

Channel.-The channel is straight for 100 yards at section. The rise and fall of the river each year is about 10 feet. Control is good.

Winter Conditions.-Ice conditions prevail some years during January and February. During 1914 river remained open throughout.

Discharge Measurements.-Eleven well-distributed measurements have been obtained during 1911, 1912, and 1913. Measurements were made from boat except during high water, when they were made from bridge.

Accuracy.-The returns are considered to be accurate, and are within 10 per cent.

Daily Gauge Height and Discharge of Shuswap River near Enderby, for 1914.

Day.	January.		February.		March.		April.		May.		June.	
	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge	Gauge Height	Discharge	Gauge Height.	Discharge	Gauge Height	Discharge.
	Fest.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	See.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1	$2 \cdot 60$	965	$2 \cdot 60$	965	$2 \cdot 25$	775	$2 \cdot 70$	1,020		4,540	$9 \cdot 05$	8,695
2	$2 \cdot 60$	965	$2 \cdot 55$	937	$2 \cdot 25$	775	$2 \cdot 70$	1.020		4.820	$9 \cdot 10$	8,770
3.	$2 \cdot 60$	965	$2 \cdot 60$	965	$2 \cdot 25$	775	$2 \cdot 75$	1,050	$6 \cdot 60$	5.100	$9 \cdot 70$	9,720
4	$2 \cdot 60$	965	3.05	1,242	$2 \cdot 25$	775	$2 \cdot 85$	1,110	$6 \cdot 80$	5,383	$1 \mathrm{C} \cdot 0$	10,200
5.	$2 \cdot 63$	965	$3 \cdot 2 \mathrm{C}$	1,340	$2 \cdot 25$	775	$3 \cdot 60$	1,210	6.85	5,450	$10 \cdot 2$	10,500
6.	2.70	1,020	$3+30$	1,410	$2 \cdot 20$	749	3.30	1,410	6.97	5,520	$10 \cdot 35$	10,800
7.	$2 \cdot 55$	1,110	$3 \cdot 30$	1,410	$2 \cdot 20$	749	$3 \cdot 55$	1,690	7.00	5,660	$10 \cdot 35$	10,800
8	$2 \cdot 85$	1.11 C	$3 \cdot 35$	1,445	$2 \cdot 20$	749	$3 \cdot 70$	1,790	$7 \cdot 10$	5,803	$10 \cdot 2$	10,500
9.	2,85	1,110	$3 \cdot 35$	1,445	$2 \cdot 20$	749	3.85	1,845	$7 \cdot 30$	6,080	16.0	10,200
10.	$2 \cdot 85$	1,110	$3 \cdot 35$	1,44 ${ }^{\circ}$	$2 \cdot 20$	749	3.90	1,890	$7 \cdot 60$	6,520	$9 \cdot 9$	10,000
11.	$2 \cdot 80$	1,080	$3 \cdot 35$	1,445	$2 \cdot 20$	749	3.95	1,935	$7 \cdot 70$	6,660	$9 \cdot 8$	9,880
12.	$2 \cdot 80$	1,080	$3 \cdot 35$	1,445	$2 \cdot 20$	749	$4 \cdot 10$	2,080	7.80	6,860	$9 \cdot 8$	9,880
13.	2.80	1,080	$3 \cdot 35$	1,445	$2 \cdot 15$	724	$4 \cdot 25$	2,230	$8 \cdot 00$	7,100	9.8	9.880
14.	$2 \cdot 80$	1,080	$3 \cdot 35$	1,445	$2 \cdot 15$	724	$4 \cdot 50$	2,489	8.30	7,540	$9 \cdot 9$	10,000
15.	$2 \cdot 80$	1,080	3.00	1,210	$2 \cdot 25$	775	$4 \cdot 60$	2,590	$8 \cdot 70$	8,140	$10 \cdot 1$	10,300
16.	$2 \cdot 75$	1.050	$3 \cdot 00$	1,210	$2 \cdot 30$	801	$5 \cdot 05$	3,100	$9 \cdot 10$	8.770	$10 \cdot 3$	10,700
17.	$2 \cdot 75$	1,050	$2 \cdot 90$	1,140	$2 \cdot 30$	801	$5 \cdot 10$	3,163	$9 \cdot 40$	9,240	$10 \cdot 6$	11,300
18.	2.70	1,020	2.75	1,059	$2 \cdot 35$	828	$5 \cdot 20$	3, 280	$9 \cdot 6 \mathrm{C}$	9,560	16. 75	11,500
19.	$2 \cdot 70$	1,020	2.75	1.050	$2 \cdot 45$	882	$5 \cdot 4.5$	3,580	$9 \cdot 70$	9,720	10.9	11,700
20.	- 2.70	1,020	$2 \cdot 70$	1,020	$2 \cdot 45$	882	$5 \cdot 65$	3,825	$9 \cdot 80$	9,880	$11 \cdot 1$	12,000
21	$2 \cdot 70$	1,029	$2 \cdot 50$	910	$2 \cdot 50$	910	$5 \cdot 80$	4,020	9.80	9,830	11.0	11,900
22	$2 \cdot 70$	1,020	$2 \cdot 25$	775	$2 \cdot 50$	910	$5 \cdot 80$	4.020	$9 \cdot 75$	9, 830	10.9	11,700
23.	$2 \cdot 70$	1,020	$2 \cdot 25$	775	$2 \cdot 55$	937	$5 \cdot 90$	4,150	$9 \cdot 83$	9,880	$10 \cdot 7$	11,400
24.	$2 \cdot 65$	-992	$2 \cdot 30$	801	$2 \cdot 65$	992	$6 \cdot 00$	4,280	$9 \cdot 80$	9,880	$10 \cdot 5$	11,110
25.	$2 \cdot 65$	992	$2 \cdot 30$	801	$2 \cdot 7 \mathrm{~J}$	1,020	$6 \cdot 05$	4,345	$9 \cdot 90$	10,000	$10 \cdot 3$	10,700
26.	$2 \cdot 65$	992	$2 \cdot 25$	775	$2 \cdot 65$	992	6.05	4,345	9.90	10,000	$10 \cdot 2$	10,500
27.	$2 \cdot 60$	965	$2 \cdot 25$	775	2.63	963	$6 \cdot 05$	4,345	$9 \cdot 80$	9,880	$10 \cdot 0$	10,200
28	$2 \cdot 55$	937	$2 \cdot 25$	775	$2 \cdot 6!$	965	6.05	4,345	9.70	$9.7 \geq 0$	$9 \cdot 9$	10,000
29	$3 \cdot 10$	1,270			$2 \cdot 60$	965	6.05	4,345	$9 \cdot 50$	9,400	$9 \cdot 8$	9,880
30.	$3 \cdot 25$	1,375			2.6)	965	$6 \cdot 05$	4,345	$9 \cdot 30$	9,080	$9+8$	9,880
31..	$3 \cdot 16$	1,270			$2 \cdot 65$	992			$9 \cdot 05$	8,695		

SESSIONAL PAPER No. 25e

Daily Gauge Height and Discharge of Shuswap River near Enderby, for 1914-(Concluded).

Day.	July .		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge	Gauge Height.	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet	Sec. -ft	Feet.	See.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1.	9.80	9.880	$5 \cdot 20$	3,280	$3 \cdot 30$	1.410	$3 \cdot 45$	1,520	$4 \cdot 65$	2.030	3.80	1, 800
2.	$9 \cdot 80$	9.880	$5 \cdot 10$	3,160	$3 \cdot 20$	1.340	3. 50	1.560	$4 \cdot 30$	2,280	$3 \cdot 75$	1,760
3.	$9 \cdot 80$	9,580	5.00	3,040	$3 \cdot 20$	1,340	$3 \cdot 55$	1.600	$4 \cdot 30$	2,280	$3 \cdot 75$	1,760
4	$9 \cdot 80$	9.680	$4 \cdot 90$	2,920	$3 \cdot 15$	1,303	$3 \cdot 55$	1.600	$4 \cdot 30$	2,280	3.70	1,720
5.	9.70	9,720	$4 \cdot 80$	2,810	$3 \cdot 10$	1,270	$3 \cdot 55$	1,600	4-30	2.250	$3 \cdot 65$	1,680
6	9.70	9,720	4.70	2.700	$3 \cdot 05$	1,242	$3 \cdot 55$	1.606	4-40	2,380	$3 \cdot 60$	1,640
7	$9 \cdot 65$	9.640	$4 \cdot 70$	2.700	3.05	1,242	$3 \cdot 55$	1.6)0	$4 \cdot 40$	2.350	3:60	1. 640
8	$9 \cdot 50$	9. 400	4.60	2,590	3 -C5	1,242	$3 \cdot 55$	1,500	$4 \cdot 40$	2.350	3. 55	1,600
9.	$9 \cdot 30$	9.080	4.50	2,450	$3 \cdot 05$	1,242	$3 \cdot 55$	1,600	$4 \cdot 45$	2.430	$3 \cdot 50$	1,560
16.	$9 \cdot 05$	8,695	$4 \cdot 40$	2,380	3.05	1,242	$3 \cdot 55$	1.600	$4 \cdot 45$	2,430	3-40	1.450
11.	8.90	8,460	4.40	2,380	3.05	1,24?	$3 \cdot 69$	1,640	4.50	2.450	$3 \cdot 35$	1,445
12	8.70	8.140	$4 \cdot 25$	2,230	3.05	1,242	$3 \cdot 65$	1,68 6	$4 \cdot 50$	$2.4>0$	$3 \cdot 30$	1,410
13.	$8 \cdot 45$	7.765	$4 \cdot 20$	2,18)	3.05	1.242	3.76	1,720	$4 \cdot 45$	2.430	$3 \cdot 30$	1,410
14	$8 \cdot 30$	7,540	$4 \cdot 15$	2.130	3.05	1.242	3. 70	1,720	$4 \cdot 49$	2.350	$3 \cdot 20$	1.340
15.	$8 \cdot 30$	7,540	$4 \cdot 05$	2,030	3.00	1,210	3.70	1,720	4.40	2,380	$3 \cdot 10$	1,270
16.	$8 \cdot 39$	7,540	4.00	1.980	3.00	1,210	$3 \cdot 70$	1,720	$4 \cdot 30$	2,287	$3 \cdot 05$	1.242
17	$8 \cdot 10$	7,250	4.00	1.989	3.00	1,210	$4 \cdot 15$	2,130	$4 \cdot 30$	2.293	3.06	1,210
18	7.95	7,025	3.95	1,935	3.00.	1,210	$4 \cdot 10$	2,08)	$4 \cdot 20$	2.150	2.90	1,140
19.	7.75	6. 730	$3 \cdot 90$	1,890	$3 \cdot 10$	1.27	4-10	2.081	$4 \cdot 20$	2.150	2.90	1,140
20.	7.70	6,660	$3 \cdot 89$	1,800	$3 \cdot 10$	1,270	$4 \cdot 10$	2.080	$4 \cdot 20$	2,150	2.96	1,140
21.	$7 \cdot 30$	6,080	3.80	1.80	$3 \cdot 10$	1.270	$4 \cdot 10$	2.08)	4-10	2,080	2.90	1,140
22.	$7 \cdot 20$	5,940	3.7.)	1,720	3.05	1.242	$4 \cdot 10$	2.089	$4 \cdot 00$	1.980	2-80	1.0 so
23.	7.00	5,669	$3 \cdot 65$	1,680	3.05	1,24?	$4 \cdot 10$	2,080	$4 \cdot 00$	1.954	2.80	1,6,80
24.	6.80	5.380	$3 \cdot 60$	1.640	3.05	1,242	$4 \cdot 10$	2,080	3.95	1.935	2.75	1,050
25.	$6 \cdot 60$	5,100	$3 \cdot 60$	1,640	3.05	1.242	$4 \cdot 10$	2.080	3.95	1,935	$2 \cdot 75$	1,050
26.	$6 \cdot 30$	4,680	3-60	1,640	$3 \cdot 05$	1,242	$4 \cdot 10$	2.080	3.90	1.890	$2 \cdot 75$	1,050
27.	$6 \cdot 10$	4.410	$3 \cdot 50$	1. 560	$3 \cdot 20$	1,340	$4 \cdot 05$	2.030	3.9.)	1,890	$2 \cdot 01$	1,050
28.	5.90	4,150	$3 \cdot 40$	1,430	$3 \cdot 50$	1.560	4.05	2,030	3.85	1,845	2. 75	1.050
29	5.70	3,890	$3 \cdot 40$	1,480	$3 \cdot 40$	1.489	$4 \cdot 00$	1,980	3.85	1,845	2.75	1.050
30.	$5 \cdot 50$	3,640	$3 \cdot 40$	1,450	$3 \cdot 40$	1,483	$4 \cdot 60$	1,980	3.85	1.845	2-76	1,020
31.	$5 \cdot 40$	3,520	$3 \cdot 30$	1. 410			$4 \cdot 05$	2.030			2.70	1.020

For meterings and further hydrographic data see Water Resources Papers Nos. 1 and 8.

Monthly Discharge of Shuswap River at Enderby, for 1914.
(Drainage area, 1,650 square miles)

Month.	Discharge in Second-Feet.				RUN-OFF.		Rainfala.
	Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on Drainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$	Inches.
January	1,375	937	1,055	$0 \cdot 6$	$0 \cdot 7$	64,870	$2 \cdot 52$
February	1,445	775	1,123	$0 \cdot 7$	$0 \cdot 7$	62,368	1.60
March...	1,020	724	843	$0 \cdot 5$	$0 \cdot 6$	51, 834	0.82
April..	4,345	1,020	2,822	$1 \cdot 7$	1.9	167,920	1+02
May.	10,0C0	4.540	7,887	$4 \cdot 8$	$5 \cdot 5$	484,954	1.12
June.	12,000	8,695	10,486	$6 \cdot 3$	$7 \cdot 0$	623,960	1-68
July..	9,880	3,520	7,189	$4 \cdot 3$	$5 \cdot 0$	442,038	$0 \cdot 88$
August \quad.	3,280	1,410	2,133	1.3	$1 \cdot 5$	131,153	$0 \cdot 27$
September.	1,560	1,210	1,285	0.8	$0 \cdot 9$	76,365	$2+49$
October....	2,130	1,520	1,838	1.1	$1 \cdot 3$	113,016	1.23
Vovember.	2,480	1,845	2,187	$1 \cdot 3$	$1 \cdot 4$	130,133	1.89
December...	1,800	1,020	1,324	0.8	$0 \cdot 9$	81,408
The year	12,000	724	3,348	$22 \cdot 0$	$27 \cdot 4$	$2,430,019$	

Note.-Rainfall data are from Monthly Weather Review of the Meteorological Service of the Department of Marine and Fisheries, and show the monthly precipitation at Enderby. The mean precipitation over the whole drainage area is probably considerably higher than the precipitation at Enderby.

The total mean annual precipitation at Enderby for a period of eight years is given as $20 \cdot 71$ inches.

South Similkameen River (2063).

Location.-At Princeton, Water District No. 4.
Records Available.-May 14 to December 19, 1914.
Drainage Area.-Four hundred and forty square miles.
Gauge.-Standard chain gauge situated on the highway bridge, read by J. J. Priest of Princeton.

Channel.-Average width of channel at measuring section is about 170 feet. Above section channel is curved for about 200 feet and straight for about 100 feet below station. Bed of stream is of gravel, with a few boulders, and not liable to shift.

Discharge Measurements.-Made with cable and 30-pound weight. The gauge-height discharge curve is very well rated by well-distributed meterings.

Winter Flow.-No winter records have been made on this stream, but partial ice conditions are believed to exist during January and February.

Accuracy.-High results compiled from a well-rated curve.

South Similkameen.

Two branches, Pasayten river and Roche river, unite to form the South Similkameen river. The Pasayten is about 25 miles long. It heads among the high mountains of the Cascade range, south of the border, and flows due north to the junction. It is a rapid stream flowing through a narrow deep valley. The Roche river heads in six branches in the Hogameen range, which joins the divide between the Skagit and the South Similkameen rivers. It pursues a northeasterly course to the junction through a wide flat valley, whose sides slope easily back to a height of 2,000 feet above the river. From the junction the South Similkameen flows due north for 25 miles to its confluence with the Tulameen at Princeton to form the Similkameen river. In this distance it is joined by Copper creek and Whipsaw creek from the west, and several small unnamed creeks.

SESSIONAL PAPER No. 25e
From the junction of the Roche and the Pasayten to the confluence of Whipsaw creek, a distance of 18 miles, the South Similkameen flows through a deep narrow canyon on a grade of over 40 feet to the mile. Good power sites are numerous. Below Whipsaw creek to the mouth the grade is flatter and the valley wider.

The area of the drainage basin above the mouth is 440 miles, covering a rough mountainous country of rugged scenic beauty. The new motor road connecting Princeton with the coast follows the valley of the South Similkameen and Roche river across the headwaters of the Skagit and down Silver creek to the Fraser near Hope. It is at present under construction.

Large deposits of copper occur on Copper mountain, 10 miles south of Princeton. The British Columbia Copper Company has large holdings here and is doing some development work.

A gauging station was established on the South Similkameen near the mouth on May 14, 1914. Six discharge measurements and daily gauging were taken during the season.

Discharge Measurements of South Similkameen River at Princeton, 1914.

Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \end{aligned}$	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
			Feet.	Sq. ft.	Ft. per sec	Feet.	Sec. ft .
May 13.	K. G. Chisholm	1505	192	476	7.33	3.88	3,490
June 15.		1913	191	511	6.25	$4 \cdot 00$	3,194
" 22.	"	1913	191	380	$4 \cdot 74$	$3 \cdot 31$	1,799
July 27 .	"	1913	106	117	3-58	1.88	419
Sept. 2.	"	1913	112	145	1.02	$1 \cdot 23$	149
Nov 28.	"	1673	125	121	$3 \cdot 19$	1.85	3*6

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of South Similkameen River at Princeton, for 1914.

	Day.	May.		June.	
		Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge } \end{aligned}$	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge. } \end{aligned}$
		Feet.	Sec.-ft.	Feet.	Sec.-ft.
1.				$4 \cdot 05$ $4 \cdot 67$	3,665 6,037
3.				4.62	6,037 5,83
4.				$3 \cdot 97$	3,407
5.				3.71	2,661
6.				$3 \cdot 51$	2,187
7.				$3 \cdot 31$	1, 1,803
8.				$3 \cdot 25$	1,705
9				$3 \cdot 22$	1,657
10.				3.20	1,625
11.				$3 \cdot 14$	1,541
12.				${ }^{3 \cdot 31}$	1, 803
13.				$3 \cdot 69$	2,610
14.		4-46		$3 \cdot 80$	2,900
15.		4.75	6,365	$4 \cdot 00$	3,500
16.		$4 \cdot 60$	5,750	$4 \cdot 23$	
17.		$4 \cdot 40$	4,935	$4 \cdot 19$	4,145
18.		$4 \cdot 25$	4,365	$4 \cdot 00$	3,500
19.		3.98	3,438	3.95	2,345
20.		4.07	3.731	$3 \cdot 7 \mathrm{C}$	2,635
21.		3.97	3,407	$3 \cdot 42$	2,005
22.		3.98	3,438	$3 \cdot 27$	1,737
23.		4.08	3,764	$3 \cdot 63$	1.397
24.		$4 \cdot 37$	4. 820	${ }^{2} \cdot 98$	1,337
25.		$4 \cdot 10$	3.830	3.03	1-397
26.		3.82	2,958	3-07	1.447
27.		$3 \cdot 69$	2.610	3.17	1,583
$\stackrel{28}{28}$		$3 \cdot 46$	2,085	$3 \cdot 12$	1,513
${ }_{30}^{29}$		3.24 3.38	1.659	$3 \cdot 11$ $3 \cdot 16$	1.499
		$3 \cdot 38$	1,929	$3 \cdot 16$	1,569
31		$3 \cdot 38$	1,929		

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of South Similkameen River at Princeton, for 1914.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge	Gauge Height	Dis- charge	Gauge Height	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec.-tt.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1.	$3 \cdot 33$	1,839	1.73	335	1.23	144	1.40 1.38	200	1.64 1.75	293 345	1.47	224
2	$3 \cdot 30$ $3 \cdot 25$	1,785 1,705	1.70 1.68	320	1.23 1.23	144	1.38 1.38	193	1.75 1.82	345 381	1.42 1.50	207
4	$3 \cdot 12$	1,513	1.61	280	1.22	141	1-35	182	1.84	392	1.55	255
5	3.00	1,360	$1 \cdot 61$	280	$1 \cdot 20$	135	1.32	172	1.95	455	1.50	235
6	2.91	1,256	1.62	284	1.20	135	$1 \cdot 30$	165	1.82	381	1.45	215
7	$2 \cdot 86$	1,201	1.61	280	$1 \cdot 30$	165	1.32	172	$1 \cdot 67$	306	1.45	217
8	2.73	1,065	1.61	280	1.45	217	$1 \cdot 30$	165	1.60	275	1.40	200
9	$2 \cdot 68$	1,017	1.61	280	1.48	228	1.35	182	1.60	275	1.22	141
10.	2-68	1,017	1.60	275	1.40	200	1.42	207	1.62	284	$1 \cdot 20$	135
11.	2.65	990	1.59	271	1.40	200	$1 \cdot 50$	235	1.65	298	$1 \cdot 20$	135
12	$2 \cdot 65$	990	1.57	263	$1 \cdot 38$	193	$1 \cdot 50$	235	1.72	330	$1 \cdot 20$	135
13	2. 67	1,008	1.54	251	$1 \cdot 35$	182	1.45	217	1.72	330	1.20	135
14	$2 \cdot 66$	999	1.54	251	1.35	182	1.42	207	1.68	311	$2 \cdot 15$	580
15.	$2 \cdot 51$	864	1.52	243	1.38	193	1-35	182	1.50	235	$2 \cdot 15$	580
16	$2 \cdot 42$	787	1.48	228	$1 \cdot 35$	182	1.32	172	1-54	251	$2 \cdot 20$	615
17.	$2 \cdot 35$	730	1.48	228	$1 \cdot 35$	182	1.32	172	1.60	275	$2 \cdot 20$	615
18.	$2 \cdot 32$	706	1.47	224	1.40	200	1.34	179	1.52	243	$2 \cdot 20$	615
19	$2 \cdot 30$	690	1.47	224	$1 \cdot 50$	235	1.51	263	1.45	217	$2 \cdot 20$	615
20.	$2 \cdot 20$	615	1.46	221	1.58	267	1. 52	243	1.45	217		
21.	$2 \cdot 14$	573	1.52	243	1.50	235	1.47	224	1.50	235		
22.	$2 \cdot 10$	545	1.45	217	1.45	217	1.45	217	1. 56	259		
23	2.05	515	1.41	203	$1 \cdot 40$	200	1.42	207	1.65	298		
24	$2 \cdot 00$	485	1-39	197	1.38	193	1.42	207	1.70	320		
25	1.82	381	1.35	182	$1 \cdot 40$	200	$1 \cdot 40$	200	1.78	360		
26	1.95	455	$1 \cdot 32$	172	1.42	207	$1 \cdot 40$	200	1.90	425		
27	$1 \cdot 90$	425	$1 \cdot 30$	165	1.50	235	$1 \cdot 36$	186	1.90	425		
28.	1.87	408	1.27	156	1.58	267	1-35	182	1.85	397		
29	1.75	345	1.25	150	1.52	243	$1 \cdot 35$	182	1.70	320		
30.	1.78	360	1.24	147	1.40	200	1.45	217	1.50	235		
31	$1 \cdot 78$	360	1.23	144			1-60	275				

Monthly Discharge of South Similkameen River at Princeton, for 1914.
(Drainage area, 440 square miles.)

Month.	Digcharge in Second-Feet.				Ren-Ory.	
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	Total in acre-fiet.
June. .	6.037	1,337	2,544.4	5.5	$6 \cdot 1$	151,414
	1,839	345	$870 \cdot 6$	1.9	2.2	53.531
	335	144	$235-1$	0.5	0.6	14.450
September	267	135	195.5	0.44	$0 \cdot 49$	11. 633
Octolser....	275	165	201.0	0.46	0.5	12,359
	455	217	$312 \cdot 2$	0.71	0.70	18.57\%
The period..	6,037	135	$726 \cdot 4$	1.58	10.08	261,954

Notk. Menn annual procipitation probahly varien from 15 inchow newr the stroam's confluence with tho Tulamen river, to 50 inchem at its sasuree on the Skagit River divide.

Ice conditions existed sulmequent to Devember 10.

Tulameen River (2062).
Locaiion.-At Coalmont, Water District No. 4.
Records Available.-May 15 to October 3, 1914.
Drainage Area.-Four hundred square miles.
Gauge.-Chain gauge. Brass jack chain and 3-pound sash weight on downstream side of bridge at measuring station, read by J. J. Currie.

Channel.-Straight for about 700 feet at measuring section. Bed of stream of clean gravel and permanent. Average width about 100 feet.

Discharge Measurements.-The gauge-height discharge curve is fairly well rated by well-distributed meterings.

Winter Flow.-No winter records have been made. Ice conditions prevail on this river during the latter part of December, January and February.

Accuracy.-Fairly high, results compiled from a well-rated curve.

Tulameen River.

The Tulameen river is one of the largest tributaries of the Similkameen. It rises in many small branches in the eastern slopes of the Hope Range, whose summits are over 7,000 feet in altitude, and joins the Similkameen at Princeton at an elevation of 2,100 feet, after a course of 45 miles.

The tributaries entering from the right going upstream are China creek, Cook creek, Otter creek, Bear creek, Eagle creek, and Siwash creek. Otter creek is the largest tributary. It flows in from the north through a broad deep valley, joining at the village of Tulameen, 16 miles from Princeton. From the left going upstream are Granite creek, Cedar creek, Slate creek, and Champion creek. The largest and most important of these, because of the gold and platinum deposits found in its bed, is Granite creek, which flows in at the village of Granite Creek, 10 miles up the Tulameen valley from Princeton. In 1885, on the discovery of gold in Granite creek, the Granite Creek rush took place. In 1886 the village of Granite Creek had a population of over 2,000, and in that year $\$ 193,000$ worth of gold and platinum were washed out of the gravel of the creek. Since 1888 placer mining has been on the decline, and at present the population of Granite Creek consists of five or six families.

There are valuable deposits of coal, copper, and gold in the district. Two coal mines are at present working on a small scale, at Princeton and at Coalmont. The Kettle Valley and Great Northern railroads connecting this country with Vancouver, which are now near completion, should give rise to an era of development and progress. The amount of arable land is practically negligible. The valleys of the river and its tributaries, with the exception of the Tulameen for 3 miles between Slate creek and Otter creek, are very narrow. They are, in fact, little better than deep narrow canyons. The valley of the Otter and the portion of the Tulameen mentioned above, which are much wider, contain some good land. It is nearly all homesteaded. The altitude is over 2,700 feet, and although this is below the limit of cultivation in other parts of the Interior Plateau region, yet wheat cannot be successfully grown.

The climate over the drainage basin of the Tulameen and its tributaries is variable, depending on the locality. At Princeton the mean annual precipitation is 13 inches. At Coalmont and Tulameen and in the Otter valley it is probably not much greater than this. In the higher altitudes and on the eastern slopes of the Hope mountains at the sources of the Tulameen it varies from 20 to 40 inches per annum. Temperatures are not extreme, and are as a rule lower than the Okanagan country. The yearly average is about $45^{\circ} \mathrm{F}$. In Bulletin 27 of the Bureau of Provincial Information, the maximum is shown as being 101° in 1897 and 1904 , and the minimum as 45° in 1907.

SESSIONAL PAPER No. 25e
The current of the Tulameen is swift except in the three miles between Slate and Otter creek, where it meanders through a valley about one-half mile wide, at grade of 29 feet to the mile. Otter creek has a peculiarly sluggish current for a mountain stream. For a distance of 8 miles north from the mouth it has an average grade of 12 feet to the mile. About 4 miles of this distance is occupied by lakes. Above Slate creek the Tulameen has a grade of about 100 feet to the mile, and rushes through a narrow steep-sided canyon. Its tributaries, excepting the Otter, are very swift and occupy deep V-shaped valleys. The country is heavily wooded on the upper slopes. On the lower slopes the trees grow in more open order. Fir, yellow pine, lodgepole pine, and poplar predominate.

A regular gauging station was established at Coalmont on May 14, 1914. Records are available from that date.

Discharge Measurements of Tulameen River at Coalmont, for 1914.

[^59]6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Tulameen River near Coalmont, for 1914.

	Day.	May.		June.	
		Gauge Height.	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$
		Feet.	See.ft.	Feet.	See.ft.
				$3-00$ $3 \cdot 10$	2,660 2,870
3.				- $\begin{array}{r}3.00 \\ 3.00 \\ 2\end{array}$	2,660
5.				${ }_{2}^{2.75}$	2,185
				2.35	1,575
6				$2 \cdot 20$	1,390
8				2.05 2.00	1,230 1,180
8				2.00 1.95	1,180 1,135
10				2.00	1,180
				$2 \cdot 10$	1,280
12.				${ }^{2} \cdot 50$	1,780
13.				2.55 2.65	1,855 2,015
14.		3.80	4,640	${ }_{2}^{2 \cdot 65}$	2,185
		3.80	4,640	2.95	2,560
17.		$3 \cdot 35$	3,450	${ }_{2} \cdot 65$	2,015
18.		3.35 3	3,450	$2 \cdot 35$	1,575
${ }_{20}^{19}$		$3 \cdot 35$ $3 \cdot 30$	3,450 3,325		1,230 1,005
		$3 \cdot 30$	3,325	1.80	
		3.30	3,325	1.60	850
22.		3.25 3.55	3,205 3,960	1.60 1.50 1.5	850 780
${ }_{2}^{23 .}$		3.55 3.70	3,960 4,365	1.50 1.60	780 850
${ }_{25}^{24 .}$		3.70 3.30	3,325	1.60 1.75	890 965
			2,100	1.55	
27.		$2 \cdot 60$	1,935	1.65	885
28.		$2 \cdot 55$	1,850	1.40	715
29.	w	$2 \cdot 10$	1,280	1.50	780
30.		$2 \cdot 30$	1,510	$1 \cdot 60$	850
31.		2.70	2,100		

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Tulameen River near Coalmont, for 1914.

Monthly Discharge of Tulameen River near Coalmont, for 1914.
(Drainage area, 400 square miles:

Month.	Diatharge in Second-Fikt.				Ru-n-Cury.	
	Maximum.	Minimum	Mean.	$\begin{aligned} & \text { Per } \\ & \text { mquare } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage aren.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { aer-feet. } \end{gathered}$
May	4.640	1,250	3,053-5	$7 \cdot 63$	8. (4)	157, 753
June.... .	2,870	7 Na	1.463.5	3-64	$4 \cdot 18$	sitiso
July ... \quad.	745	$\times 1$	309.8	0.77	0.80	19, 15 (1)
Augunt	(14)	70	73.7	0.18	0.21	4.351
September	115	40	91.8	0.23	$0 \cdot 36$	5. t 健
	181)	60	$112 \cdot 1$	0.2 s	0.33	8, 8.48
The puriod.	4, 640	411	$850 \cdot 7$	$2 \cdot 12$	$14 \cdot 36$	310,775

[^60]Thompson River at Chase, B.C. (2042).
Location.-Section 35, township 21, range 13, west 6th meridian.
Records Available.-April 22 to July 31, 1911; April 10 to December 31, 1912; April 12 to December 31, 1913; January 1 to 27, March 24 to December 31, 1914.

Drainage Area.-Seven thousand square miles.
Gauge.-A vertical staff gauge is used and read daily by Mr. F. J. Gook of the Adams River Lumber Company, Chase, B.C.

Channel.-Above the measuring section river broadens out into Little Shuswap lake. Below section river is straight for 200 yards.

Discharge Measurements.-Eleven well-distributed measurements have been made during 1911, 1912, and 1913. Measurements are made from cable and boat.

Winter Conditions.-The Thompson, at Chase, remains partially open throughout the year except during severe winters.

Accuracy. -The accuracy of returns is considered to be high, and should fall within 10 per cent.

Discharge Measurements of Thompson River, at Chase, for 1914.

Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
			Feet.	Sq. ft .	Ft. per sec.	Feet.	Sec.-ft.
Mar. 31..	E. M. Dann \& K. G. Chis-	1505	358	3,610	0.77	2.58	2,794

[^61]SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Thompson River, near Chase, B.C., for 1914.

Day.	January.		February.		March.		April.		May.		June.	
	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	See.ft.	Feet.	Sec.ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft
1.	2.95 2.95	3,390 3,390				2,940 2,940	2.50	2,720	5.20 5.25	9,160	8.85	24.225
3.	2.95	3,390 3,390 3,				2,940 $\mathbf{2 , 9 4 0}$	2.50	2,720 2,840	$5 \cdot 35$ $5 \cdot 60$.	9,670 10,540	8.85 8.95	24, 22.5
4	$2 \cdot 95$	3,390				2.940	2-60	2,840	$5 \cdot 58$	11,445	9.15	24,675 25,575
5	2.95	3,390				2,830	$2 \cdot 60$	2,840	$6 \cdot 00$	12,000	$9 \cdot 25$	26,035
6.	$2 \cdot 95$	3,390				2,830	$2 \cdot 60$	2.840	6-15	12.600	$9 \cdot 30$	26.250
7.	2.95 2.95	2,390				2,830	$2 \cdot 60$	2,840	$6 \cdot 25$	13.000	$9 \cdot 30$	26,250
8	$2 \cdot 95$	3,390				2,830	$2 \cdot 60$	2.840	$6 \cdot 35$	13.400	$9 \cdot 35$	26,475
19	$\stackrel{2}{2} 95$	3,390				2,830	$2 \cdot 65$	2,910	6.40	13,6C0	$9 \cdot 40$	26,700
10.	$2 \cdot 95$	3,390				2.830	2.75	3,050	$6 \cdot 50$	14,000	$9 \cdot 40$	26,700
11.	2.95	3,390				2.830	$2 \cdot 85$	3,210	$6 \cdot 60$	14.400	$9 \cdot 40$	26,700
12.	3.05	3,570				2,830	$3 \cdot 05$	3,570	6.75	15,000	$9 \cdot 50$	27,150
13.	3.05	3,570				2,830 2,730	3.20	3,840	6.85	15,400	$9 \cdot 55$	27.375
14.	3.05 3.05	2,570				2,730	$3 \cdot 35$	4,120	7.05	16,200	9.69	27,600
15.	3.05	3,570				2,730	$3 \cdot 40$	4,220	7.25	17,025	9.75	28.275
16.	3.05	3,570				2,730	$3 \cdot 55$	4,565	$7 \cdot 55$	18,375	$9 \cdot 55$	
17.	3.05 3.05 3.05	3,570 3,570				2,730	$3 \cdot 65$ 3.85	4,795	$7 \cdot 65$	18,825	$10 \cdot 00$	29,450
18.	3.05	3,570				2,730	3.85	5,275	$7 \cdot 75$	19,275	10.05	29,700
19.	3.05	3,570				2,730	$4 \cdot 00$	5,650	7.90	19,950	$10 \cdot 10$	29.950
20.	3.05	3,570				2,730	$4 \cdot 05$	5,775	8.05	20,625	10.20	30,450
21.	3.05	3,570				$\stackrel{2,730}{ }$	$4 \cdot 15$	6,025		21,075		
22.	3.05 3.05	3,570 3,570				2,730	$4 \cdot 30$ 4.40	6,430	8.25	21,525	$10 \cdot 20$	30,4.50
23.	3.05	3,570				2,730	$4 \cdot 40$	6,710	$8 \cdot 35$	21,975	$10 \cdot 15$	30,200
24.	3.05	3,570			$2 \cdot 50$	2,720	4.40	6,710	$8 \cdot 55$	22, 875	$10 \cdot 10$	29,950
25.	$3 \cdot 05$	3,570			$2 \cdot 50$	2,720	$4 \cdot 50$	7,000		23,550	$10 \cdot 10$	29,950
26.	3.05	3,570			$2 \cdot 50$	$\frac{2}{2}, 720$	4-65	7,450	8.80	24,000		
27	$2 \cdot 95$	3,390	$2 \cdot 75$	3,050	$2 \cdot 50$	2,720	4.80	7.910	8.80	24,000	$10 \cdot 10$	29.950
28.					$2 \cdot 50$	2,720	4.90	8,220	8.90	24,450	$10 \cdot 10$	29,950
29 30.					$2 \cdot 50$	2,720	$5 \cdot 05$	8,685	8.90	24,450	$10 \cdot 10$	29,950
30.					$2 \cdot 50$	2,720	$5 \cdot 15$	9.000	8.90	24,450	$10 \cdot 10$	29,950
31.					$2 \cdot 50$	2,720			$8 \cdot 90$	24.450		

Daily Gauge Height and Discharge of Thompson River, near Chase, B.C., for 1914-Concluded.

Day.	July .		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge	Gauge Height	Discharge.	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge	Gauge Height.	Discharge.
1	$10 \cdot 10$	29,950	7.65	16,200	$4 \cdot 60$	7,300	4.00	5,650	$4 \cdot 50$	7.000	$4 \cdot 45$	6,855
2	$10 \cdot 10$	29,950	7.00	16,000	$4 \cdot 60$	7,300	4.00	5,650	$4 \cdot 60$	7,300	$4 \cdot 40$	6,710
3	$10 \cdot 10$	29.956	6.85	15,400	$4 \cdot 60$	7,300	4.00	5,650	$4 \cdot 60$	7,300	$4 \cdot 40$	6,710
4	$10 \cdot 10$	29,950	$6 \cdot 75$	15,000	$4 \cdot 50$	7,000	$4 \cdot 00$	5,650	$4 \cdot 65$	7.450	4-35	6,570
5.	10-10	29,950	$6 \cdot 55$	14,200	4.50	7,000	$4 \cdot 00$	5,650	$4 \cdot 70$	7,600	$4 \cdot 30$	6,430
6	$10 \cdot 10$	29,950	$6 \cdot 45$	13,800	$4 \cdot 50$	7,000	3,90	5,400	$4 \cdot 75$	7.755	$4 \cdot 30$	6,430
7.	$10 \cdot 10$	29,450	$6 \cdot 30$	13,200	$4 \cdot 50$	7,000	3.90	5,400	$4 \cdot 80$	7.910	4-30	6,430
8	9.90	28,950	$6 \cdot 25$	13,000	$4 \cdot 40$	6,710	$3 \cdot 90$	5,400	$4 \cdot 80$	7,910	$4 \cdot 30$	6,430
9	$9 \cdot 80$	28. 500	6.20	12,800	$4 \cdot 40$	6,710	$3 \cdot 90$	5,400	$4 \cdot 80$	7,910	$4 \cdot 20$	6,150
10.	9.65	27,825	$6 \cdot 10$	12,400	$4 \cdot 40$	6,710	$3 \cdot 90$	5,400	$4 \cdot 90$	8,220	$4 \cdot 20$	6,150
11	$9 \cdot 50$	27,150	$5 \cdot 95$	11,815	$4 \cdot 40$	6,710	$3 \cdot 90$	5,400	$4 \cdot 90$	8,220	$4 \cdot 10$	5,900
12.	9.45	26,925	$5 \cdot 85$	11,445	$4 \cdot 40$	6,710	$3 \cdot 90$	5,400	$4 \cdot 90$	8,220	$4 \cdot 10$	5,900
13.	9.40	26,700	5:75	11,075	$4 \cdot 30$	6,430	3.90	5,400	$4 \cdot 90$	8,220	$4 \cdot 00$	5,650
14.	$9 \cdot 30$	26,250	$5 \cdot 70$	10,890	$4 \cdot 25$	6,290	$4 \cdot 00$	5,650	$4 \cdot 90$	8,220	$4 \cdot 00$	6,650
15.	$9 \cdot 30$	26,250	$5 \cdot 65$	10, 7.15	$4 \cdot 20$	6,150	$4 \cdot 00$	5,650	$4 \cdot 90$	8,220	$4 \cdot 00$	5,650
16.	$9 \cdot 30$	26,250	$5 \cdot 60$	10,540	$4 \cdot 20$	6,150	$4 \cdot 00$	5,650	$4 \cdot 90$	8,220	$4 \cdot 00$	5,650
17.	$9 \cdot 25$	26,025	$5 \cdot 50$	10,190	$4 \cdot 10$	5,900	$4 \cdot 00$	5,650	$4 \cdot 80$	7,910	$3 \cdot 90$	5, 400
18.	$9+15$	25,575	$5 \cdot 40$	9,840	$4 \cdot 10$	5,960	$4 \cdot 10$	5,900	$4 \cdot 80$	7,910	$3 \cdot 90$	5,400
19.	$9 \cdot 05$	25,125	$5 \cdot 30$	9,500	$4 \cdot 00$	5,650	$4 \cdot 15$	6,025	4.80	7,910	$3 \cdot 80$	5,150
20.	$8 \cdot 90$	24,450	$5 \cdot 20$	9,160	$4 \cdot 00$	5,650	$4 \cdot 20$	6,150	$4 \cdot 80$	7,910	$3 \cdot 75$	5,030
21.	8.75	23,775	$5 \cdot 20$	9,160	$4 \cdot 00$	5,650	$4 \cdot 30$	6,430	$4 \cdot 75$	7,755	$3 \cdot 70$	4,910
22.	8.70	23,550	$5 \cdot 15$	9,000	$4 \cdot 00$	5,650	$4 \cdot 30$	6,430	$4 \cdot 70$	7,600	$3 \cdot 70$	4,910
23.	$8 \cdot 60$	23, 100	$5 \cdot 10$	8,840	3.95	5,525	$4 \cdot 30$	6,430	$4 \cdot 70$	7,600	$3 \cdot 70$	4,910
24.	8.45	22,425	$5 \cdot 00$	8,530	3.90	5,400	$4 \cdot 35$	6,570	$4 \cdot 65$	7,450	$3 \cdot 60$	4,680
25.	$8 \cdot 25$	21,525	$4 \cdot 90$	8,220	3.9 C	5,400	4-40	6,710	$4 \cdot 60$	7,300	$3 \cdot 60$	4,680
26.	8.05	20,625	4.85	8,065	$3 \cdot 90$	5,400	$4 \cdot 40$	6,710	$4 \cdot 60$	7,300	$3 \cdot 55$	4,565
27.	$7 \cdot 85$	19,725	$4 \cdot 80$	7,910	$3 \cdot 90$	5,400	$4 \cdot 40$	6,710	$4 \cdot 50$	7,000	$3 \cdot 50$	4,450
28.	$7 \cdot 65$	18, 225	$4 \cdot 70$	7,600	$3 \cdot 90$	5,400	4.40	6,710	$4 \cdot 50$	7,000	$3 \cdot 50$	4,450
29.	$7 \cdot 45$	17,925	$4 \cdot 65$	7,450	$4 \cdot 00$	5,650	$4 \cdot 40$	6,710	$4 \cdot 50$	7,000	$3 \cdot 50$	4,450
30.	7.25	17,025	$4 \cdot 60$	7,300	4.00	5,650	$4 \cdot 40$	6,710	$4 \cdot 50$	7,000	$3 \cdot 50$	4,450
31.	7.20	16,800	4-60	7,300			$4 \cdot 45$	6,855			$3 \cdot 50$	4.450

Monthly Discharge of Thompson River, at Chase, B.C., for 1914.
(Drainage area, 7,000 square miles.)

Month.	Discharge in Second-Feet.				Run-Off.	
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$
January.	3,570	3,390	3.490	$0 \cdot 5$	$0 \cdot 6$	214.590
February			3,000	0.4	$0 \cdot 4$	166,600
March.	9,040	2,720	2,783 4,920	${ }_{0}^{0.4}$	0.4 0.8	${ }_{292}^{171,760}$
May..	24,450	9,160	17,783	$2 \cdot 5$	0.8 2.9	1,093,363
June.	30,450	24,225	28,107	$4 \cdot 0$	4.5	1,672,540
July	29,950	16,800	25.175	$3 \cdot 6$	$4 \cdot 1$	1,547,950
August.	16,200	7,300	10,856	1.5	1.7	667,516
September	7,300	5,400	6.223	0.9	1.0	370,300
October...	6,855	5,400	5,971	0.8	0.9	367, 142
November	8,220	7.000	7.677	$1 \cdot 1$	1.2	456,813
December.	6,855	4,450	5,521	0.8	$0 \cdot 9$	339,472
The year	30,450	2,720	10,125	1.4	19.4	7,360,169

Note.-Flow for February estimated. River under entire or partial ice conditions,
Precipitation probably varies from 20 inches per annum at Chase to 50 inches at the headwaters of streams tributary to Shuswap lake.

Location.-Section 23, township 20, range 24, west 6 th meridian.
Records Available.-April 26 to September 14, 1912; May 1 to December 14, 1913; April 1 to December 8, 1914.

Drainage Area.-Thirty-eight square miles.
Gauge.—standard vertical staff gauge, graduated in feet and tenths, and read daily by C. Crossley.

Channel.-Channel straight at measuring section. Velocity medium. Bed of stream permanent.

Discharge Measurements.-Discharge measurements made by wading at all stages, except very high water.

Winter Flow.-Ice conditions prevail on this stream during January, February, and March.

Accuracy.-The accuracy of results is considered to be very high, the curve being well defined, and returns should fall within 5 per cent.

Discharge Measurements of Barnes Creek above Barnes Lake, for 1914.

Station rated during 1911 and 1912. Hydrographer notes that on July 6 no water was running into Barnes lake, it was all going down the gulch to the Tiffin ranch, and other lands just east of Asheroft. He estimates that about $\cdot 5$ sec, feet is flowing out of Barnes lake and joining Barnes creek one-quarter mile below.

For further hydrographic data see Water Resources Papers Nos. 1 and 8.

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Barnes Creek, Barnes Lake, for 1914.

	Day.	April.		May.		June.	
		Gauge Height.	Discharge	Gauge Height.	Discharge	Gauge Height.	Discharge.
		Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1.		$0 \cdot 30$	$2 \cdot 0$	$0 \cdot 70$	19.0	$0 \cdot 80$	27.0
2.		0.32	$2 \cdot 4$	0.85	$31 \cdot 0$	0.80	$27 \cdot 0$
3.		$0 \cdot 37$	3.4	0.90	$35 \cdot 0$	$0 \cdot 80$	$27 \cdot \mathrm{C}$
4		0.42	$4 \cdot 6$	0.80	27.0	$0 \cdot 80$	$27 \cdot 0$
5.		0.47	$6 \cdot 1$	$0 \cdot 80$	27.0	$0 \cdot 80$	$27 \cdot 0$
6		$0 \cdot 50$	7.0	$0 \cdot 80$	27.0	0.70	$19 \cdot 0$
7.		$0 \cdot 50$	$7 \cdot 0$	$0 \cdot 80$	$27 \cdot 0$	$0 \cdot 80$	27.0
8.		0.50	7.0	0.82	28.6	$0 \cdot 80$	$27 \cdot 0$
9.		$0 \cdot 50$	$7 \cdot 0$	0.95	39.5	0.80	$27 \cdot 0$
10.		0.50	$7 \cdot 0$	$1 \cdot 20$	$63 \cdot 0$	0.80	$27 \cdot 0$
11.		0.50	7.0	1.40	83.0	0.80	27.0
12.		$0 \cdot 50$	7.0	1.40	83.0	0.80	$27 \cdot 0$
13.		0.52	$8 \cdot 0$	1.40	83.0	0.80	27.0
14		$0 \cdot 62$	$13 \cdot 4$	1.45	88.0	$0 \cdot 80$	$27 \cdot 0$
15.		0.62	13.4	$1 \cdot 50$	$93 \cdot 0$	$0 \cdot 70$	$19 \cdot 0$
16.		0.60	12.0	1.40	83.0	$0 \cdot 70$	$19 \cdot 0$
17.		0.60 0.60	$12 \cdot 0$ $12 \cdot 0$	1.32 1.30	$75 \cdot 0$ $73 \cdot 0$	$0 \cdot 60$ 0.50	$12 \cdot 0$ $7 \cdot 0$
19.		0.60	$12 \cdot 0$	1. 15	78.5	$0 \cdot 50$ $0 \cdot 50$	$7 \cdot 0$ 7.0
20.		$0 \cdot 60$	$12 \cdot 0$	$1 \cdot 10$	$54 \cdot 0$	$0 \cdot 50$	$7 \cdot 0$
21.		$0 \cdot 50$	7.0	$1 \cdot 00$	$44 \cdot 0$	0.50	$7 \cdot 0$
22.		$0 \cdot 50$	$7 \cdot 0$	$1 \cdot 00$	$44 \cdot 0$	$0 \cdot 60$	$12 \cdot 0$
23.		$0 \cdot 56$	$7 \cdot 0$	1.00	$44 \cdot 0$	$0 \cdot 60$	$12 \cdot 0$
24.		$0 \cdot 50$	$7 \cdot 0$	$1 \cdot 10$	$54 \cdot 0$	$0 \cdot 60$	12.0
25.		$0 \cdot 50$	$7 \cdot 0$	$1 \cdot 00$	$44 \cdot 0$	$0 \cdot 55$	$9 \cdot 5$
26.		$0 \cdot 50$	$7 \cdot 0$	$1 \cdot 00$	$44 \cdot 0$	$0 \cdot 50$	$7 \cdot 0$
27.		$0 \cdot 50$	$7 \cdot 0$	1.00	$44 \cdot 0$	$0 \cdot 50$	$7 \cdot 0$
28.		$0 \cdot 35$	$9 \cdot 5$	0.90	$35 \cdot 0$	$0 \cdot 50$	$7 \cdot 0$
29.		$0 \cdot 60$	$12 \cdot 0$	$0 \cdot 80$	27.0	$0 \cdot 50$	$7 \cdot 0$
30.		$0 \cdot 65$	$15 \cdot 5$	$0 \cdot 80$	$27 \cdot 0$	$0 \cdot 50$	$7 \cdot 0$
31.				0.80	$27 \cdot 0$		

SESSIONAL PAPER No. 25e

Daily Gauge Height and Discharge of Barnes Creek, near. Barnes Lake, for 1914-Concluded.

DAY.	July.		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height	Discharge	Gauge Height.	Discharge
	Feet.	Sec.-ft.	Feet.	See.-ft.	Feet.	Sec. -ft .	Feet.	Sec.-ft.	Feet.	Sec.-ft	Feet.	Sec. -ft .
1.	$0 \cdot 50$	$7 \cdot 0$	$0 \cdot 30$	$2 \cdot 0$	$0 \cdot 20$	0.7	0.40	$4 \cdot 0$	$0 \cdot 40$	$4 \cdot 0$	$0 \cdot 45$	$5 \cdot 3$
2.	$0 \cdot 50$	$7 \cdot 0$	$0 \cdot 30$	$2 \cdot 0$	$0 \cdot 20$	0.7	$0 \cdot 40$	$4 \cdot 0$	$0 \cdot 40$	$4 \cdot 0$	$0 \cdot 45$	$5 \cdot 5$
3.	$0 \cdot 40$	$4 \cdot 0$	$0 \cdot 30$	$2 \cdot 0$	$0 \cdot 20$	0.7	$0 \cdot 40$	$4 \cdot 0$	$0 \cdot 40$	$4 \cdot 0$	0.45	$5 \cdot 3$
4.	0.40	$4 \cdot 0$	$0 \cdot 30$	$2 \cdot 0$	0.20	$0 \cdot 7$	0.40	$4 \cdot 0$	$0 \cdot 40$	$4 \cdot 0$	$0 \cdot 45$	$5 \cdot 5$
5	$0 \cdot 40$	$4 \cdot 0$	$0 \cdot 30$	$2 \cdot 0$	0.20	0.7	$0 \cdot 40$	$4 \cdot 0$	$0 \cdot 40$	$4 \cdot 0$	$0 \cdot 45$	$5 \cdot 5$
6.	$0 \cdot 40$	$4 \cdot 0$	$0 \cdot 30$	$2 \cdot 0$	$0 \cdot 20$	$0 \cdot 7$	$0 \cdot 40$	$4 \cdot 0$	$0 \cdot 40$	$4 \cdot 0$	0-4.5	$5 \cdot 5$
7.	$0 \cdot 40$	$4 \cdot 0$	C. 30	$2 \cdot 0$	$0 \cdot 22$	$1 \cdot 0$	$0 \cdot 40$	$4 \cdot 0$	$0 \cdot 40$	$4 \cdot 0$	$0 \cdot 50$	$7 \cdot 0$
8	0.45	$5 \cdot 5$	$0 \cdot 30$	$2 \cdot 0$	$0 \cdot 30$	$2 \cdot 0$	0.40	$4 \cdot 0$	$0 \cdot 40$	$4 \cdot \mathrm{C}$	$0 \cdot 50$	$7 \cdot 0$
9.	$0 \cdot 50$	$7 \cdot 0$	$0 \cdot 30$	$2 \cdot 0$	$0 \cdot 35$	$3 \cdot 0$	$0 \cdot 40$	$4 \cdot 0$	$0 \cdot 40$	$4 \cdot 0$		
10.	$0 \cdot 50$	$7 \cdot 0$	$0 \cdot 30$	$2 \cdot 0$	0.35	$3 \cdot 0$	$0 \cdot 40$	$4 \cdot 0$	$0 \cdot 40$	$4 \cdot 0$		
11.	0.50	$7 \cdot 0$	$0 \cdot 30$	$2 \cdot 0$	0.35	$3 \cdot 0$	$0 \cdot 40$	$4 \cdot 0$	0.40	$4 \cdot 0$		
12	0.50	$7 \cdot 0$	$0 \cdot 30$	$2 \cdot 0$	$0 \cdot 35$	$3 \cdot 0$	$0 \cdot 40$	$4 \cdot 0$	0.40	4.C		
13.	0.50	$7 \cdot 0$	$0 \cdot 30$	$2 \cdot 0$	$0 \cdot 32$	$2 \cdot 4$	$0 \cdot 40$	$4 \cdot 0$	$0 \cdot 40$	$4 \cdot 0$		
14.	$0 \cdot 50$	$7 \cdot 0$	$0 \cdot 30$	$2 \cdot 0$	$0 \cdot 30$	$2 \cdot 0$	$0 \cdot 40$	$4 \cdot 0$	$0 \cdot 42$	$4 \cdot 6$		
15.	$0 \cdot 50$	$7 \cdot 0$	$0 \cdot 30$	$2 \cdot 0$	$0 \cdot 30$	$2 \cdot 0$	0.45	$5 \cdot 5$	$0 \cdot 45$	$5 \cdot 5$		
16.	0.50	$7 \cdot 0$	$0 \cdot 30$	$2 \cdot 0$	$0 \cdot 30$	$2 \cdot 0$	$0 \cdot 45$	$5 \cdot 5$	0.47	$6 \cdot 1$		
17.	0.50	$7 \cdot 0$	$0 \cdot 30$	$2 \cdot 0$	$0 \cdot 32$	$2 \cdot 4$	$0 \cdot 45$	$5 \cdot 5$	$0 \cdot 50$	$7 \cdot 0$		
18.	$0 \cdot 40$	$4 \cdot 0$	$0 \cdot 30$	$2 \cdot 0$	$0 \cdot 37$	$3 \cdot 4$	$0 \cdot 50$	$7 \cdot 0$	$0 \cdot 50$	$7 \cdot 0$		
19.	$0 \cdot 40$	$4 \cdot 0$	$0 \cdot 30$	$2 \cdot 0$	$0 \cdot 40$	$4 \cdot 0$	0-50	$7 \cdot 0$	$0 \cdot 50$	$7 \cdot 0$		
20.	$0 \cdot 40$	$4 \cdot 0$	$0 \cdot 30$	$2 \cdot 0$	$0 \cdot 40$	$4 \cdot 0$	$0 \cdot 50$	$7 \cdot 0$	$0 \cdot 50$	7.0		
21.	0.40	$4 \cdot 0$	$0 \cdot 25$	$1 \cdot 4$	$0 \cdot 40$	$4 \cdot 0$	$0 \cdot 50$	7.0	0. 50	7.0		
22.	$0 \cdot 40$	$4 \cdot 0$	$0 \cdot 25$	1.4	$0 \cdot 40$	$4 \cdot 0$	$0 \cdot 50$	$7 \cdot 0$	$0 \cdot 50$	$7 \cdot 0$		
23.	0.40	$4 \cdot 0$	$0 \cdot 25$	$1 \cdot 4$	$0 \cdot 40$	$4 \cdot 0$	$0 \cdot 50$	$7 \cdot 0$	$0 \cdot 50$	$7 \cdot 0$		
24	$0 \cdot 40$	$4 \cdot 0$	$0 \cdot 22$	1.0	$0 \cdot 40$	$4 \cdot 0$	$0 \cdot 50$	$7 \cdot 0$	$0 \cdot 50$	$7 \cdot 0$		
25.	$0 \cdot 40$	$4 \cdot 0$	$0 \cdot 20$	$0 \cdot 7$	$0 \cdot 40$	$4 \cdot 0$	$0 \cdot 45$	$5 \cdot 5$	$0 \cdot 50$	$7 \cdot 0$		
26.	$0 \cdot 40$	$4 \cdot 0$	$0 \cdot 20$	$0 \cdot 7$	$0 \cdot 40$	$4 \cdot 0$	$0 \cdot 45$	5.5	$0 \cdot 50$	$7 \cdot 0$		
27.	$0 \cdot 40$	$4 \cdot 0$	$0 \cdot 20$	$0 \cdot 7$	$0 \cdot 35$	$3 \cdot 0$	$0 \cdot 40$	$4 \cdot 0$	0. 50	$7 \cdot 0$		14\%01
28.	$0 \cdot 40$	$4 \cdot 0$	$0 \cdot 20$	0.7	$0 \cdot 35$	$3 \cdot 0$	$0 \cdot 40$	$4 \cdot 0$	$0 \cdot 50$	$7 \cdot 0$		-xico
29.	$0 \cdot 40$	$4 \cdot 0$	$0 \cdot 20$	$0 \cdot 7$	$0+40$	$4 \cdot 0$	$0 \cdot 40$	$4 \cdot 0$	$0 \cdot 50$	$7 \cdot 0$		
30.	$0 \cdot 35$	$3 \cdot 0$	$0 \cdot 20$	0.7	$0 \cdot 40$	$4 \cdot 0$	$0 \cdot 40$	$4 \cdot 0$	$0 \cdot 50$	$7 \cdot 0$		
31.	$0 \cdot 35$	$3 \cdot 0$	$0 \cdot 20$	0.7			$0 \cdot 40$	$4 \cdot 0$				

Monthly Discharge of Barnes Creek, near Barnes Lake, for 1914.
(Drainage area, 38 square miles.)

Month.	Dimcharge in Siecond-Feet.				Ren-tirf.	
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { syuare } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage мгтя.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$
	15.5	2.0				493
May	93.0	19.0	49.4	1.3	1.5	3,038
June.... - - - - - - -	27.0	7.0	17.6	0.5	0.5	1.148
July	7.0	3.0	5.0	$0 \cdot 1$	0.2	310
	2.0	0.7	1.6	$0 \cdot 14$	0.05	0x
Aeptember	4.0	0.7	2.6	$0 \cdot 1$	0.1	154
()etober	7.0 7.0	1.0 4.0	49	$0 \cdot 1$	0.2	301
November Decomber	7.0 7.0	$\mathbf{4} \cdot \mathbf{0}$ 5.5	(for period ${ }^{5.5}$	1)eo. $\begin{gathered}0.1 \\ 10 \text { (1) }\end{gathered}$	0.2	33%
The period	93.0	0.7	11.8			
			$11 \cdot 8$	$0 \cdot 30$	2.05	5, 76x

[^62]Bonaparte River (2003).
Location.-Section 18, township 21, range 24, west 6th meridian.
Records Available.-June 10 to November 6, 1911; March 25 to December 22, 1912; March 30 to December 31, 1913; January 1 to December 9, 1914.

Drainage Area.-Two thousand square miles.
Gauge.-Standard vertical staff gauge read daily by J. G. Collins.
Channel.-Channel straight at measuring section, average width 50 feet. Velocity high.

Discharge Measurements.-Discharge measurements are made by wading, except at high water, when cable carrier is used.

Winter Flow.-Ice conditions prevail on this stream during January and February.

Accuracy.-The accuracy of returns is considered very high, the curve being well defined, and results should fall within 5 per cent.

Discharge Measurements of Bonaparte River, near mouth, for 1914.

Date.	Hydrographer.	Meter No.	Width.	Area of Section	$\begin{aligned} & \text { Mean } \\ & \text { Velocity. } \end{aligned}$	Gauge Height.	Discharge.
			Feet.	Sq. ft .	Ft. per sec.	Feet.	Sec.-ft.
May 22.	C. B. Corbould.	1673	54	160	6.28	3.23	1,005 ${ }^{1}$
July	"	1915	48	107	$3 \cdot 3$	1.98	359^{2}

[^63]SESSIONAL PAPER No. 25e
Daily Gauge Heights and Discharge of Bonaparte River, near Collins Ranch, for 1914.

Day.	January.		February:		March.		April.		May.		June.	
	Gauge Height.	Discharge	Gauge Height.	Discharge	Gauge Height	Discharge	Gauge Height.	Discharge	Gauge Height	Discharge.	Gauge Height	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec.-ft	Feet.	Sec.-ft	Feet.	Sec.-ft.	Feet.	Sec. ft .	Feet.	Sec.-ft.
1.	1.03	70	1.03	70	1.03	70	1-38	$164 \cdot 5$	$3 \cdot 08$	841	2.83	651
2	0.98	56	0.98	56	1.03	70	$1 \cdot 33$	$150 \cdot 5$	$3 \cdot 13$	889	2.83	651
3	0.98	56	0.98	56	1.03	70	1.33	$150 \cdot 5$	$2 \cdot 93$	$717 \cdot 5$	2.78	622
5.	1.03 1.08	70 83	0.98 0.98	56 56	1.08 1.08	83 83	1.38 1.38	$164 \cdot 5$ 164.5	$3 \cdot 03$ $3 \cdot 13$	795	2.78	622
6.	1.08	83	0.98	56	1.08	83	$1 \cdot 63$	232.5	$3 \cdot 23$	993.5	8	690
7.	1.13	96	0.98	56	1.08	83	$1 \cdot 68$	$246 \cdot 5$	$3 \cdot 33$	1,109	2.78	629
8.	1.13	96	0.98	56	1.08	83	1. 73	$260 \cdot 0$	$3 \cdot 33$	1,109	2.78	622
9.	1.08	83	0.98	56	1.13	96	1.78	$273 \cdot 5$	$3-43$	1.232-5	$2 \cdot 73$	597
10.	1.03	70	0.98	56	1.13	96	1.88	302	$3 \cdot 53$	1,354	2.78	622
11.	$1 \cdot 13$	96	0.98	56	$1 \cdot 18$	110	$1 \cdot 93$	317	$3 \cdot 63$	1,482-5	$2 \cdot 83$	651
12.	$1 \cdot 13$	96	$0 \cdot 98$	56	1.18	110	$2 \cdot 03$	347	3-68	1,553-5	$2 \cdot 88$	683
13.	1.13	96	0.98	56	$1 \cdot 18$	110	$2 \cdot 13$	377	3.73	1,625	2.93	717.5
14.	1.13	96	0.93	42.5	1.23	123	$2 \cdot 23$	408	3.73	1,625	2.93	717.5
15.	1.08	83	0.93	$42 \cdot 5$	1.28	137	2.43	$475 \cdot 5$	3.83	1,768-5	2.98	$753 \cdot 5$
16.	1-08	83	0.93	$42 \cdot 5$	1-28	137	$2 \cdot 58$	532	$3 \cdot 83$	1,768-5	$2 \cdot 98$	753.5
17.	1.18	110	0.93	$42 \cdot 5$	$1 \cdot 33$	$150 \cdot 5$	2.68	573-5	3.73	1,625	$2 \cdot 83$	$651 \cdot 0$
18.	$1 \cdot 23$	123	0.93	$42 \cdot 5$	1-38	$164 \cdot 5$	2.83	651	3-63	1,482.5	2.73	597.
19.	1.13	96	0.93	$42 \cdot 5$	1.38	$164 \cdot 5$	2.83	651	$3 \cdot 53$	1,354	$2 \cdot 63$	$552 \cdot 5$
20.	1.08	83	0.93	$42 \cdot 5$	1.48	191.5	3.03	795	$3 \cdot 43$	1,232-5	$2 \cdot 58$	532
21	1.08	83	0.93	$42 \cdot 5$	1.53	205	2.83	651	$3 \cdot 23$	993.5	$2 \cdot 53$	512
22.	1.08	83	$0 \cdot 93$	$42 \cdot 5$	1.53	205	2.78	622	$3 \cdot 28$	1,049-5	$2 \cdot 43$	475.5
23.	1.08	83	0.93	42.5	1.48	191.5	$2 \cdot 78$	622	$3 \cdot 28$	1,049-5	$2 \cdot 43$	$475 \cdot 5$
24.	1.08	83	0-93	$42 \cdot 5$	$1 \cdot 43$	$178 \cdot 0$	2.73	597	$3 \cdot 33$	1,109	$2 \cdot 43$	$475 \cdot 5$
25.	1.08	83	$0 \cdot 98$	$56 \cdot 0$	$1 \cdot 33$	$150 \cdot 5$	$2 \cdot 73$	597	$3 \cdot 28$	1,049•5	$2 \cdot 48$	493
26.	$1 \cdot 03$	70	0.98	56.0	$1 \cdot 23$	123	$2 \cdot 73$	597	$3 \cdot 23$	$993 \cdot 5$	$2 \cdot 48$	493
7.	1.03	70	$0 \cdot 98$	56.0	$1 \cdot 33$	$150 \cdot 5$	2.73	597	3.18	940	$2 \cdot 48$	493
28.	1.03	70	1.03	70	1-33	$150 \cdot 5$	2.78	622	$3 \cdot 13$	889	2.43	$475 \cdot 5$
29.	1.03	70			$1 \cdot 38$	$164 \cdot 5$	2.83	651	3.03	795	2.43	$475 \cdot 5$
30.	$1 \cdot 03$	70			1.43	178	2.93	$717 \cdot 5$	2 -58	683	2.43	475.5
1.	1.03	70			$1 \cdot 43$	178			2. 53	651		

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Bonaparte River, at Collins Ranch, for 1914.-Con.

Day.	July		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge.	Gauge Height.	Discharge	Gauge Height	Discharge.	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height	Discharge.
	Feet.	Sec.-ft	Feet.	Sec.-ft.	Feet.	Sec. ft .	Feet.	Sec. -ft .	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1.	2.38	458	1.53	205	0.98	56	$1 \cdot 13$	96	1.03	70	$1 \cdot 13$	96
2	$2 \cdot 33$	$44 \mathrm{C} \cdot 5$ 423.5	1.48	$191 \cdot 5$ 178	0.98 0.93	${ }_{56}$	1.08	83	1.03 1.03	70	$1 \cdot 13$	96
3.	$2 \cdot 28$ $2 \cdot 23$	$423 \cdot 5$ 408	1.43 1.38	178 $164 \cdot 5$	0.93 0.93	$42 \cdot 5$ $42 \cdot 5$	1.08 1.08 1	83 83	1.03 1.03	70	1.13	96
5.	$2 \cdot 23$ $2 \cdot 18$	408 392	1.38 1.33	$164 \cdot 5$ $150 \cdot 5$	0.93 0.93	$42 \cdot 5$ $42 \cdot 5$	1.08 1.08	83 83	1.03 1.08	70 83	$1 \cdot 13$ $1 \cdot 13$	96 96
6.	$2 \cdot 13$	377	1-33	$150 \cdot 5$	0.93	$42 \cdot 5$	1.08	83	1.08	83	$1 \cdot 13$	96
7.	$2 \cdot 08$	362	1.28	137	0.93	$42 \cdot 5$	1.08	83	1.08	83	$1 \cdot 13$	96
8.	$2 \cdot 03$	347	1.28	137	0.98	$56 \cdot 0$	1.08	83	1.08	83	$1 \cdot 23$	103
9.	1.98	332	$1 \cdot 23$	123	$0 \cdot 98$	$56 \cdot 0$	1.08	83	1.08	83	1.28	137
10.	1.93	317	1.23	123	0.93	$42 \cdot 5$	$1 \cdot 13$	96	1.03	70		
11.	1.88 1.83	302 288	1.23 1.23	123	1.13 1.08	96	1.13 1.13	96	1.03	70		
12.	1.83 1.83	288 288	$1 \cdot 23$ 1.23	123	1.08 1.13	83 96	1.13 1.08	96	1.03	70		
14.	1.78	$273 \cdot 5$	1.18 1.18	110	$1 \cdot 13$ $1 \cdot 13$	96 96	1.08 1.08 1	83 83	1.08 1.08 1	83
15.	1.83	288	1.18	110	$1 \cdot 13$	96	1.08 1.08	83	1.68	83		
16.	1.78	$273 \cdot 5$	$1 \cdot 18$	110	1.18	110	1.03	70	1.08	83		
17.	1.78	$273 \cdot 5$	1.18	110	1.18	110	1.03	70	1.13	96		
18.	1.73	260	1.18	110	1.23	123	1.03	70	1.13	96		
19.	1.68	246.5	1.18	110	1.23	123	1.03	70	$1 \cdot 13$	96		
20.	1.73	260	$1 \cdot 13$	96	1.28	137	1.03	70	1.13	96		
21.	1.68	$246 \cdot 5$	$1 \cdot 13$	96	1.28	137	1.03	70	1.18	110		
22.	1.68	$246 \cdot 5$	1.13	96	1.23	123	1.03	70	1.18	110		
23.	1.63	232.5	1.13	96	1.23	123	1.03	70	$1 \cdot 23$	123		
24.	1.63	$232 \cdot 5$	1.08	83	1.18	110	1.03	70	1.23	123		
25.	1.63	$232 \cdot 5$	1.08	83	1.18	110	1.03	70	1.18	110		
26.	1.68	246.5	1.08	83	$1 \cdot 13$	96	1.03	70	1.18	110		
27.	1.63	$232 \cdot 5$	1.03	70	1.13	96	1.03	70	1.18	110		
28.	1.63	$232 \cdot 5$	1.03	70	1.13	96	1.03	70	1.18	110		
29.	1.58	218.5	1.03	70	$1 \cdot 13$	96	1.03	70	1.13	96		
30.	1.58	218.5	0.98	56	$1 \cdot 13$	96	1.03	70	1.13	96	
31.	1,53	$205 \cdot 0$	0.98	56			1.03	70				

SESSIONAL PAPER No. 25e
Monthly Discharge of Bonaparte River at Collins Ranch, near Asheroft, for 1914.
(Drainage area, 2,000 square miles.)

Month.	Discharges in Second-Feet.				Ren-Ofr.	
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches Drainage area.	$\begin{gathered} \text { Total } \begin{array}{c} \text { in } \\ \text { acre-feet. } \end{array} \end{gathered}$
January	123	56.0	82.6	0.04	0.05	5,079
February	70	72.5	51.7 131.9	0.03 0.06	0.03 0.07	2,871 8,110
March.	${ }_{795}$	70.5	$131 \cdot 9$ $450 \cdot 3$	0.06 0.22	0.07 0.25	86,795
May.	1,768.5	651	1,149.9	0.57	$0 \cdot 66$	70,710
June.	753.5	475.5	590.1	C-29	c-32	35,113
July...	458	205	295-3	$0 \cdot 15$	$0 \cdot 17$	18.157
August.	${ }_{137}^{205}$	${ }_{42}^{56}$	114.3	0.06 0.04	0.07 0.05	7.028 5 5
September	196	70	77.9	$0 \cdot 04$	0.05	4,790
November	123	70	$90 \cdot 6$	$0 \cdot 64$	0.05	5,391
December.	137	96	(for period	Dec. 1 to D	ec. 9.)	
The year.	1,768.5	42.5	$\begin{gathered} 27 \mathrm{G} \\ \text { (estimated) } \end{gathered}$	$\begin{gathered} 0.13 \\ \text { (estimated) } \end{gathered}$	$\begin{gathered} 1.82 \\ \text { (estimated) } \end{gathered}$	$\begin{array}{r} 195.000 \\ \text { (estimated) } \end{array}$

Note.-Winter conditions obtained after December 9.
Precipitation varies from a minimum of 5 to a maximum of 25 inches per annum. The low run-off "depth in inches on drainage area" seems to indicate high evaporation losses, and probably an over-estimate of the drainage area, which however, was taken from the best available map.

Criss Creek (2007).

Location.-Sec. 32, township 22, range 22, west 6th meridian.
Records Available.-June 14 to September 14, 1912; April 22 to November 21, 1913; April 1 to December 9, 1914.

Drainage Area.-One hundred and fifty square miles.
Gauge.-Standard vertical staff gauge, read daily by W. J. Hoey.
Channel.-The channel at measuring section is straight. Velocity is high Bed of stream composed of gravel and boulders.

Winter Flow.-Ice conditions exist on this stream during January, February, and part of March.

Accuracy. -The accuracy of returns is considered to be very high. The curve is well rated, and results should be within 5 per cent.

Discharge Measurements of Criss Creek above Deadman River, for 1914.

[^64]6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Criss Creek near Hoey's Ranch, for 1914.

SESSIONAL PAPER No. 25e
Dally Gauge Height and Discharge of Criss Creek near Hoey's Ranch, for 1914.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge	Gauge Height	Discharge	Gauge Height.	Discharge	Gauge Height	Discharge	Gauge Height.	Discharge	Gauge Height.	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	See.-ft.	Feet.	Sec.-It.	Feet.	Sec.-ft.
1.	0.90	57.5	0.05	13.0	-0.25	$6 \cdot 5$	$0 \cdot 16$	$14 \cdot 0$	0.15	15.5	$0 \cdot 15$	$15 \cdot 5$
2	$0 \cdot 85$	$52 \cdot 2$	0.00	$12 \cdot 0$	-0.25	$6 \cdot 5$	$0 \cdot 15$	15.5	$0 \cdot 15$	15.5	$0 \cdot 15$	$15 \cdot 5$
3	0.75	$42 \cdot 5$	0.00	12.0	-6.25	$6 \cdot 5$	$0 \cdot 15$	15.5	$0 \cdot 15$	15.5	$0 \cdot 15$	$15 \cdot 5$
4	0.75	42.5	C. 00	12.0	-0.25	$6 \cdot 5$	$0 \cdot 15$	15.5	$0 \cdot 15$	15.5	$0 \cdot 15$	$15 \cdot 5$
5.	$0 \cdot 65$	34.8	0.00	$12 \cdot 0$	-0.25	6.5	0.15	$15 \cdot 5$	$0 \cdot 15$	$15 \cdot 5$	0.15	15.5
6	$0 \cdot 65$	34.8	e.60	12.0	-0.25	$6 \cdot 5$	$0 \cdot 15$	15.3	$0 \cdot 15$	15-5	C. 15	$15 \cdot 5$
7.	$0 \cdot 60$	31.5	0.00	$12 \cdot 0$	-0.25	$6 \cdot 3$	0.15	$15 \cdot 5$	C. 15	15.5	$0 \cdot 15$	$15 \cdot 5$
8	6. 60	31.5	0.00	12.0	-0.25	$6 \cdot 5$	$0 \cdot 15$	15.5	0.15	15.5	$0 \cdot 15$	15.5
9	0.45	$24 \cdot 5$	$0 \cdot 60$	12.0	-0.35	$4 \cdot 5$	0.15	15.5	0.15	15.5	0.25	18.3
10.	$0 \cdot 35$	21.0	-0.05	10.8	-0.25	$6 \cdot 5$	$0 \cdot 15$	$15 \cdot 5$	$0 \cdot 15$	15.5		
11.	$0 \cdot 35$	21.0	-0.05	10.8	-0.25	$6 \cdot 5$	$0 \cdot 15$	15.5	0.15	15.5		
12.	$0 \cdot 25$	18.3	-0.05	10.8	-0.25	$6 \cdot 5$	0.15	15.5	C. 15	15.5		
13.	$0 \cdot 25$	18.3	-0.05	$10 \cdot 8$	-0.25	$6 \cdot 5$	$0 \cdot 15$	15.5	$0 \cdot 15$	15.5		
14.	0.45	$24 \cdot 5$	-0.05	$10 \cdot 8$	-0.25	$6 \cdot 5$	$0 \cdot 15$	15.3	$0 \cdot 15$	15.5		
15.	$0 \cdot 55$	$29 \cdot 0$	-0.05	10.8	-0.25	$6 \cdot 5$	$0 \cdot 15$	15.5	$0 \cdot 15$	$15 \cdot 5$		
16.	$0 \cdot 65$	34.8	$-0 \cdot 05$	10.8	-0.25	$6 \cdot 5$	$0 \cdot 15$	15.5	0.15	$15 \cdot 5$		
17.	0.75	$42 \cdot 5$	-0.10	$9 \cdot 5$	-c. 15	$8 \cdot 5$	$0 \cdot 20$	17.0	0.15	15.5		
18.	0.75	$42 \cdot 5$	-0.10	$9 \cdot 5$	-0.05	$10 \cdot 8$	$0 \cdot 20$	17.0	$0 \cdot 15$	15.5		
19.	$0 \cdot 55$	29.0	-0.10	$9 \cdot 5$	-0.05	$10 \cdot 8$	$0 \cdot 15$	$15 \cdot 5$	0.15	$15 \cdot 5$		
20.	$0 \cdot 45$	$24 \cdot 5$	$-0 \cdot 10$	$9 \cdot 5$	$0 \cdot 00$	12.0	$0 \cdot 15$	15.5	$0 \cdot 15$	15.5		
21	0.35 0.25	21.6 18.3	-0.15 -0.05	8.5 10.8	0.05 0.05	13.0 13.0	0.15	15.5	0.15	15.5		
22.	$0 \cdot 25$ 0.15	$18 \cdot 3$ 15.5	-0.05 -0.05	$10 \cdot 8$ $10 \cdot 8$	0.05 0.15	$13 \cdot 0$ $15 \cdot 5$	0.15 0.15	$15 \cdot 5$ $15 \cdot 5$	$0 \cdot 15$ $6 \cdot 15$	$15 \cdot 5$ 15.5		
24.	$0 \cdot 15$	15.5	-0.15	8.5	$0 \cdot 25$	$18 \cdot 3$	0.15	15.5	$0 \cdot 15$	15.5		
25.	0.15	15.5	-0.20	$7 \cdot 5$	0.25	$18 \cdot 3$	$0 \cdot 15$	15.5	$0 \cdot 15$	$15 \cdot 5$		
26.	$0 \cdot 10$	14.0	-0.25	$6 \cdot 5$	$0 \cdot 25$	$18 \cdot 3$	0.15	15.5	$0 \cdot 15$	15.5		
27.	0.10	$14 \cdot 0$	-0.25	$6 \cdot 5$	6. 25	$18 \cdot 3$	0.15	$15 \cdot 5$	$0 \cdot 15$	15.5		
28.	C. 10	14.0	-0.25	$6 \cdot 5$	$0 \cdot 35$	21.0	$0 \cdot 15$	$15 \cdot 5$	$0 \cdot 15$	15.5		
29.	$0 \cdot 10$	14.0	-0.2 .	$6 \cdot 5$	$0 \cdot 35$	21.0	$0 \cdot 15$	15.5	$0 \cdot 15$	15.5		
30.	$0 \cdot 05$	13-C	-0.25	$6 \cdot 5$	$0 \cdot 35$	$21 \cdot 0$	$0 \cdot 13$	$15 \cdot 5$	$0 \cdot 15$	$15 \cdot 5$		
31.	0.05	$13 \cdot 0$	-0.25	6.5			$0 \cdot 15$	15.5				**

Monthly Discharge of Criss Creek near Hoey's Ranch, for 1914.

Montis.	Discharge in Siecond-Feet.				Res-Orr.	
	Maximum.	Minimum.	Sean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	1)ep:1t in inelies on 1)ruinage areal	Total in nerv-feet.
	16.5-8	18.3	$102 \cdot 2$	0.7	0.8	
	$53!\cdot 5$		327.7	22	2.5	20.149
Junc	309.5	64.2	145	6. 4 H1	1.07	S.6is
July	57.5	13.0	$26 \cdot 11$	(1) 1s	$0 \cdot 20$	1, tith
	13.0	6.5	0.9	0.07	0.15	tiop
September.	21.0	$4 \cdot 3$	11.7	0.07	0.08	6 is
Getolur	17.0	140	15.6	(1) 1	b) 1	0.3.3
November	15.5 15.3	$15 \cdot 5$	(1) 15.5	ei	0.1	
December			(for periond	1)ee (t) 1$)$	ece 91	
The period	532.5	$4 \cdot 5$	A1-6	(1-53	193	34.016

[^65]Coldwater River (2006).
Location.-At Merritt, Water District No. 3.
Records Available.-April 17 to August 31, 1913; April 1 to December 6, 1914.

Drainage Area.-Three hundred and sixty square miles.
Gauge.-It is a vertical staff gauge, and is read daily by J. Skimming.
Channel.-The stream is from 50 to 75 feet wide; velocities are medium. Bed of stream is rocky and permanent.

Discharge Measurements.-Are made by wading during low water, and from traffic bridge at high water.

Winter Flow. -Ice conditions exist on this river during January and February.

Accuracy.-Measurements on July 29 appears to indicate that channe] shifted during summer of 1914 . Results are therefore subject to inaccuracy.

Discharge Measurements of Coldwater River at Merritt, for 1914.

Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Arca of Section.	Mean Velocity	Gauge Height.	Discharge.
			Feet.	Sq.-ft.	Ft. per sec.	Feet.	Sec.-ft.
Mar. 12.	E. M. Dann \& K. G. Chis-			73.4	$1 \cdot 11$	1.02	81.3
May	do do	1505	68	24.0	5.86	3.27 1.69	1,459.0
July 8 .	do do do ..	1505	62	151.0	2.78	1.69	$420 \cdot 0$
July 29.	C. B. Corbould	1915	56	$90 \cdot 6$	$0 \cdot 96$	$0 \cdot 85$	87.5

For further metering, see Water Resources Paper No. 8 .

SESSIONAL PAPER No. 25e

Daily Gauge Height and Discharge of Coldwater near Merritt, for 1914.

Daily Gauge Height and Discharge of Coldwater River near Merritt, for 1914.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height.	Discharze	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height	Discharge.	Gauge Height.	Discharge	Gauge Height,	Discharge
	Feet.	Sec.-ft.										
1.	2.20	725	0.75	46	0.45	12	$0 \cdot 67$	31	3.00	1,265	$1 \cdot 35$	247
2	2.39	79.	9.75	46	0.45	12	$0 \cdot 65$	31	1.80	480	1.25	21.2
3	$\stackrel{2}{27}$	757	$0 \cdot 70$	38	$0 \cdot 45$	12	$0 \cdot 65$	31	1.50	320	1.25	262
4	$2 \cdot 20$	725	$0 \cdot 70$	38	$0 \cdot 40$	9	$0 \cdot 65$	31	1.50	320	$1 \cdot 15$	159
5	$1.9)$	540	0.70	35	$0 \cdot 4.3$	9	$0 \cdot 65$	31	1.60	370	$1 \cdot 15$	159
6	1.80	480	$0 \cdot 75$	33	$0 \cdot 40$	9	$0 \cdot 65$	31	1.45	295	$1 \cdot 10$	138
7	1.65	397	$0 \cdot 70$	$3{ }^{3}$	0. 40	9	$0 \cdot 65$	31	1.25	202		
8	1.62	370	0.70	3.3	$0 \cdot 47$	9	$0 \cdot 60$	25	1.29	180		
9	$1 \cdot 60$	370	0.70	38	0.411	9	$0 \cdot 69$	25	1.45	295		
10..	$1 \cdot 62$	370	$0 \cdot 65$	31	$0 \cdot 42$	9	$0 \cdot 60$	25	1.45	295		
11	$1 \cdot 60$	370	$0 \cdot 65$	31	$0 \cdot 45$	12	$0 \cdot 6)$	25	$1 \cdot 35$	247		
12	1.50	32.	$0 \cdot 65$	31	$0 \cdot 50$	15	$0 \cdot 70$	38	$1 \cdot 40$	27.	-	
13	1.45	29)	0.69	25	$0 \cdot 50$	15	0.70	38	$1 \cdot 30$	225	- + .	
14	1.45	29 ;	$0 \cdot 6)$	2.3	$0 \cdot 55$	2.1	$0 \cdot 70$	38	1.30	225		
15	1.40	270	$0 \cdot 6)$	23	0.6)	25	0.70	38	$1 \cdot 30$	225		
16	$1 \cdot 32$	225	$0 \cdot 6)$	25	060	25	$0 \cdot 65$	31	$1 \cdot 10$	138		
17	$1 \cdot 30$	220	0.55	2)	$0 \cdot 65$	31	$0 \cdot 65$	31			,	
18	$1 \cdot 30$	225	$0 \cdot 55$	2)	$0.71)$	38	$0 \cdot 10$	0				
19	$1 \cdot 2$.	180	$0 \cdot 55$	2)	$0 \cdot 7$.	33	$0 \cdot 15$	0				
2.	$1 \cdot 2.3$	180	0.55	2)	$1 \cdot 10$	138	1-19	138			
21.	$1 \cdot 10$	138	$0 \cdot 50$	15	1.60	102	$0 \cdot 15$	0				
22	1.00	102	0. 50	15	0 9.)	77	$0 \cdot 9$,	89				.
2.3	1.00	102	$0 \cdot 50$	15	$0 \cdot 83$	66	$0 \cdot 85$	66				
24	$1-00$	162	0.50	15	0.85	55	$0 \cdot 85$	66				
25	1.00	162	$0 \cdot 50$	15	0.80	55	0.85	66	1.43	270		
26	1.00	102	0.50	15	0.75	46	0.97	77	1.70	425		
27	0.97	77	$0 \cdot 47$	12	0.70	38	0.85	66	1.69	370		
28	0.97	77	0.4)	12	0. 67	31	0.85	66	$1 \cdot 69$	370		
29	$0 \cdot 80$	55	$0 \cdot 45$	12	0.75	38	0.80	55	$1 \cdot 40$	270		
30	0.80	55	0.45	12	0.70	38	$0 \cdot 80$	55	$1 \cdot 35$	247		
31	$0 \cdot 80$	55	0.45	12	. $+\cdot$.	$1 \cdot 60$	102				

Monthly Discharge of Coldwater River at Merritt, for 1914.
(Drainage area, 360 square miles.)

Nots.-Winter enditions prevailed after December 6.
No records of precipitation are available for the drainage basin of the Coldwater river. Ite prccipits tion et Nico!a lake (similar climate to Merritt) is $\mathbf{1 0 - 6 6}$ inches (mean annual). It must be noted, however, that the Colduater river rises in the same hills from which the Coquihalla is fed, and the precipitation in the hilis is many t in es that in the lower reaches of the Colduater.

Deadman River (2008).

Location.-Section 15, township 22, Ranoe 22, west 6 th meridian.
Records Available.-April 22 to November 21. 1913; April 1 to December 9, 1914.

Drainage Area.- 300 square miles.
Gauge.-Standard staff gauge read daily by J. Hoey.
Channel.-Channel is straight and control is good. Velocity is high only at high water.

Discharge Measurements.-Curve is well defined with ten measurements at varying stages.

Winter Flow.-Ice conditions exist on this river during January, February, and March.

Accuracy.-Accuracy is considered very high, and results should fall within five per cent.

Discharge Meascrements of Deadman River near Savona, for 1914.

[^66]6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Deadman River above Criss Creek, for 1914.

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Deadman River above Criss Creek, for 1914.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height.	$\begin{gathered} \text { Dis- } \\ \text { charge. } \end{gathered}$	Gauge Height.	$\begin{gathered} \text { Dis- } \\ \text { charge. } \end{gathered}$	Gauge Height	Dis- charge	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge. } \end{gathered}$	Gage Height	Discharge	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge. } \end{aligned}$
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	See.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
$\frac{1}{2}$	2.20 2.10	81.0 73.0	2.00 1.90	66.0 59.5	1.50 1.50	37.5 37.5	0.95 0.90	11.0 9.0	0.90	9.0	0.90	$9 \cdot 0$
3	$2 \cdot 00$	66.0	1.90 1.80	53.5	1.50	37.5	${ }_{0} 0.90$	9.0 9.0	0.90 0.90	$9 \cdot 0$ $9 \cdot 0$	0.90 0.90	$9 \cdot 0$ 9.0
4	2.00	66.0	1.60	42.5	$1 \cdot 45$	35.0	$0 \cdot 90$	9.0	1.00	13.0	0.90	9.0
5.	1.90	59.5	1.60	42.5	$1 \cdot 45$	$35 \cdot 0$	0.90	9.0	1.00	13.0	0.90	9.0
6	1.90	59.5	1.80	53.5	$1+40$	32.5	0.90	$9 \cdot 0$	1.00	13.0	0.90	9.0
7.	1.80	53.5	1.80	53.5	1.40	32.5	0.90	9.0	1.09	13.0	0.90	9.0
9	1.70	48.0	1.90	59.5	$1 \cdot 40$	32.5	0.90	$9 \cdot 0$	1.00	13.0	$0 \cdot 90$. 0
9	1.70	48.0	2.00	$66 \cdot 0$	1.30	27.5	$0 \cdot 90$	$9 \cdot 0$	1.00	13.0	0.90	9.0
10.	1.60	42.5	$2 \cdot 00$	66.0	1-30	27.5	0.90	9.0	1.00	13.0		
11.	$1 \cdot 60$	42.5	2.00	66.0	$1 \cdot 30$	27.5	0.90	9.0	1.00	13.0		
12.	1.50	37.5	2.00	66.0	$1 \cdot 30$	27.5	0.90	9.0	1.00	13.0		
13	1.50	37.5	2.00	66.0	$1 \cdot 30$	27.5	0.90	9.0	1.00	13.0		
14	1.50	37.5	1.90	59.5	1.30	27.5	0.90	$9 \cdot 0$	1.00	13.0		
15.	1.70	48.0	1.90	59.5	$1 \cdot 30$	27.5	0.90	9.0	1.00	13.0		
16.	1.70	48.0	1.90	39.5	1.25	25.2	0.90	9.0	1.00	13.0		
17	1.70	48.0	1.80	53.5	1.25	25.2	$0 \cdot 90$	$9 \cdot 0$	1.00	13.0		
18.	1.80	53.5	1.80	53.5 53.5	1.20 1.20	${ }_{23}^{23 \cdot 0}$	0.90	$9 \cdot 0$	0.95	11.0		
20.	1.90	39.5	1.80	53.5	1.20	23.0	O.90 0.90	9.0 9.0	${ }_{0}^{0.95}$	11.0		
21	2.00	66.0	1.80	53.5	1.20	23.0	0.90	9.0	0.95	11.0		
22.	2.60	$66 \cdot 0$	1.80	53.5	1.20	23.0	0.90	9.0	0.90	9.0		
23.	1.90	59.5	1.70	48.0	1.20	23.0	0.91	9.0	0.90	9.0		
24	1.80	53.5	1.70	48.0	1.10	18.0	0.90	$9 \cdot 0$	0.90	$9 \cdot 0$		[6....
25.	1-80	53.5	1.70	48.0	1.10	18.0	0.90	$9 \cdot 0$	0.90	$9 \cdot 0$		
26	1.80	53.5	1.70	48.0	1.00	13.0	0.90	9.0	0.90	9.0		
27.	1.80	53.5	1.70	48.0	1.00	13.0	0.90	9.0	0.90	9.0		
28	1.80	53.5	$1 \cdot 65$	45.2	0.95	11.0	0.90	$9 \cdot 0$	0.90	9.0		
29	1.80	53.5	1. 60	42.5	0.95	11.0	0.90	$9 \cdot 0$	0.90	$9 \cdot 0$		
30	1.80	53.5	1.60	42.5	0.95	$11 \cdot 0$	0.90	$9 \cdot 0$	0.90	$9 \cdot 0$		
31.	1.80	53.5	1. 60	42.5			0.90	9.0				

Monthly Discharge of Deadman River above Criss Creek, for 1914.
(Drainage area, 306 square miles.)

Month.	Discharge in Necond-Feet.				$\mathrm{Rt} \times$ - ${ }^{\text {dry }}$.	
	Maximum.	Minimunt.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { siguare } \\ & \text { mule. } \end{aligned}$	Depth in inches on Dramage arka.	Total in gers-fivet.
April.	$267 \cdot 5$	$\underline{33.0}$	$154 \cdot 0$	$0 \cdot 51$	0.57	9.164
May..	$562 \cdot 5$	135.0	$361 \cdot 0$	$1 \cdot 20$	141	22,381
June... . . .	$122 \cdot 5$	73.0	86.6	0.32	$13 \mathrm{3t}$	5. its
	81.0	37.5	$34 \cdot 3$	$0 \cdot 15$	(1)-21	3, 514
	46.0	± 2.5	$54 \cdot 11$	0.15	(1) 21	3.3010
	37.5	11.0	$25.6)$	0.15	(1).64)	1,4N3
	11.0	${ }^{9.0}$	e.1	0.43	(10.03	8, 89
	13.9 0.0	9.0	11-1	(1) 0.10 .14	0.0.015	660
	0.0)	$0 \cdot 11$	(For perion!	1)evelt 1)	oe 01	
The puriod	$562 \cdot 5$	9.0	96.0	(1).39	2.92	417,659

Notr.- Winter conditions prevailet after Decombor 9.

Fraser River at Lytton (2012).
Location.-Section 1, township 15, range 27, west 6th meridian.
Records Available. - February 20 to December 31, 1912; January 1 to December 31, 1913; January 1 to December 31, 1914.

Drainage Area.-Sixty-three thousand square miles.
Gauge.-Gauge painted on rock, and read daily by J. Clark.
Channel.-The channel varies in width from 200 feet at low water to 800 feet at high water. The flow is uniform, but velocities are very high during high water.

Discharge Measurements.-The curve is well defined, from 11,562 second feet to 162,000 second feet; above this the curve has been projected.

Winter Flow.-Open flow throughout the year.
Accuracy.-Conditions for gauge readings are good. Meterings are taken from ferry boat, but should be very accurate except at extreme high water. The results are considered to fall within 10 per cent of true accuracy.

Daily Gauge Height and Discharge of Fraser River at Lytton, for 1914.

Day.	January.		February.		March.		April.		May.		June.	
	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge. } \end{aligned}$	Gauge Height	Discharge	Gauge Height	$\left\lvert\, \begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}\right.$	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height	Discharge	Gauge Height	Discharge
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	See.ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.fit.
1.	10.0	13,000	11.0	16,500	11.0	16,500	10.0	13,000			28.3	119,800
2.	10.5	14.750	10.5	14,750	11.0	16,500	10.0	13,000			27.9	117,375
3	11.5	18,500	10.0	13,000	11.0	16,500	10.0	13,000			27.7	116,125
4.	12.0	20,500	$9 \cdot 5$	11,250 9	11.0 10.5	16,500	$10 \cdot 5$	14,750			28.65	121,900
5.	12.5	23,000	9.0	9,500	10.5	14,750			$10 \cdot 5$	14,750	29.9	129,400
6.	12.0	20,500	$9 \cdot 0$	9,500	10.5	14.750			11.6	16,500	31.0	136,250
7	12.0	20,500 20 500	9.5 11.0	11,250	10.5 10.0	14.750 13 1,000			11.0 10.5	16,500	32.0	14, 1400
8	12.0	20,500	11.0	16,500	10.0	13,000			10.5	14.750	32.1	143.100
9.	12.0	20,500	11.5	18,500	11.0	16,5c0			$10 \cdot 0$	13,000	31.4	138,750
10.	11.0	16,500	11.5	18,500	10.0	13,000			11.0	16,500	31.5	139,375
11.	10.5	14,750	12.0	20,500	10.0	13.000			12.0	20,500	31.7	140,625
12.	11.5	18,500	12.0	20,500	10.0	13,000			12.5	23,000	31.5	139,375
13	11.5	18,500	13.0	25,500	10.0	13,000			13.0	25,500	$31 \cdot 6$	140,000
14.	11.0	16,500	13.0	25,500	$10 \cdot 5$	14.750			13.5	28,500	31.8	141,250
15.	10.0	13,000	14.0	31,500	11.5	18,500			15.0	37,500	$32 \cdot 6$	146,100
16	$10 \cdot 0$	13,000	$14 \cdot 0$	31,500	11.0	16,500			16.5	47,000	34.5	157,625
17	$9 \cdot 5$	11,250	13.5	28,500	11.0	16,510			19.0	62,500	36.1	167,600
18	10.0	13,000	13.0	25,500	12.0	20,500					37.7	177,200
19	10.0	13,000	12.0	20,500	12.0	20,500					39.2	186, 200
20	$10 \cdot 0$	13,000	12.0	20,500	12.5	23,000					39.8	189,800
21	9.5	11,250	12.0	20,500	13.0	25,500			28.2	119,200	39.9	190,400
22.	9.5	11,250	11.5	18,500	13.5	28.500			28.5	121,000	37.6	176,600
23.	10.0	13.000	11.0	16,500	13.0	25,500			25.6	121.600	35.3	162,625
24.	9.0	9,500	11.0	16,500	13.0	25,590			29.0	124,000	$3 \cdot 4.2$	155,750
25.	9.0	9,50C	11.0	16,500	13.0	25,500			29.2	125,200	33.8	153,300
26.	9.0	9,590	11.5	18,500	12.0	2C,500			31.0	136,250	32.8	147,300
27	9.0	9,500	12.0	20.500	12.0	20,500			31.3	138.125	32.3	144,300
28.	9.5	11,250	11.0	16.500	11.0	16,500			$32 \cdot 5$	145,500	31.3	138, 125
29.	10.0	13.000			11.0	16,500			31.5	139.375	31.2	137,500
30.	10.0	13.000			11.0	16,500			$30 \cdot 3$	131,875	$32 \cdot 3$	144,300
31	$11 \cdot 0$	16,500			11.0	16,500			$29 \cdot 6$	127,600		

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Fraser River at Lytton, for 1914.

Day.	July :		August.		September.		October.		November		December.	
	Gauge Height	Discharge.	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height	Dizcharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.
	Feet.	Sec.-ft.	Fect.	Sec.ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec. ft .	Feet.	Sec.-ft.
1	$33 \cdot 6$	152.10¢	27.2	113,000	19.8	67,300	17.5	153,000	$14 \cdot 5$	34,500.	14.6	35,160
2.	33.9	153,9¢0	26.4	108,000	19.4	64,900	17.4	152,400	$14 \cdot 1$	32,100	$14 \cdot 6$	35,100
3	34.5	157,625	25.8	104,250	$19 \cdot 2$	63,700	17.5	53,000	$13 \cdot 6$	29.100	$14 \cdot 1$	32, 100
4	35.0	160,756	25.5	102,375	$19 \cdot 1$	63,100	17.0	$5 \mathrm{C}, 000$	$14 \cdot 2$	32,7C0	13.6	29.100
5.	$35 \cdot 5$	163,875	$25 \cdot 3$	101,125	$18 \cdot 5$	59,250	$16 \cdot 5$	47.000	$14 \cdot 3$	33,300	13.0	25.500
6.	35.8	165,750	$25 \cdot 3$	101, 125	18.4	58,600	16.2	45,200	$14 \cdot 2$	32,700	13.0	25,500
7	35.0	160,750	25.4	101,750	$18 \cdot 3$	57,950	$15 \cdot 2$	38,806	$14 \cdot 5$	34,500	12.9	$25 . \mathrm{CC} 0$
8	34.8	159,50C	$25 \cdot 2$	100,500	18.3	57,950	$14 \cdot 7$	35,700	14.8	36,300	$12 \cdot 5$	23.000
9.	33.5	151,500	25.1	99,875	18.1	56,630	14.5	34,560	$14 \cdot 3$	33.300	12.0	20,500
10.	$32 \cdot 8$	147.300	$24 \cdot 6$	96,750	$18 \cdot 1$	55,650	$14 \cdot 5$	34,500	$13 \cdot 5$	28,500	12.0	20,500-
11.	32.4	144.9C0	$24 \cdot 2$	94, 250	$18 \cdot 6$	59,9:0	14.5	34,500	13.0	25.50	11.7	19,300
12	$32 \cdot 3$	144,360	$24 \cdot 2$	94, 250	18.5	59,250	$14 \cdot 2$	32,700	$13 \cdot 1$	26.10 C	11.1	16,9C0
13.	32.5	145,500	$24 \cdot 1$	93, 625	18.4	58,660	$14 \cdot 5$	34.500	13.4	27.960	11.2	17,360
14	$32 \cdot 6$	146,100	23.6	90,500	18.2	57,300	$14 \cdot 9$	36,900	$13 \cdot 4$	27,900	11.0	16,500
15.	32.8	147,300	$23 \cdot 1$	87,375	$18 \cdot 3$	57,950	$15 \cdot 6$	41,400	$13 \cdot 0$	25.500	10.9	16,150
16.	32.6	146, 100	23.0	86,750	18.1	56,650	16.6	47,600	13.0	25,560	IC. 8	15.800
17	$32 \cdot 6$	146, 100	$22 \cdot 6$	84,250	$18 \cdot 0$	56, 600	17.2	51.200	12.7	24,000	$10 \cdot 9$	16,150
15.	32.5	145,500	22.2	81,750	17.8	54, 800	17.5	53,00:	12.5	23,000	10.7	15,430
19.	32.2	143,700	21.7	78,700	$17 \cdot 5$	53.060	17.8	54,800	$12 \cdot 6$	23,500	$10 \cdot 7$	15,450
20.	31.7	140,625	$21 \cdot 6$	78,100	17.3	51,800	17.8	54.800	$13 \cdot 3$	27,300	$10 \cdot 6$	15.100
21.	31.1	136.875	21.6	78,100	$16 \cdot 9$	49,4C.	17.9	E5,400	13.8	30,30:	$10 \cdot 9$	16.150
22.	$30 \cdot 5$	133,12:	21.6	78, 100	$16 \cdot 8$	48,840	17.5	53.000	$14 \cdot 4$	33,900	$11 \cdot 1$	16,940
23.	$30 \cdot 1$	130, 625	$21 \cdot 6$	78, 100	16.5	47,000	17.2	51,206	14.5	34. 500	11.4	18,100
21.	31.2	137,506	21.5	77, 500	$16 \cdot 5$	47,0 00	$17 \cdot 0$	50,000	$14 \cdot 2$	32,704	$12 \cdot 1$	21,000
25.	$33+2$	149,706	$21 \cdot 4$	76.930	16.9	49,400	$16 \cdot 5$	47,020	$14 \cdot 0$	31.500	$12 \cdot 3$	22, CO 0
26.	34.1	155.12\%	$21 \cdot 3$	76,300	17.2	51,200	$15 \cdot 8$	42,700	$13 \cdot 8$	30,310	$12 \cdot 8$	24,501)
27.	31.4	138,750	$21+2$	75, 700	17.8	54,800	$15 \cdot 2$	38, 8001	13.6	29, 100	12.8	24.500
28.	29.8	128, 800	$20 \cdot 5$	71,500	$18 \cdot 1$	56,650	$14 \cdot 7$	35, 700	13.8	20,301	13.1	26.100
29.	29.4	126,460	$20 \cdot 3$	70,300	18.0	56.000	14.5	34, 510	$14 \cdot 4$	33,90\%	13.2	26.701
30....	$29 \cdot 0$	124,000	$20 \cdot 0$	68,500	$17 \cdot 7$	54.200	$14 \cdot 1$	32,100	$14 \cdot 3$	33,300	$13 \cdot 0$	$25.5(0)$
31.	$28 \cdot 3$	119,800	$19 \cdot 6$	66,100			$14 \cdot 3$	33,300			$12 \cdot 9$	25.001

[^67]Monthly Discharge of Fraser River at Lytton-above confluence with the Thompson river, for 1914.
(Drainage area, 63,000 square miles.)

Nore.-The gauge reader at this station, Chas. Lual, was drowned early in April, and it was nearly a month before a suitable gauge reader could be procured to take his place. Consequently, flow records for the greater part of April must remain blank.

The mean annual precipitation at Quesnel is given as 13.23 inches (Meteorological Service, Department of Marine and Fisheries). This is probably somewhat less than the mean annual precipitation over the whole drainage area of the Fraser.

Hat Creek, Above Hammond's Diversion (2016).

Location.-Section 18, township 19, range 26, west 6 th meridian: At Colley's ranch, just above the Hammond diversion.

Records Available.-April 22, 1911, to December 31, 1911 ; January 1, 1912, to November 18, 1912; April 30, 1913, to December 31, 1913; April 1, 1914, to November 30, 1914.

Drainage Area.-Four hundred and twenty square miles.
Gauge.-Standard vertical staff gauge, read daily by Thos. King,
Channel.-The channel is 12 to 14 feet in width and is straight above and below the gauge; the control is good.

Discharge Measurements.-Well-distributed meterings have been obtained covering the stream's range. Meterings were mostly made in the box flume above the Hammond diversion weir.

Winter Flow.-Stream is sometimes open during winter months. Snowfall is about 4 feet per annum, and rainfall probably 10 to 12 inches, bringing the total precipitation up to 14 to 16 inches, annually.

Accuracy.-Conditions for metering are good and gauge readings are carefully taken. Accuracy is probably within 10 per cent.

Discharge Measurements of Hat Creek above Hammond's Diversion, for 1914.

For further hydrographic data, see Water Resources Papers Nos. 1 and 8 .

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Hat Creek near Hammond's Div., for 1914.

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Hat Creek near Hammond's Div., for 1914.-Con.

D.4.	July .		August.		September.		October		November.		December.	
	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height	Discharge.	Gauge Height	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge
	Feet.	Sec.-ft.	Feet.	S3c. -ft .	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1	$0 \cdot 58$	21.0	0.21	5-3	0. 10	$2 \cdot 5$	$0 \cdot 13$	$3 \cdot 3$	$0 \cdot 13$	$3 \cdot 3$		
2	0.55	$19 \cdot 5$	0.18	$4 \cdot 5$	$0 \cdot 10$	$2 \cdot 5$	$0 \cdot 13$	$3 \cdot 3$	$0 \cdot 13$	$3 \cdot 3$		
3	0.53	18.5	0.18 0.18	$4 \cdot 5$ $4 \cdot 5$	0.09 0.09	$2 \cdot 2$ 2.2	0.13 0.13	$3 \cdot 3$ $3 \cdot 3$	0.13 0.13	$3 \cdot 3$		
4	0.53 0.52	18.5 18.0	0.18 0.18	$4 \cdot 5$ $4 \cdot 5$	0.09 0.08	$2 \cdot 2$ $2 \cdot 0$	0.13 0.13	$3 \cdot 3$ $3 \cdot 3$	0.13 0.13	$3 \cdot 3$ $3 \cdot 3$		
6.	0.48	$16 \cdot 1$	0.13	3-3	0.08	$2 \cdot 0$	$0 \cdot 13$	3-3	$0 \cdot 11$	$2 \cdot 8$		
7.	0.48	$16 \cdot 1$	$0 \cdot 13$	$3 \cdot 3$	0.08	$2 \cdot 0$	$0 \cdot 13$	$3 \cdot 3$	0.11	$2 \cdot 8$		
8	0.43	13.8	$0 \cdot 15$	$3 \cdot 7$	0.11	$2 \cdot 8$	$0 \cdot 13$	$3 \cdot 3$	$0 \cdot 13$	$3 \cdot 3$		
9	0.43	13.8	0.13	$3 \cdot 3$	$0 \cdot 12$	$3 \cdot 0$	$0 \cdot 13$	3-3	$0 \cdot 11$	$2 \cdot 8$		
10.	$0 \cdot 38$	11.7	0.13	$3 \cdot 3$	$0 \cdot 13$	$3 \cdot 3$	0.13	$3 \cdot 3$	$0 \cdot 11$	$2 \cdot 8$		
11.	0.38	11.7	0.13	$3 \cdot 3$	0.13	$3 \cdot 3$	0.15	3-7	$0 \cdot 11$	$2 \cdot 8$		
12.	$0 \cdot 38$	11.7	0.13	$3 \cdot 3$	0.11	$2 \cdot 8$	$0 \cdot 15$	$3 \cdot 7$	0.11	$2 \cdot 8$		${ }^{1}$
13.	$0 \cdot 38$	11.7	$0 \cdot 13$	$3 \cdot 3$	$0 \cdot 13$	$3 \cdot 3$	0.15	$3 \cdot 7$	$0 \cdot 11$	$2 \cdot 8$		
14	0.33	$9 \cdot 7$	0.13	$3 \cdot 3$	$0 \cdot 13$	$3 \cdot 3$	$0 \cdot 13$	$3 \cdot 3$	$0 \cdot 11$	$2 \cdot 8$		
15.	$0 \cdot 33$	9.7	0.13	$3 \cdot 3$	$0 \cdot 13$	$3 \cdot 3$	$0 \cdot 13$	$3 \cdot 3$	$0 \cdot 11$	$2 \cdot 8$		
16	$0 \cdot 33$	$9 \cdot 7$	$0 \cdot 13$	$3 \cdot 3$	$0 \cdot 14$	$3 \cdot 5$	0.13	$3 \cdot 3$	0.11	$2 \cdot 8$		
17	$0 \cdot 33$	$9 \cdot 7$	$0 \cdot 13$	$3 \cdot 3$	$0 \cdot 13$	$3 \cdot 3$	$0 \cdot 14$	$3 \cdot 5$	$0 \cdot 11$	$2 \cdot 8$		
18	$0 \cdot 33$	$9 \cdot 7$	$0 \cdot 13$	$3 \cdot 3$	0.23	$6 \cdot 0$	0.13	$3 \cdot 3$	$0 \cdot 11$	$2 \cdot 8$		
19	0.33	$9 \cdot 7$	0.13	$3 \cdot 3$	0.23	$6 \cdot 0$	$0 \cdot 14$	$3 \cdot 5$	0.11	$2 \cdot 8$		
20	$0 \cdot 33$	$9 \cdot 7$	0.12	$3 \cdot 0$	0.21	$5 \cdot 3$	0.13	$3 \cdot 3$	0.11	$2 \cdot 8$		
21	$0 \cdot 33$	$9 \cdot 7$	$0 \cdot 12$	$3 \cdot 0$	$0 \cdot 13$	$3 \cdot 3$	$0 \cdot 13$	3-3	0.11	$2 \cdot 8$		
22	0.28	$7 \cdot 8$	$0 \cdot 12$	$3 \cdot 0$	$0 \cdot 13$	$3 \cdot 3$	$0 \cdot 13$	$3 \cdot 3$	$0+11$	$2 \cdot 8$		
23.	$0 \cdot 25$	6.8	$0 \cdot 12$	$3 \cdot 0$	$0 \cdot 13$	$3 \cdot 3$	$0 \cdot 13$	$3 \cdot 3$	$0 \cdot 13$	$3 \cdot 3$		
24	$0 \cdot 25$	$6 \cdot 8$	$0 \cdot 12$	$3 \cdot 0$	0.13	$3 \cdot 3$	$0 \cdot 13$	3-3	$0 \cdot 15$	$3 \cdot 7$		
25.	0.25	$6 \cdot 8$	$0 \cdot 12$	$3 \cdot 0$	0.13	3-3	$0 \cdot 13$	$3 \cdot 3$	$0 \cdot 15$	$3 \cdot 7$		
26	0.23	6.0	$0 \cdot 12$	$3 \cdot 0$	0.13	$3 \cdot 3$	0.13	$3 \cdot 3$	0.13	$3 \cdot 3$		
27	0.23	$6 \cdot 0$	$0 \cdot 12$	$3 \cdot 0$	$0 \cdot 13$	$3 \cdot 3$	$0 \cdot 13$	$3 \cdot 3$	$0 \cdot 13$	$3 \cdot 3$		
28.	$0 \cdot 23$	$6 \cdot 0$	$0 \cdot 12$	$3 \cdot 0$	0.13	$3 \cdot 3$	$0 \cdot 13$	$3 \cdot 3$	$0 \cdot 13$	$3 \cdot 3$		
29.	$0 \cdot 23$	$6 \cdot 0$	$0 \cdot 10$	$2 \cdot 5$	$0 \cdot 11$	$2 \cdot 8$	$0 \cdot 13$	3-3	$0 \cdot 13$	3-3		
30	$0 \cdot 23$	$6 \cdot 0$	$0 \cdot 10$	$2 \cdot 5$	$0 \cdot 13$	$3 \cdot 3$	$0 \cdot 13$	$3 \cdot 3$	0.13	$3 \cdot 3$		
31.	0.21	$5 \cdot 3$	$0 \cdot 10$	$2 \cdot 5$			$0 \cdot 13$	$3 \cdot 3$				

Monthly Discharge of Hat Creek above Hammond's Diversion, for 1914.
(Drainage area, 47 square miles.)

[^68]
SESSIONAL PAPER No. 25e

Nahatlatch River, Upper (2028).

Location.-Section 14, township 12, range 27, west 6 th meridian.
Records Available.-February 26 to December 31, 1912 ; January 1 to December 31, 1913; January 1 to December 31, 1914.

Drainage Area.-Three hundred square miles.
Gauge.-Standard chain gauge, read weekly by Chas. Nicholson.
Channel.-The channel is straight at measuring section. Velocities are fairly high.

Discharge Measurements.-Discharge measurements are made from cable car, and curve has been well defined at varying stages.

Winter Flow.-Open water conditions prevailed throughout the winter.
Accuracy.-The accuracy of results will eventually be high. The present results should fall well within 15 per cent.

Discharge Measurements of Nahatlatch (Upper) River near Keefers, B.C., for 1914

	Date	Hydrographer.	Meter No.	Width.	Ares of Section.	Mean Velocity:	Gauge Height.	Discharge.
				Feet.	Sq. it.	Ft. per sec.	Feet.	See.-ft.
May	20 30	F. G. Chisholm. F. M. Dann and K G.	1,055 1,055	111 116		$4 \cdot 35$	$8.5 j$	3.452

Forfurther hadrographic datio see Whe: liesources Ia, ers Nos. I and b.

Daily Gauge Height and Discharge of Nahatlatch River at Keefers, B.C., for 1914.

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Nahatlatch River at Keefers, B.C., for 1914.-Concluded.

Monthly Discharge of Nahatlatch River at Keefers, B.C., for 1914.
(Drainage area, 300 square miles.)

[^69]Location.-Section 7, township 12, range 26, west 6th meridian.
Records Available.—March 1 to December 7, 1912; January 1 to December 31, 1913; January 1 to December 31, 1914.

Drainage Area.-Four hundred square miles.
Gauge.-Standard vertical staff gauge, read weekly by Chas. Nicholson.
Channel.-Channel at section is straight, with an average depth at low water of 8 feet. Velocity low. Bed of river rocky and permanent.

Discharge Measurements.-Discharge measurements are made from cable car.

Winter Flow.-Open conditions generally prevail throughout the winter.
Accuracy.-Accuracy of results will eventually be high, and the present returns are within 15 per cent.

Daily Gauge Height and Discharge of Nahatlatch River at Keefers, B.C., for 1914.

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Nahatlatch River at Keefers, B.C.. for 1914.-Concluded.

For meterings and further hydrographic data, see Water Resources Papers Nos. 1 and 8.
Monthly Discharge of Nahatlatch (Lower) River at Keefers, B.C. for 1914.
(Drainage area, 400 square miles.)

Month.		Discharge in Second-Feet.				Rus-Ofr.	
		Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$
January		1,140	600	836	2.1	2.4	51.446
Fehruary		520	310	305			21, 1337
March.		1,385	410	${ }^{784}$		2.3	4s, 216
April.		2,5109	1,140 2,800	1.910 +1609	11.5	(13.3	113.630
May ..		6,570 8.255	2, xnot	+1609 +1.572	11.3 11.4	13.8 12.7	20.4.44
June		8,255 8,570	3,365 2,564 1,465	+.572	11.4	12.7 13.4	
Auguat		2. 1×5	1. 212	1,753	+1	5.1	110.410
Septomber		1,5640	(485	1.123	2.8	3.1	66.140
Ortober		4.625	-si4 1.14			S. ${ }_{\text {S }}$	
November		1,205 1,010	1.140	-. 191	1.7	安.1	130.859
The yoar	m	0,570	316	2,130	8.3	72.5	1.345. 657

[^70]
Nicola River at Merritt (2029).

Location.-At Merritt, Water District No. 3.
Records Available.-June 16 to December 31, 1911; January 31 to December 31, 1912; January 1 to December 31, 1913; January 1 to December 31, 1914.

Drainage Area.-One thousand five hundred square miles.
Gauge.-Standard vertical staff gauge, read tri-weekly by Miss C. A. Seaton.

Channel.-The bed of the stream is gravelly, and the flow is in two channels during high water.

Discharge Measurements.-Four well-distributed measurements have been obtained in 1914.

Winter Flow.-Open conditions usually prevail throughout the year.
Accuracy.-The accuracy is considered to be within 15 per cent of true conditions.

Discharge Measurements of Nicola River at Merritt, for 1914.

Date.		Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
May	3.	K. G. Chisholm	1505	135	537	4.65	7.53	2,500
May	25.		${ }_{1}^{1055}$	135 60	649 306	4.51	7.80 6.07	2,926
July	29	C. B. ${ }_{\text {Corbould }}$	1915	55	245		${ }_{5 \cdot 10}$	750 218

[^71]
SESSIONAL PAPER No. 25e

Daily Gauge Height and Discharge of Nicola River at Merritt, for 1914.

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Nicola River at Merritt, for 1914.

Monthly Discharge of Nicola River at Merritt, for 1914.
(Drainage area, 1,500 square miles.)

Month.	Discharge in Second-Feet.				Rex-Off.	
	Maximum.	Minimum.	Nlean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	Total in acre-feet.
January	490	82	198	$6 \cdot 13$	$0 \cdot 15$	12.175
February	130	82	102	e.07	$0 \cdot 07$	5,665
March	218	130	183	$0 \cdot 12$	$0 \cdot 14$	11,252
April.	1,590	235	889	0.59	$0 \cdot 66$	52,899
May.	3,790	1.05 .5	2,386	1.59	1. 83	146, 712
June	3,060	1,170	1,718	$1 \cdot 14$	$1 \cdot 27$	102, 230
	1.055	185	516	$0 \cdot 34$	C. 39	31,728
August . . .	185	50	97	$0 \cdot 16$	0.67	5,964
September	114	34	67 69	C. 0.05	0.04 0.06	3,987 4,243
October	117	34	69	$0 \cdot 05$	$0 \cdot 06$	4,243
The period. ...	3.790	34	$622 \cdot 5$	$0 \cdot 41$	$4 \cdot 68$	376,855

[^72]Nicola River, at Mouth (2030).
Location.-Section 12, township 17, range 25, west 6th meridian.
Records Available.-August 1 to November 31, 1911; April 5 to December 21, 1912; May 9 to December 11, 1913; April 1 to September 30, 1914.

Drainage Area.-Two thousand six hundred and fifty square miles.
Gauge.-Inclined staff gauge, read three times a week by Miss Violet Curnow.

Channel.-Is straight at measuring section. Velocity high. Bed of stream is composed of rocks and gravel. During high water on the Thompson river the control is affected at the measuring section but not at the gauge.

Discharge Measurements.-Are made from bridge at all stages.
Winter Flow.-Ice conditions exist usually during January, February and March.

Accuracy.-The accuracy will eventually be high, but at present more measurements are required.

Discharge Measurements of Nicola River at mouth, for 1914.

Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section.	Mean Velocity:	Gauge Height	Discharge.
			Feet.	Sq. ft.	Ft. per sec	Feet.	See -ft.
May 23.	K. G. Chisholm	1055	144	801	$8 \cdot 06$	7.6	6.456
July 31.	C. B. Corbould	1915	115	197	$2 \cdot 40$	$2 \cdot 42$	468

[^73]6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Nicola River at mouth, for 1914.

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Nicola River at mouth, for 1914 Concluded.

Monthly Discharge of Nicola River at Mouth, for 1914.
(I)rainage area, 2,650 square miles.)

 tributarion of the Nienh river.

Spius Creek (2037).
Location.-Section 23, township 13, range 23, west 6th meridian.
Records Available.-August 18 to November 22, 1911; May 8 to September 12, 1912; May 25 to November 30, 1913; March 22 to December 24, 1914.

Drainage Area.-Three hundred and forty-four (344) square miles.
Gauge.-Standard chain gauge, read daily by G. A. Longbotham.
Channel.-The channel is composed of rocks and boulders; velocity of water is high at all stages.

Discharge Measurements.-Six discharge measurements were obtained during 1914 at varying stages, and curve is fairly well defined.

Winter Flow.-Ice conditions exist from November to February under normal conditions.

Accuracy.-Accuracy of results is considered high, except at freshet, when they should fall within 15 per cent.

Discharge Measurements of Spius Creek near Canford, for 1914.

	Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity:	Gauge Height.	Discharge.
				Feet.	Sq. ft .	Ft. per sec:	Feet.	Sec.ft.
Mar.	18.	K. G. Chisholm.	1505	70	111	1.73	1.48	191
May	5.	do	1505	91	234	$5 \cdot 51$	$3 \cdot 04$	1.309
May	6	do	1505	90	224	$5 \cdot 16$	$2 \cdot 92$	1,171
May	27.	do	1055	108	240	$5 \cdot 11$	$3 \cdot 00$	1,236
July	19.	C.B. ${ }_{\text {do }}^{\text {Corbould }}$	1913	76	138	$3 \cdot 60$	2.08	499
July		C. B. Corbould	1915	68	$67 \cdot 1$	1.85	$1 \cdot 25$	120

For further hydrographic data on Spius creek, see Water Resources Papers Nos. 1 and 8.

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Spius Creek, near Canford, for 1914.

Daily Gauge Height and Discharge of Spius Creek near Canford, for 1914.

Day.	July		August.		September.		October.		November		December	
	Gauge Height	Discharge	Gauge Height.	Discharge	Gauge Height.	Discharge	Gauge Height.	Diseharge	Gauge Height	Discharge.	Gauge Height	Diseharge.
	Feet.	See.-ft.	Feet.	Sec.-ft.	Feet.	See.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-1t.	Feet.	See.-ft.
1	$2 \cdot 85$	1,125		112	0.90	52	$1 \cdot 15$	96	2.40	728	$2 \cdot 00$	4.50 450
2	$2 \cdot 80$	1,077	1.20	107	0.90	52	$1 \cdot 15$	96	$2 \cdot 40$	728	2.00	450
3	$2 \cdot 80$	1,077	1.20	107	0.90	52	$1 \cdot 15$	96	2.40	728	$2 \cdot 00$	450
\pm	$2 \cdot 50$	810	1.15	96	0.90	52	$1 \cdot 10$	56	$2 \cdot 45$	769	1.95	420
5	$2 \cdot 40$	728	$1 \cdot 15$	96	$0 \cdot 90$	52	$1 \cdot 10$	86	$2 \cdot 40$	728	$1 \cdot 85$	362
6	$2 \cdot 35$	689	$1 \cdot 10$	86	0.90	52	1.05	76	2.30	650	1.75	310
7	$2 \cdot 25$	614	$1 \cdot 10$	86	0.90	$5:$	1.05	76	2.15	545	1.65	261
8	$2 \cdot 20$	578	1.05	76	1.00	67	$1 \cdot 05$	76	1.90	390	1.60	238
9	$2 \cdot 20$	578	$1 \cdot 05$	76	$1 \cdot 05$	76	$1 \cdot 10$	86	1.90	390	1.50	198
10.	$2 \cdot 25$	614	$1 \cdot 05$	76	$1 \cdot 10$	86	$1 \cdot 10$	86	1.85	362	1.45	180
11	$2 \cdot 20$	578	$1 \cdot 05$	76	$1 \cdot 15$	96	$1 \cdot 10$	86	1.85	362	1.40	162
12	1.95	420	1.05	76	$1 \cdot 25$	120	$1 \cdot 10$	86	1.90	390	1.40	162
13.	1.90	390	1.05	76	1.40	162	$1 \cdot 15$	96	1.85	362	1.40	162
14	1.85	362	1.05	76	1.55	218	1.20	107	1.85	362	1.40	162
15	1.85	362	1.05	76	$1 \cdot 60$	238	$1 \cdot 25$	120	1.80	335	$1 \cdot 35$	147
-16	1.80)	335	$1 \cdot 05$	76	1.65	261	1.30	133	1.80	335	1.40	162
17	1.80	335	1.05	76	1.75	310	1.35	147	1.75	310	1.45	180
18	1.70	285	1.00	67	1.55	218	1.40	162	1.70	285	1. 50	198
19	1.65	261	1.00	67	1.50	198	1.40	162	1.70	285	1.50	198
20	1.50	198	1.00	67	$1 \cdot 35$	147	1.50	198	$1 \cdot 65$	261	1.65	261
21.	1.45	189	$1 \cdot 00$	67	1.20	107	1.55	218	$1 \cdot 60$	238	1. 95	420
22.	1.40	162	$1 \cdot 00$	67	$1 \cdot 20$	107	$1 \cdot 65$	261	$1 \cdot 60$	238	$2 \cdot 25$	614
23	1. 40	162	1.00	67	1.15	96	$1 \cdot 65$	261	1.70	285	${ }_{2}^{2} 00$	450
24	1.40	162	$1 \cdot 00$	67	$1 \cdot 15$	96	$1 \cdot 65$	261	1.70	285	$2 \cdot 00$	450
25.	1.40	162	1.00	67	$1 \cdot 15$	96	$1 \cdot 60$	238	$2 \cdot 30$	650
26.	$1 \cdot 35$	147	$1 \cdot 00$	67	$1 \cdot 15$	96	1.60	238	2.40	728		
27	1.35	147	0.95	5.	$1 \cdot 10$	86	$1 \cdot 60$	238	$2 \cdot 15$	545		
28.		138	$0 \cdot 95$	59	$1 \cdot 15$	96	1.60	238	$2 \cdot 10$	512		
29		129	$0 \cdot 95$	59	$1+15$	96	$1 \cdot 60$	238	$2 \cdot 10$	512		
$30 \ldots$	1. 25	120	$0 \cdot 90$	52	1.15	96	1.85	362	$2 \cdot 05$	481		
31..		116	0.90	52			$2 \cdot 00$	450				

Monthly Discharge of Spius Creek near Canford, B.C., for 1914.
(Drainage area, 344 square miles.)

	Discharge in Second-Feet.				ReN-Off	
	Maximum	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inehes on Drainage area.	Total in aere-feet.
April	1,370	180	839.5	$2 \cdot 4$	$2 \cdot 7$	49.953
May	2,940	984	1.823 .0	$5 \cdot 3$	6.1	112,093
June	2,677	614	1.217 .4	$3 \cdot 5$	3.9	72, 444
July	1,125	116	420.7	1.2 0.2	1.4	25,867 4,630
Angust	112	52	$75 \cdot 3$	$0 \cdot 2$	$0 \cdot 2$	4.630
September	310	52	117.8 166.0	0.3 0.5	0.3 0.6	$7,04.9$ 10,207
Getober.	$\begin{array}{r}450 \\ \hline 769\end{array}$	76 238	166.9 459.3	0.5 1.3	0.6 1.4	10,207 27,330
November	769 614	238 147	$459 \cdot 3$ $293 \cdot 6$	1.3	1.4 0.9	27,330 18,1052
December	614	147	$2: 3 \cdot 6$			
The period.	2,940	52	601.4	1.7	17.5	327,585

[^74]
SESSIONAL PAPER No. 25e

Thompson River at Spence's Bridge (2039).

Location.-Section 10, township 17, range 25, west of 6th meridian.
Records available.-October 25 to December 31, 1911; January 1 to December 31, 1912; January 1 to December 31, 1913; January 1 to December 31, 1914.

Drainage area.-Twenty-one thousand square miles.
Gauge.-Gauge is standard chain gauge, situated on traffic bridge, read daily by Miss Violet Curnow.

Channel.-The channel varies in width from 400 feet to 500 feet. Depth of section at high water greater by 16 feet than at low.

Velocities range from 2.0 second-feet to 11 feet per second.
Discharge measurements.- Measurements are made from traffic bridge. Owing to great velocity at high water, meterings are difficult to obtain. However, curve is well defined.

Winter flow.-River usually remains open throughout the year.
Accuracy.-Results are considered to be very accurate, and all returns should fall within 5 per cent of the truth.

Daily Gauge Height and Discharge of Thompson River at Spence's Bridge for 1914.

Day.	January:		February.		March.		April.		May.		June.	
	Gauge Height.	Discharge	Gauge Height	Discharge.	Gauge Height	Dis. charge	Gauge Height	Dis. charge	Gauge Height.	Discharge	Gauge Height	Discharge
	Feet.	Sec.ft.	Feet.	Sec.-ft.	Feet.	Sec. ft .	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet	sec-ft
1	1.90	5.870	1. 70	5,640	1.9)	5, 570	1.75	3,695	$7-8$	26.880	13.5	61.170
2	$\stackrel{2}{2} .00$	6,000	1.70	5,640	1.86	5,750	1.70	5.640	s. 1	2s. 300	$13 \cdot 5$	61.170
3	2. 10	6,140	1.70	5. 640	1.35	5,310	1.75	5, 695	$9 \cdot 2$	33, stu	13.5	61170
4	2. 20	6,240	1.60	5.330	1.80	5,751	1.80	5. 750	$9 \cdot 6$	35,920	13.5	61.150
5	$2 \cdot 20$	6,290	1.50	5.425	1.80	5,750	1.90	5,870	$10 \cdot 0$	35,0100	$1+1$	6ib, (0)
6.	$2 \cdot 30$	6,450	1.50	5,425	1.75	5,695	2. (4)	6,046)	$10 \cdot 0$	3s.0410		
8.	2.46	6,620	1.50	5,425	1.70	3, 644	-2.30	6.45L	10.3	39, fitil	15.3	: 6.240
$8 .$	2.50	6. ser	1.45	5,375	1.65	5.58 5	\cdots	6. $\times 114$	$10 \cdot 6$	+1,3411	15.0	-3, 64.
9	?.60)	7.000	1.50	5.425	1.61)	5.530	$2 \cdot 70$	7241	10.7	+1.91	14.	81911
10	2.60	7.000	1.60)	5,530	1.65	5,5*5	$3 \cdot 10$	8.000	10.	t2. th $^{\text {a }}$	14.5	(6.). 145
11	$2 \cdot 50$	6, sım	1.70	5, till	1.70	5.6411	3-3)	8, s 30	11.0	(3, (ix)		
12	240	6, 620	1.70	5,640	1.70	5,640	$3 \cdot 611$	9.07:	11.4	46. 1104	$1+.6$	70. 241
13	$2 \cdot 40$	6.620	1.75	5,695	1.75	5, 695	4.641	111. 23.	11.4	493311	14.	?1119
14	$\cdots \cdot 30$	6. 450	1.83	5,750	1.841	5.711	4.41	12.3) 11.1	12.4	3. 2.745	149	1) $=301$
15	2.30	6. 4.51	1.80	3, 731)	1.80	3,730	4.90	14,1021	$12 \cdot 8$	55.704	150	(S 6it
16	$2 \cdot 30$	6. 4.10	1.8e	3,750	1.75	5, 6, 89	S. 311	15, 6 id)	$13 \cdot 1$			
17	2.301	6. $\frac{1}{2 i n}$	1.75	5, 69,	1.75	5, 695	5.71	17838	11.2	35, 51	$15 \cdot 9$	\$1 52\%
18	2. 20	6. 23×1	1.70	5.610	1.80	5, 7i,	5. mi	1i 761	17.4	6) 121	163	\therefore (4)
13	2.20 2.10	a, 2990	1.70 1.75	5,644	1. n)	5, 7it1	5.161	1.3, 141	14.7	71911	111.7	*, 16)
20	$2 \cdot 10$	6. 1411	1.75	3,645	1.80	5.750	6.-31	20,410	14.3	67 7 70	16.	(4) 1 (\%)
21	$2 \cdot 10$	6, 1.111	1.70	5, 3411	1.85							
22	2.10	6. $1+11$	1.70	5,616	1.85	5, 510	(1.) 611	21, .4id	141	(6), 21	163	3140
23	2. 6161	6,1641	1:75	5, t105	1.90)	5, ^70	${ }^{(1)} 711$	21) =21	14.2	(6. 1110	159	\$1 S-1
25	2. 2011 1.4101	6,664 5,870	1.70 1.70	5, 3111	1.64	5, 570	4. 81	2. - - 41	143	(t) 7+1	is:	71 7 (\%)
23	1. (M)	5,870	1.70	5, th11	1.85	5, 410	(1-94)	24.it1	143	(1) 405	13 3	C) (4x)
96	1. 80	5,7.51)	1.75	5, 6196	1.84)	5.750					1511	IF max
27	1. 201	3, 7,510	1.84)	5.7.41	1.81)	3,751	715	21. A1k)	$11:$	71,410	146	514
28 29	1.619 1.15 1.61	5, 5:30	1. 910	3, n70		5.470	¢ 17,	23, 2461	147	3105	14.1	71 dy 1
29 30.	(.1.	3, 375			1.85	5.s111	730	24, miv	146	81111	14	(1. 54
30.	1.40	5,331)			1 185	5.310	7.6	2. Six	$1+2$	(in) 110	11.	71, 81
31	1. (h)	5.530			1 811	5. 750			13.	61845		

Daily Gauge Height and Discharge of Thompson River at Spence's Bridge, for 1914.

Dax.	July.		August.		September.		October.		November.		December.	
	Gauge Height	Discharge.	Gauge Height	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.
	Feet.	Sec. ft .	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec. -ft .	Feet.	Sec. -ft .	Feet.	Sec.-ft.
1.	14.8	71,910	$11 \cdot \mathrm{e}$	43,600	$7 \cdot 30$	24,580	$6 \cdot 60$	21,360	5.70	17.340	$4 \cdot 80$	13,650
2	$15 \cdot 0$	73,600	10.7	41,930	$7 \cdot 00$	23, 200	6.80	22,280	$5 \cdot 80$	17,760	$4 \cdot 80$	13,650
3	15.1	74,450	$10 \cdot 65$	41,620	$6+80$	22,280	7.00	23,230	5.80	17,763	4.80	13,650
4	$15 \cdot 2$	75,369	$10 \cdot 7$	41,900	$6 \cdot 63$	21.360	7.30	24.580	6.00	18,600	4.70	13,280
5	15.4	77, 120	$10 \cdot 5$	40,780	6.50	20,930	$7 \cdot 30$	24,580	$6 \cdot 20$	19,520	$4 \cdot 65$	13,095
-	$15 \cdot 6$	78,880	$10 \cdot 6$	41.313	6.50	20,900	6.8C	22,289	$6 \cdot 40$	20,440	$4 \cdot 50$	12,550
7.	$15 \cdot 4$	77, 120	$1 \mathrm{C} \cdot 4$	1. 23.2	$6 \cdot 23$	19,520	$6 \cdot 50$	20,930	6.70	21,820	$4 \cdot 40$	12,200
8	15.2	75, 360	$10 \cdot 3$	39.630	$6 \cdot 20$	19.520	$6 \cdot 30$	19.980	$6 \cdot 50$	20,900	$4 \cdot 30$	11,863
9.	$15 \cdot 0$	73,600	$10 \cdot 2$	39, 160	$6 \cdot 20$	19,520	$5 \cdot 97$	18,183	$6 \cdot 30$	19,980	$4 \cdot 30$	11,860
10.	$14 \cdot 35$	68,135	$10 \cdot 1$	38,547	6.20	19,520	$5 \cdot \mathrm{Se}$	17,760	6. 10	19,060	$4 \cdot 20$	11,520
11	$14 \cdot 3$	67,740	$9 \cdot 7$	36,443	$6 \cdot 20$	19,520	5.89	17.760	6.00	18,630	$3 \cdot 70$	9,950
12.	$14 \cdot 3$	67,746	$9 \cdot 4$	34.880	6-2.)	19.520	$5 \cdot 93$	18,183	$6 \cdot 0 \mathrm{C}$	18,630	$3 \cdot 40$	9,110
13.	$14 \cdot 3$	67, 740	$9 \cdot 3$	34.360	$6 \cdot 20$	19,520	$5 \cdot 70$	17,340	$6 \cdot 10$	19,063	$3 \cdot 49$	9,110
14.	$14 \cdot 35$	68, 155	8.97	32,300	$6 \cdot 20$	19,520	$5 \cdot 6 \mathrm{~J}$	16.92.)	6.03	18.690	$3 \cdot 20$	8,550
15	$14 \cdot 4$	63.5073	$8 \cdot 63$	30,800	$6 \cdot 10$	19,063	$5 \cdot 30$	16,590	6.00	18.630	$3 \cdot 10$	8,270
16.	$14 \cdot 6$	70,240	$8 \cdot 60$	30,800	$6 \cdot 00$	18,630	$5 \cdot 40$	16,03	5.87	17,763	$3 \cdot 00$	8,000-
17.	$14 \cdot 5$	63, 405	8.63	30,800	5.83	17.730	$5 \cdot 3 \mathrm{C}$	15,660	$5 \cdot 69$	16,92:	$2 \cdot 90$	7,740
18	14.4	68,57.)	8.40	29,890	$5 \cdot 50$	16,500	$5 \cdot 30$	15, 660	$5 \cdot 50$	16,500	$2 \cdot 80$	7.490
19.	$14 \cdot 0$	65, 250	$8 \cdot 49$	29,800	$5 \cdot 46$	16,080	$5 \cdot 40$	16.080	$5 \cdot 49$	16,08C	$2 \cdot 80$	7,490
20.	$13 \cdot 7$	62,770	8.33	29,300	$5 \cdot 20$	15,240	$5 \cdot 81$	17,763	$5 \cdot 30$	15,660	2.80	7,490
21.	$13 \cdot 3$	59,573	$8 \cdot 20$	28,830	$5 \cdot 49$	16,08)	$6 \cdot 00$	18,600	$5 \cdot 20$	15,240	$2 \cdot 80$	7,490.
22.	$13 \cdot 3$	59,570	$8 \cdot 2)$	28, 850	$5 \cdot 80$	17,760	6.2.)	19,520	$5 \cdot 10$	14.820	$2 \cdot 90$	7,740
23.	12.9	55,500	$8 \cdot 10$	28,306	$5 \cdot 57$	17,760	$6+50$	20,9,0	$5 \cdot 10$	14,83)	$2 \cdot 97$	7,740
24	$12 \cdot 6$	54, 250	$8 \cdot 10$	28,300	6.00	18,600	$6 \cdot 30$	19,98	$5 \cdot 10$	14,823	3-c0	8,000
25.	$12 \cdot 1$	55,689	$8 \cdot 10$	28,350	5.93	18,180	$6 \cdot 00$	18,600	$5 \cdot 10$	14,820	$3 \cdot 00$	8,000.
26	11.9	49,330	$7 \cdot 80$	26,853	$6 \cdot 00$	18,600	5.8.	17,763	5.03	14.470	$3 \cdot 10$	8.270
27	11.9	49,330	7-8)	26,88)	$6 \cdot 00$	18.63 C	$5 \cdot 60$	17,130	$5 \cdot 00$	14.470	$3 \cdot 10$	8. 270
28	11.8	48,670	$7 \cdot 71$	26,42)	6 -0!	18,6.0	$5 \cdot 7.1$	17,340	$4 \cdot 90$	14.030	3. 10	8,270-
29.	11.7	48,020	7.69	23,930	$6 \cdot 20$	19,529	$5 \cdot 6 \mathrm{~J}$	16.920	$4 \cdot 93$	14,62)	$3 \cdot 20$	8,550
30.	$11 \cdot 6$	47,389	$7 \cdot 5 i$	25, 319	$6 \cdot 30$	19,986	$5 \cdot 55$	16,713	$4 \cdot 8$	13,652	$3 \cdot 20$	8,550 -
31.	$11 \cdot 3$	45,460	$7 \cdot 40$	25.040			$5 \cdot 60$	16,923			3.20	8,550

Monthly Discharge of Thompson River at Spence's Bridge for 1914.

(Drainage area, 21,000 square miles.)

Month.	Discharge in Second-feet.				Ren-ofy.	
	Maximum.	Minimum.	Mcan.	$\begin{aligned} & \text { Per } \\ & \text { Square } \\ & \text { Mile. } \end{aligned}$	Depth in inches on Drainaze Area.	Total in Acre-feet.
January	7,000	5,300	6,208	$0 \cdot 3$	$0 \cdot 3$	381,720
February	5,870	5,375	5,625	$0 \cdot 3$	$0 \cdot 3$	312,395
March....	5,870	5,530	5,742	$0 \cdot 3$	$0 \cdot 3$	353,062
April.	25,50.	5,640	14,593	$0 \cdot 7$	6. 8	868,380
May..	71,910	26,880	54.304	$2 \cdot 6$	$3 \cdot 0$	3,339,044
June.	89,000	61,170	73,9, is	$3 \cdot 5$	$3 \cdot 9$	4,397,875
July.	78,883	45,460	64,210	$3 \cdot 0$	$3 \cdot 4$	3,948, 120
August	43,600	25, ¢4G	33, 133	1.6	1.8	2,037,246
September.	24,580	15,240	19,210	0.9	$1 \cdot 0$	1,143, С90
October....	24,580	15,660	18,820	C. 9	$1 \cdot 0$	1,157,210
November.	21,820	13,630	17,152	$0 \cdot 8$	0.9	1, 020,620
December.......	13,650	7,490	9,675	0.4	$0 \cdot 5$	594,895
The year	89,000	5.330	26,881	$1 \cdot 28$	$17 \cdot 2$	19,553,657

[^75]SESSIONAL PAPER No. 25e
MISCELLANEOUS METERING STATIONS.

Date.	Stream.	Tributary to-	Locality.	Gauge Height	Discharge
				Feet.	Sec.-ft
May	Alkali creek	Cherry creek	Above Cornwall's div.		2.5
June 11.	Alkal	"	Cornwall's ranch. Below beaver dam	-	1.2 2.2
Sept. 4	3ear creek	Clearwater river	Crossing Myrtle trail.		7.4
June 11.					162.0
Sept. ${ }^{10}$	Beaver creek				190.4 19.2
Sept. 6	Boulder creek Cahilty creek	Louis creek	1 mile from mouth	${ }_{0} \cdot 95$	6.8
June 11	Candle ereek.	Clearwater river	Larkey's ranch..		49.7
Aug. 29.	Chartrand creek	Guicgon creek	At bridge.		${ }_{4} 0 \cdot 6$
June 16.	Chartrand spring	Chartrand creek	Chartrand ranch		${ }_{0.5}^{4.6}$
April 27.	Cherry creek....	Kamloops lake.	Cornwall's ranch	-	9.6
May ${ }^{8}$	"	"	"		23.8 86.1
June 11	"	"	"		8.3
	Dupuis creek	Mamit lake.	A bove Mamit lake		$2 \cdot 2$
" 3.	Edwards creek	Heflley creek.....	1 mile above Heffley creek		
Aug. 25	Fishtrap creek	N Thompson river	1 mile from mouth	0.5	11.4
May 27	Gordon creek.	North Thompson river	At highway bridge.		1.8
June 17	Greenstone creek	Meadow creek.	Above Homfray dam		10.5
" 15.	Guichon ereek	Chartrand div. of	At road,		\bigcirc
15.	"		${ }_{\text {Charen }}$ Chartrand ranch		5c. 6
" 3	Heffley creek.	(Anderson diversion of)	At intake		3.4
" 10.	Hemp creek.	Clearwater	Crossing Clearwater trail.		23.0
	Meadow creek	Guichon creek	Above Indian Reserve ditch		66.7
Sept. 1	Myrtle river	Clearwater river	At lower crossing	1	55.0
May Aug	Noble creek Paul creek	N. Thompson river	Above B. C. F. di At outlet of lake.	$4 \cdot 45$	6.8 23.0
May 8	P'endleton creek	Cherry creek	A bove Cornwall's intake		1.3
June 12		"			0.6
Aug. 17.	2ueest creek.	Shuswap lake	\% mile from mouth		. 9
June 16	Quenville creek	Guichon cree	Above Quenville div		
Aug. 12..	- -oteh creek.	'huswap lak	3 miles from mouth 1 mile from mouth	$2 \cdot 37$	1.051 .0
June 13	Thrce-mile creek	Kamloops lake	Harris ranch.		
Aug. 21	N. Thompson river-	Thompson river	C.N.R. bridze rear Kamloops		12,773.0
June ${ }^{25}$	Whitewood creek	N. Thompson river	At highway bridge.		1.7 28.1
June 15	Witch creek.	Guichon creek	t mile from mouth		28.1

MISCELLANEOUS METERING STATIONS.

REPORT

OF THE

BRITISH COLUMBIA HYDROGRAPHIC SURVEY FOR 1914

CHAPTER 7

Nelson Division-Hydrographic Data

CHAPTER VII.

Nelson Division.-Hydrographic Data.

REGULAR METERING STATION.
Cariboo Creek, Near Burton City (305̄).

Location.-Upstream side of highway bridge, one-quarter mile from mouth, and one-quarter mile from Burton City wharf, between L'pper and Lower Arrow lakes, Nelson district.

Records Available.-August to December, 1914.
Climatic Conditions.-Summers, hot with considerable rain in May and June, and very little rain in July and August. Winters mild, seldom below $0^{\circ} \mathrm{F}$. with light snowfall. High water occurs generally in April or May. Extreme floods occur after heavy snowfall, during preceding winter, and continuous hot days and nights or warm rains in the latter part of April or the beginning of May. Low water may occur in August or September or during the winter. The stream does not stay frozen for long periods in the winter. Frazil ice is seldom present.

Gauge.-Located at highway bridge, near Burton. It is affected by backwater from Columbia river during May, June, July, and part of August. Mr. Ralph Islip reads the gauge daily

Channel.-The channel above and below the gauge is wide and filled with small \log jams. It is very liable to shift during high water.

Discharge Measurements.-The curve is based on two discharge measurements made in September and October. A measurement was made early in August, but the gauge height was affected by backwater.

Accuracy.-The results published herein are probably within 20 per cent of the true discharge.

General. - Cariboo creek and its many tributaries rise in the divide between the Arrow lakes and Slocan lake watersheds, between Barton City and New Denver. The drainage area, in all, is about 225 square miles. The freshet is caused by the molting of snow, and not from glaciers.
('ariboo ereek deposits large quantities of silt in Columbia river narrows, and is a detriment to navigation. The maximum flow has leeen extimated at 8,000 e.f.s., but this discharge will only secur onee in a long time.

Dischame Measomements of Cariboo C'reck near Burton City, for 1914.

	1)nte.	Hydrograpluer.	$\begin{aligned} & \text { Metcer } \\ & \mathrm{So} . \end{aligned}$	Wulth	Iren of Siection	Menn 1 velecits	Ginuge Hought	Hewcluarge
				Feet	Sis. 1 t .	It per mee	Fisel-	Sior 11
July	21		1. 078	417	177	248	441	(1) ${ }^{\text {a }}$
Kept	3 30	(1)	1,029 1,0189	47	$1+1$	11 14	128	136
Get	30	J. N. Fi:	1, 104	133	173	1.5	1 is	314

[^76]$25 \%-25$

6 GEORGE V, A. 1916
Daily Gauge Heights and Discharges of Cariboo Creek near Barton City, B.C., for 1914.

Day.	August.		September.		October.		November,		December.	
	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height	Discharge.	Gauge Height.	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec. -ft .	Feet.	Sec- -ft .	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1.		300	$1 \cdot 0$	77	1.28	129	1.73	293	1.85	348
2		293	1.0	77	1.28	129	1.75	302	1.82	334
3		286	1.28	129	1.26	124	1.75	302	1.85	348
4		279	1.28	129	1.25	122	1.76	306	1.85	348
5.... . . 1 \|r		272	$1 \cdot 25$	122	1.25	122	1.76	306	1.85	348
6.		265	$1 \cdot 24$	120	$1 \cdot 2$	110	1.75	302	1.9	372
	1.65	258	1.25	122	$1 \cdot 2$	110	1.75	302	1.9	372
8 -		251	$1 \cdot 25$	122	$1+2$	110	1.78	315	1.92	382
9.		244	1.25	122	$1 \cdot 2$	110	1.78	315	1.92	382
$10 \ldots$		230	1.28	129	$1 \cdot 2$	110	1.78	315	1.92	382
$11 . .$.		223	$1 \cdot 25$	122	$1 \cdot 22$	115	1.78	310	$1 \cdot 92$	382
13	1.55	216	1.25	122	1.22	115	1.8	324	1.95	396
14	1.5	196	1.2	110	1.2	110	1.8	324	1.95	396
$15 .$.	1.5	196	1.25	122	1.2	110	1.8	324	1.96	401
16	$1+4$	164	1.3	134	$1 \cdot 15$	103	1.8	324	1.96	401
17	1.4	164	1.28	129	1.15	103	1.8	324	1.96	401
18.20	1.45	180	1.28	129	$1 \cdot 15$	103	1.8	324	1.95	396
19.	1.4	164	$1 \cdot 25$	122	$1 \cdot 2$	110	1.8	324	1.95	396
20.	$1 \cdot 4$	164	1.25	122	1.25	122	1.8	324	1.95	396
21.	1.45	180	$1 \cdot 2$	110	1.4	164	1.82	334	1.97	406
	1.45	180	$1 \cdot 2$	110	1.45	180	1.82	334	1.97	406
23.	1.45	180	$1 \cdot 25$	122	1.50	196	1.85	348	1.97	406
24	1.4	164	$1 \cdot 25$	122	$1 \cdot 6$	236	1.85	348	1.97	406
25.	$1+4$	164	$1 \cdot 2$	110	$1 \cdot 69$	276	1.85	348	1.96	401
26.	1.4	164	$1 \cdot 2$	110	1.69	276	1.85	348	1.96	401
27.	$1 \cdot 4$	164	$1 \cdot 25$	122	1.68	271	1.8	324	1.95	396
28.	1.4	164	1.28	129	$1 \cdot 68$	271	1.8	324	1.95	396
29.	$1 \cdot 3$	134	$1 \cdot 27$	127	1.7	280	1.82	334	1.95	396
	$1 \cdot 2$	110	1.25	122	1.75	302	1.82	334	$1 \cdot 96$	401
31...	$1 \cdot 2$	110			1.73	293			1.96	401

Monthly Discharge of Cariboo Creek near Burton City, B.C., for 1914. (Drainage area, 225 square miles.)

Month.	Discharge in Second-Feet.				Run-Off.		Accuracy.
	Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on Drainage area.	Total in acre-feet.	
August		110	203	$0 \cdot 90$	$1 \cdot 04$	12,500	
September...	134	77	116	$0 \cdot 51$	$0 \cdot 57$	6,900	D
October.....	302	103	162	$0 \cdot 72$	$0 \cdot 83$	9,961	D
November ${ }^{\text {a }}$	348	293	322	1.43	1.59	19,200	D
December...	406	334	386	1.71	1.97	23,700	D

Carpenter Creek near New Denver (3024).
Location.-About 3 miles from the mouth, opposite the Denver Light and Power Company's power-house, Nelson district.

Records Available.-May to December, 1914.
Climatic Conditions.-Summers, hot. May and June are generally wet, but there is very little rain in July and August. Winters not severe, seldom below zero. Snowfall is not heavy in the lower altitudes.

SESSIONAL PAPER No. 25e

Gauge.-Vertical staff enamel gauge was originally established immediately above the dam, but in December it was moved below the dam and opposite the power-house. Mr. C. J. Campbell reads the gauge three times a week.

Channel.-The channel generally below the dam and canyon is rocky and filled with huge boulders, but at the new gauge should be fairly permanent. though the water will be very broken during freshet.

Discharge Measurements.-No desirable metering station has as yet been established. Five measurements were made in 1914 from the highway bridge near New Denver. At this section and for a mile above the creek is flowing through a shifting gravel bed, and it is doubtful if the total discharge at the gauge is recorded when measurements are made from the bridge.

Accuracy.-The results published are not guaranteed.
General.-Carpenter creek is a flashy mountain stream, flowing from the east into Slocan lake, near New Denver. The drainage area is about 65 square miles of very mountainous country, abundant in mineral wealth. Glaciers feed the various forks. Heavy freshets are liable to occur in May, June, or July.

The water is used for mining and power purposes. The only plant operating at present on Carpenter creek is the Denver Light and Power Company, Ltd., Mr. C. J. Campbell, manager. The plant is located at the canyon about 3 miles above New Denver. The head is about 100 feet and a $93.75-\mathrm{k} . \mathrm{v} . \mathrm{a}$. C.G.E. generator is installed. At' present, in the neighbourhood of $100 \mathrm{~h} . \mathrm{p}$. is developed.

Discharge Meascrements of Carpenter Creek at New Denver, for 1914.

Date.	Hydrographer.	$\begin{gathered} \text { Meter } \\ \text { No. } \end{gathered}$	Width.	Area of section.	Mean Velocity:	Gauge Height.	Discharge.
			Feet.	sq. ft .	Ft. per see	Feet.	sec.-ft.
April 16.	C. E. W, D, O, B, G	1.048	199	96.6	$5 \cdot 60$	1.9	541.0
May ${ }^{13}$		1.672 1.929	2190 199	130 132 1	7.29 5.19	2.35 2.10	919.0 6×4.0
July ${ }^{\text {A }} 18$	${ }_{\text {D) O.O. }}^{\text {D. G. Gill }}$ (A.E.	1,929	199	137	${ }_{3 \cdot} \times 19$	${ }_{1}^{2} \cdot 10$	6-4.0
Nov. 4	J. A. E., G. K. B	1,969	32	47	+.25	10.90	1s.0

Daily Galge Height and Discharge of Carpenter Creek near New Denver, B.C., for 1914 .

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Carpenter Creek near New Denver, B.C., for 1914.

Monthly Discharge of Carpenter Creek near New Denver, for 1914.
(Drainage area, 65 square miles.)

Carpenter Creek, South Fork, near Sandon (3025).
Location.-In the flume back of the C.P.R. station at Sandon, behind a deserted bakery, Nelson district.

Records Available.-May to December, 1914.
Climatic Conditions.-Similar to Carpenter creek, New Denver, only the winters are longer, with more snow. Frazil ice is a possibility.

Gauge.-Enamel gauge, 0 feet to 3 feet, placed at the side of the box flume. Mrs. E. A. Cameron reads the gauge daily.

Flume. - The creek is flumed for several hundred feet through the townsite of Sandon. The flume is a box flume, 11.67 feet wide by 6 feet deep. For 50 feet above and below the section the slope is 0.056 feet. Kutter's formula was applied to determine the daily discharges.

Accuracy.-During high water the results are probably within 10 per cent, but at low stages, due to the gauge being only read to tenths, no accuracy can be given. A measurement made by Messrs. Webb and Gill, in April, agrees closely with the slope method.

General.-Sandon is about 6 miles from the source of the south fork of Carpenter creek, and is at an altitude of 3,488 feet. The drainage area, from the topographical map of the Geological Survey appears to be only about 12 miles. This shows a tremendous run-off per square mile during the months of May, June, and July.

The south fork has been used a great deal for mining, particularly during 1896-1902, but at present no water is used.
Daily Gauge Height and Discharge of south fork of Carpenter Creek near Sandon, B.C., for 1914.

	Day.	April.		May.		June.	
		Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height	Dis- charge	Gauge Height	Dis- charge
		Feet	Sec.-ft.	Feet.	Sec. -ft .	Feet.	See.-ft.
1				0.4 0.6	114 192	0.85 1.10	310 444
3				0.8	284	1.65	778
4				$0 \cdot 6$	192	1.30	560
5.				$0 \cdot 4$	114	1.00	388
6.				0.4	114	$0 \cdot 80$	284
8.				0.4	114	0.80	284
8				${ }_{0}^{0.4}$	114 192	0.65 0.60	214 192
10.				${ }_{0.65}$	214	0.55	171
11.				0.7	235		
12.				0.8	284	0.55	171
14.				${ }_{0}^{0.9}$	335 362	$0 \cdot 85$	310
14. 15.				0.95 1.00	362 388	1.1 1.35 1.35	444 490
				$1 \cdot 00$	388	1.35	
16.				0.95	362	1.55	
17.	-			0.9 0.8	335 284	1.65 1.65 1	7778
19.				${ }_{0}^{0.8}$	284	${ }_{1.3}^{1 \cdot 65}$	778
20.				0.85	310	1.0	388
21.				0.85			
22				0.85	310	0.7	235
23.				0.85		$0 \cdot 6$	192
24				$0 \cdot 85$	310	$0 \cdot 6$	192
25.				0.9	335	$0 \cdot 65$	214
${ }_{27} 6$		$0 \cdot 2$		0.8	284		
27		0.3	82	0.8	284	0.75	260
29		${ }_{0.2}^{0.2}$	52 52	0.75 0.55	260 171	0.75 0.80	260 284
39		$0 \cdot 3$	s2	0.55	171	0.85	310
31				0.53	171		

SESSIONAL PAPER No. 25e
Dailly Gauge Height and Discharge of south fork of Carpenter Creek near Sandon, B.C., for 1914.-(Con.)

DAY.	July.		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge.	Gauge Height.	Discharge.								
	Feet.	Sec.-ft.	Feet.	Sec.-it.	Feet.	Sec.-ft	Feet.	Sec.-ft	Feet.	Sec.-ft.	Feet.	Sec. -ft .
1.	0.95	362	$0 \cdot 30$	82	$0 \cdot 10$	27	$0 \cdot 20$	52	$0 \cdot 2$	52	0.1	27
2	$1 \cdot 1$	444	0.30	82	0. 0	27	$0 \cdot 20$	52	$0 \cdot 2$	52	$0 \cdot 1$	27
3	$1 \cdot 35$	590	0.30	82	0.10	27	0.20	52	$0 \cdot 2$	52	$0 \cdot 1$	27
4	$1 \cdot 05$	416	0.20	52	$0 \cdot 10$	27	$0 \cdot 20$	52	$0 \cdot 2$	52	$0 \cdot 1$	27
5	0.9	335	$0 \cdot 2$	52	$0 \cdot 10$	27	$0 \cdot 20$	52	$0 \cdot 2$	52	0.1	27
6	0.85	310	$0 \cdot 2$	52	$0 \cdot 10$	27	$0 \cdot 20$	52	$0 \cdot 2$	52	$0 \cdot 1$	27
7.	0.85	310	$0 \cdot 2$	52	0. 10	27	$0 \cdot 20$	52	$0 \cdot 2$	52	0.1	27
8.	0.8	284	$0 \cdot 2$	52	$0 \cdot 10$	27	$0 \cdot 20$	52	$0 \cdot 2$	52	$0 \cdot 1$	27
9	0.75	260	$0 \cdot 2$	52	0. 10	27	$0 \cdot 20$	52	$0 \cdot 2$	52	$0 \cdot 1$	27
10...	0.7	235	$0 \cdot 2$	52	$0 \cdot 10$	27	$0 \cdot 20$	52	$0 \cdot 2$	52	$0 \cdot 1$	27
11	$0 \cdot 65$	214	0.2	52	$0 \cdot 10$	27	0.20	52	$0 \cdot 2$	52	$0 \cdot 1$	27
12	0.75	260	$0 \cdot 2$	52	$0 \cdot 10$	27	0.20	52	$0 \cdot 2$	52	$0 \cdot 1$	27
13.	0.75	260	$0 \cdot 2$	52	$0 \cdot 10$	27	$0 \cdot 20$	52	$0 \cdot 2$	52	0.1	27
14	0.7	235	$0 \cdot 2$	52	$0 \cdot 10$	27	$0 \cdot 20$	52	$0 \cdot 2$	52	0.1	27
15.	0.7	235	0.2	52	$0 \cdot 10$	27	$0 \cdot 20$	52	$0 \cdot 1$	27	0.1	27
16	0.6	192	$0 \cdot 2$	52	$0 \cdot 10$	27	$0 \cdot 20$	52	$0 \cdot 1$	27	$0 \cdot 1$	27
17	$0 \cdot 55$	171	0.20	52	$0 \cdot 10$	27	$0 \cdot 20$	52	$0 \cdot 1$	27	0.1	27
18	0.55	171	0. 20	52	$0 \cdot 10$	27	$0 \cdot 20$	52	$0 \cdot 1$	27	0.1	27
19.	0.50	150	$0 \cdot 20$	52	$0 \cdot 20$	52	$0 \cdot 20$	52	0.1	27	0.1	27
20	$0 \cdot 40$	114	$0 \cdot 20$	52	$0 \cdot 20$	52	$0 \cdot 20$	52	$0 \cdot 1$	27	$0 \cdot 1$	27
21.	$0 \cdot 30$	82	$0 \cdot 20$	52	0.20	52	$0 \cdot 20$	52	$0 \cdot 1$	27	0.1	27
22.	$0 \cdot 30$	82	$0 \cdot 20$	52	$0 \cdot 20$	52	$0 \cdot 20$	52	$0 \cdot 1$	27	$0 \cdot 1$	27
23.	$0 \cdot 30$	82	$0 \cdot 20$	52	$0 \cdot 20$	52	$0 \cdot 20$	52	$0 \cdot 1$	27	$0 \cdot 1$	27
24	0.30	82	0.20	52	$0 \cdot 20$	52	$0 \cdot 20$	52	0.1	27	$0 \cdot 1$	27
25.	$0 \cdot 30$	82	$0 \cdot 20$	32	$0 \cdot 20$	52	$0 \cdot 20$	52	$0 \cdot 1$	27	$0 \cdot 1$	27
26.	$0 \cdot 30$	82	$0 \cdot 20$	52	$0 \cdot 20$	52	0.20	52	0.1	27	0.1	97
27	$0 \cdot 30$	82	0.20	52	$0 \cdot 20$	52	$0 \cdot 20$	52	$0 \cdot 1$	27	$0 \cdot 1$	27
28	$0 \cdot 30$	82	$0 \cdot 20$	52	$0 \cdot 20$	52	0.20	52	$0 \cdot 1$	27	$0 \cdot 1$	27
29.	$0 \cdot 30$	82	0.20	52	$0 \cdot 20$	52	$0 \cdot 20$	52	0.1	27	$0 \cdot 1$	$\stackrel{27}{7}$
30.	$0 \cdot 30$	82	$0 \cdot 10$	27	0.20	52	$0 \cdot 20$	52	0.1	27	0.1	27
$31 \ldots$	$0 \cdot 30$	82	$0 \cdot 10$	27			$0 \cdot 20$	52			$0 \cdot 1$	27

Monthly Discharge of south fork of Carpenter Creek near Sandon, B.C., for 1914.
(Drainage area, 12 square miles.)

Columbia Rover Near ('astlegath (300-1).
Locatom. Castlegar precinet, Nelson Water district, below Drow lakes and above mouth of Kootemay river, at the (..P.R. bridge near Castlegar, B. © ... Nelsom district.
liecords Arailable. 1913 and 1911.

Climatic Conditions.-Summers hot, with plenty of rain in May and June, but very little rain in July and August. Winters, the snowfall is not very heavy, the temperature seldom goes below $\mathrm{O}^{\circ} \mathrm{F}$.; the river rarely freezes over.

Gauge.-Vertical staff gauge was used till August, when a chain gauge was established. Messrs. P. G. Farmer, J. McE. Agnew, and J. A. Turnbull read the gauges at different times during the year.

Channel.-Straight for 200 yards above and below the measuring section and gauge. A pronounced riffle in low water is lost during high water. The rise and fall of the river is about 25 feet.

Discharge Measurements.-Measurements are made from the upstream side of the railway bridge. Five measurements were made in 1914.

Accuracy. -This station is maintained chiefly to check the results obtained from Kootenay river near Glade, and Columbia river near Trail. Due to à probability of backwater, these results are not guaranteed.

Discharge Measurements of Columbia River near Castlegar, for 1914.

Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of section	Mean Velocity:	Gauge Height.	Discharge.
			Feet.	Sq. ft .	Ft. per sec.	Feet.	Sec.-ft.
Jan. 14	C. E. W. and A. J. Y.	1048	380 308	6.800	1.66	1.7	11,300
Mar. ${ }^{5}$	C. E. R. and A.J. V..	1672 1999	398 515	6.170 14.100	1.24 5.82	0.72 15.12	7,680 82,100
May 31		1909 1672	515 530			$15 \cdot 12$ 17.52	82,100 104,000
July 28. Aug. $6 \ldots$	G. K. Beeston C. a	1672 1929	530 515	13,500 12.900	7.67 6.60	17.52 15.8	104,000 85,100

S'ESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Columbia River near Castlegar, for 1914.

Day.	January.		February.		March.		April.		May.		June.	
	Gauge Height.	Discharge	Gauze Height	Discharge	Gauge Height.	Discharge	Gauge Height	Discharge.	Gauge Height.	Discharge	Gauge Height	Discharge.
	Feet.	Sec. -ft .	Feet.	Sec.-ft.	Feet.	Sec. ft .	Feet.	sec.-ft.	Feet.	Sec.-ft.	Feet.	Nec.-ft.
1.	$1 \cdot 3$	9,600	0.8	8,600	0.8	8,000	1.0	8.600	$6 \cdot 6$	33.000	17.3	91.100
2	$1 \cdot 2$	9,200	0.8	8,000	0.8	8,600	1.0	8.600	$7 \cdot 0$	35.000	17.9	94,6n0
3	1.2	9,2C0	0.8	8,000	0.8	8,000	$1 \cdot 0$	8,600	7.4	37,000	18.3	96.900
4.	1.2	9,200	0.7	7.700	0.8	8,000	1.G	8,600	$7 \cdot 6$	38.060	18.5	99.800
5.	$1 \cdot 2$	9,200	$0 \cdot 7$	7,700	0.8	8,000	$1 \cdot 1$	8.900	$7 \cdot 8$	39,000	19.2	102,000
6	1.1	8,900	0.7	7,700	0.8	8,000	$1 \cdot 2$	9.200	$8 \cdot 1$	40.500	$19 \cdot 3$	103,000
7.	1.1	8.900	0.7	7,700	0.8	8,000	$1 \cdot 2$	9,260	$8 \cdot 5$	42,700	$19 \cdot 1$	102,000
8	$1 \cdot 1$	8,900	$0 \cdot 6$	7,400	$0 \cdot 8$	8,000	$1 \cdot 3$	9,600	8.9	44.800	19.0	101.000
9	$1 \cdot 2$	9,200	$0 \cdot 6$	7,400	$0 \cdot 8$	8,600	1.5	10,200	$9 \cdot 4$	47,500	18.9	100.000
10.	$1 \cdot 3$	9,600	$0 \cdot 5$	7,100	0.8	8,000	1.8	11,300	$9 \cdot 9$	50, 200	18.4	97,500
11.	1.3	9,600	$0 \cdot 5$	7,100	0.8	8,000	$2 \cdot 0$	12,000	$10 \cdot 2$	51,800	$18 \cdot 4$	97,500
12	$1 \cdot 3$	9,600	$0 \cdot 5$	7,100	0.8	8,000	$2 \cdot 3$	13,200	$10 \cdot 8$	55. 100	18.3	98.000
13.	1.4	9,900	$0 \cdot 5$	7,100	0.8	8,000	$2 \cdot 5$	14,000	11.4	58.400	18.7	99.200
14.	1.5	10,2c0	$0 \cdot 5$	7,100	C.8	8.000	$2 \cdot 7$	14, 800	12.0	61,700	15-5	99, 806
15.	1.6	10,600	$0 \cdot 5$	7,100	0.8	8,000	$2 \cdot 9$	15,600	12.6	65,000	19.0	101,(000
16.	1.6	10,600	0.4	6,800	$0 \cdot 8$	8,000	3.0	16,000	13.6	70.500	$19 \cdot 6$	105, (0, 0
17.	1.5	10,200	$0 \cdot 4$	6,800	0.8	8,000	$3 \cdot 3$	17,200	$14 \cdot 0$	72,700	$20 \cdot 6$	111,000
18.	1.5	10,200	$0 \cdot 4$	6,800	$0 \cdot 8$	8,000	$3 \cdot 6$	18.500	$14 \cdot 2$	73,800	21.4	115.006
19.	1.4	9,900	$0 \cdot 5$	7, 100	$0 \cdot 8$	8,000	$3 \cdot 9$	19,800	$14 \cdot 6$	76.000)	22.2	120,000
20.	$1 \cdot 3$	9,600	$0 \cdot 5$	7.100	0.8	8,000	$4 \cdot 2$	21,201)	14.5	77,100	22.6	123,000
21.	1+3	9,600	0.6	7,400	$0 \cdot 9$	8,300	$4 \cdot 5$	22,600	$15 \cdot 2$	79,300	$23 \cdot 0$	125,000
22.	1.3	9,600	$0 \cdot 6$	7,400	$0 \cdot 9$	8,300	$4 \cdot 8$	24,000	15.2	79,300	22.6	123.000
23.	$1 \cdot 3$	9,600	$0 \cdot 6$	7,400	0.9	8,300	$5 \cdot 1$	25,500	15.4	80,500	22.4	122,000
24.	$1 \cdot 3$	9,600	$0 \cdot 7$	7,700	0.9	8,300	$5 \cdot 4$	27.000	15.7	82,100	22.2	120.000
25.	$1 \cdot 2$	9,200	$0 \cdot 7$	7,700	$0 \cdot 9$	8,300	$5 \cdot 6$	28,000	16.0	83,800	21.8	118.000
26.	$1 \cdot 2$	9, 200	0.8	8,000	$1 \cdot 0$	8,600	$5 \cdot 8$	29,000	16.2	84,900	$21 \cdot 2$	114,000
27.	$1 \cdot 1$	8.900	$0 \cdot 8$	8,000	$1 \cdot 0$	8,600	$6 \cdot 0$	30,000	$16 \cdot 4$	86,100	21.0	113,000
28	1.0	8, 6C0	0.8	8,000	$1 \cdot 0$	8,660	$6 \cdot 2$	31,000	$16 \cdot 6$	87, 200	$20 \cdot 8$	112,000
29.	1.0	8,600			$1 \cdot 0$	8,600	6.2	31,000	$16 \cdot 6$	87.200	$20 \cdot 6$	111.000
	$0 \cdot 9$	8,300			$1 \cdot 1$	8,900	$6 \cdot 4$	32,000	16.8	88,300	$20 \cdot 4$	110.000
31	$0 \cdot 9$	8,300			$1 \cdot 1$	8,900			17.0	89,4(0)	- 1	- 1-1

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Columbia River near Castlegar, for 1914.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height	Discharge	Gauge Height.	Discharge	Gauge Height.	Discharge	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec. -ft .	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1	$20 \cdot 6$	111,000		89,400	$11 \cdot 3$	57,800	$6 \cdot 3$	31,500	$5 \cdot 0$	25.000	$3 \cdot 8$	19,400
2	$20 \cdot 8$	112,000		86,600	$11 \cdot 1$	56,700	$6 \cdot 2$	31,000	$5 \cdot 0$	25,000	$4 \cdot 0$	20,200
3	21.0	113,000		83,800	11.0	56,200	$6 \cdot 4$	32,000	$4 \cdot 9$	24,500	$4 \cdot 1$	20,700
4	21.6	116,000		83,000	$10 \cdot 8$	55,100	$6 \cdot 6$	33,000	4.8	24,000	$4 \cdot 0$	20,200
5.	22.1	120,000		82,300	$10 \cdot 7$	54,500	$6 \cdot 9$	34,500	$4 \cdot 9$	24,500	$4 \cdot 0$	20,200
6	22.8	124,000	$15 \cdot 6$	81,600	$10 \cdot 5$	53,500	$7 \cdot 0$	35,0C0	$5 \cdot 0$	25,000	$3 \cdot 8$	19.400
7	23.2	126,000	$15 \cdot 6$	81,600	$10 \cdot 4$	52,900	$7 \cdot 2$	36,000	$5 \cdot 2$	26,000	$3 \cdot 4$	17,700
8	$23 \cdot 6$	128,000	15.4	80,500	$10 \cdot 2$	51, 800	$7 \cdot 3$	36,500	$5 \cdot 1$	25,500	$3 \cdot 5$	18, 100
9.	23.6	128,000	$15 \cdot 0$	78,200	$10 \cdot 0$	50, 800	$6 \cdot 8$	34,000	$5 \cdot 0$	25,000	$3 \cdot 4$	17,700
10.	$23 \cdot 4$	127,000	14.8	77, 100	$9 \cdot 9$	50,200	$6 \cdot 6$	33,000	$5 \cdot 1$	25,500	$3 \cdot 3$	17,200
11	23.3	127,000	$14 \cdot 6$	76,000	$9 \cdot 7$	49,100	$6 \cdot 6$	33,000	$5 \cdot 0$	25,000	$3 \cdot 2$	16,800
12.	$23 \cdot 2$	126,000	14.2	73, 800	$9 \cdot 5$	48, 100	$6 \cdot 5$	32,500	$5 \cdot 1$	25,500	$3 \cdot 1$	16,400
13	23.1	126,000	$13 \cdot 9$	72, 100	$9 \cdot 4$	47,500	$6 \cdot 5$	32,500	$5 \cdot 1$	25,500	$3 \cdot 0$	16,000
14.	23.6	128,000	13.6	70, 500	$9 \cdot 2$	46,400	$6 \cdot 4$	32,000	$5 \cdot 0$	25,000	$2 \cdot 8$	15,200
15.	23.8	129,000	$13 \cdot 3$	68,800	$9 \cdot 0$	45,400	$6 \cdot 2$	31,000	$5 \cdot 0$	25,000	$2 \cdot 8$	15,200
16	24.0	131,000	13.2	68,300	$8 \cdot 7$	43,800	$5 \cdot 9$	29,500	$5 \cdot 0$	25,000	$2 \cdot 8$	15,200
17	$24 \cdot 3$	133,000	13.0	67,200	8.4	42, 200	$5 \cdot 8$	29,000	$4 \cdot 9$	24,500	$2 \cdot 7$	14,8C0
18.	24.0	131,C00	12.9	66,600	$8 \cdot 1$	40,500	$5 \cdot 6$	28,000	4.8	24.000	$2 \cdot 6$	14,400
19	$23 \cdot 6$	128,000	$12 \cdot 9$	66,600	$7 \cdot 9$	39,500	5.8	29,000	4.8	24.000	$2 \cdot 4$	13,600
20.	23.4	127,000	$12 \cdot 8$	66,160	$7 \cdot 7$	38,500	$5 \cdot 9$	29,500	$4 \cdot 8$	24,000	$2 \cdot 3$	13,200
21.	23.2	126,000	$12 \cdot 8$	66, 100	$7 \cdot 6$	38,000	$5 \cdot 9$	29,500	4.7	23,500	$2 \cdot 2$	12, 800
22.	22.8	124,000	12.7	65, 500	$7 \cdot 4$	37,000	$5 \cdot 8$	29,000	$4 \cdot 4$	22, 100	$2 \cdot 1$	12,400
23.	22.2	120,000	$12 \cdot 6$	65,000	$7 \cdot 1$	35,500	$5 \cdot 8$	29,000	$4 \cdot 5$	22,600	$2 \cdot 0$	12,000
24	21.6	116,000	$12 \cdot 6$	65,000	6.9	34,500	$5 \cdot 7$	28,500	$4 \cdot 4$	22, 100	1.9	11,600
25.	21.3	115,000	12.5	64,400	$6 \cdot 7$	33,500	$5 \cdot 7$	28,500	$4 \cdot 2$	21,200	1.8	11,300
26.	20.0	107,000	12.4	63,900	$6 \cdot 6$	33,000	$5 \cdot 6$	28,000	$4 \cdot 0$	20,200	1.8	11,300
27		104,000	12.4	63,900	$6 \cdot 6$	33,000	$5 \cdot 5$	27,500	$3 \cdot 9$	19,800	1.7	10,900
28		101,000	$12+2$	62,800	$6 \cdot 5$	32,500	$5 \cdot 4$	27,000	$3 \cdot 8$	19,400	$1 \cdot 6$	10,600
29.		98,0¢0	$12 \cdot 0$	61,700	$6 \cdot 3$	31,5C0	$5 \cdot 3$	26,500	$3 \cdot 9$	19,800	$1 \cdot 5$	10,200
30.		95, 100	11.7	60,000	$6 \cdot 3$	31,500	$5 \cdot 2$	26,000	$4 \cdot 0$	20,200	1.4	9,900
31.		92,300	11.5	38,900			$5 \cdot 1$	25,500			$1 \cdot 4$	9,900

Monthly Discharge of Columbia River near Castlegar, for 1914.
(Drainage area, 15,000 square miles.)

[^77]
SESSIONAL PAPER No. 25e

Monthly Discharge of Columbia River near Castlegar, for 1914-Concluded.
(Drainage area, 15,000 square miles.)

Month.	Discharge in Second-Feet.				Rts-Off.	
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	Total in acre-feet.
January	10,600	8,300	9,410	$0 \cdot 63$	0.73	579,000
February	8,000	6,800	7.440	$0 \cdot 50$	0.52	413,000
March...	8,900	8,600	8,180	$0 \cdot 54$	$0 \cdot 62$	503,000
April.	32,000	8,600	17.800	1.18	1.32	1,060.GM)
May.	89,460	33,000	64,400	4.29	$4 \cdot 95$	3.960.000
June.	125,000	91, 100	108,006	$7 \cdot 2$	8.03	$6.430,000$
July	133,000	92.300	119.000	7.93	$9 \cdot 14$	7,320.000
August.	89.400	58,900	71,500	$4 \cdot 76$	5. 49	$4,400,000$
September	57, 800	31,500	44,000	2.03	$3 \cdot 27$	$\xrightarrow{2}, 620,000$
Oetober.	36,500	25,500	30,600	2.04	$\stackrel{2}{25}$	1. 880,000
November.	26,000	19,400	23,600	$1 \cdot 57$	1.75	1. 400.0000
December	20,700	9,900	15,000	1.00	$1 \cdot 15$	922,000

Columbia River near Revelstoke (3007).
Location.-S.E. $1 / 4$ section 33, township 23, range 2, west 6 th, meridian, above the mouth of Illecillewaet river on downstream side of highway bridge near Revelstoke.

Records Available.-1912-13-14, during open season.
Climatic Conditions.-In 1914 the precipitation was 40.5 inches, of which about 10 feet was snowfall. The summers are hot, with considerable rainfall. The winters are fairly cold, as low as $-20^{\circ} \mathrm{F}$. some seasons, with very heavy snowfall. Frazil ice forms in large quantities.

Gauge.-Chain gauge used and read daily during open season by Mr. J. H Jones.

Channel.-About 1,000 feet wide, controlled by a fairly permanent sandhar. 500 yards below. Shift in 1913 apparently caused by the building of a breakwater at the control.

Discharge Measurements.-Sixteen well distributed measurements taken during 1911-12-13-14. Miscellaneous ice-cover metering taken on February 27, 1912. Discharge, 4,460 c.f.s.

Accuracy.-Accurate gauge reading, fair conditions for metering. These results are considered to be within 3 per cent.

Discharge Meastrements of Columbia River near Revelstoke, B.C.. for 1914.

6 GEORGE V, A. 1916
Daily Gatge Height and Discharge of Columbia River near Revelstoke, B.C., for 1914.

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Columbia River near Revelstoke, B.C., for 1914.

Monthly Discharge of Columbia River near Revelstoke, for 1914.
(Drainage area, 9,000 square miles.)

Month.	Dim hamge in Necond-Feet				R6 N-OrF		Accuracs
	Maximum.	Minimum	Mean.	$\begin{aligned} & \text { Per } \\ & \text { suluare } \\ & \text { Mile } \end{aligned}$	Depth in unches on Drannage Area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { Acri-fevt } \end{gathered}$	
May	73, 5061		44, 314)	$4 \cdot 194$	5710	28410,1640	
Juni	132, (146)	52701	(910, 3 (2x)	$10 \cdot 11$	$11:$	5 3, 1 , onk	11
July		64.701	168, 1461	11.	13.1	(i) 380.1640	13
Augunt	$86,4 \mathrm{M1)}$	12.40)	(15.7.7x)	741	234	(1001.a64	1
Supteminer	46, (1)4)	1. 2010	31.701	35%	348	1 , 54, , 1 \%	1
Wetoblerer	31,3019	13.201	11). (hx)	221	$\because 35$	12.20, thal	1
Sovember	11., 2141	11,20]	14.306)	159	177	- al сих1	1
1 bewerntuer	12, 4(6)		5, 250	1197	112	3以 01	

Location.-At bridge about 3 miles from mouth, near Silverton, and about a mile below Hewitt Mill. Nelson district.

Records Available.-May to December, 1914.
Climatic Conditions.-Summers, hot with light rainfall after June. Winters, not very severe, with moderate snowfall. The creek does not stay frozen for more than a few days at a time. Frazil and anchor ice may form at times.

Gauge.-Vertical staff, enamel, read daily by Mr. Geo. Stilwell, superintendent at Hewitt mill.

Channel.-Swift water, with rocky bed. Apparently permanent.
Discharge Measurements.-Seven measurements were made in 1914.
Accuracy.-The measurements may not be very accurate. Daily gauge readings are obtained. Accuracy not guaranteed below gauge height, 0.5. Accuracy above 0.5 and below $1.5,10$ per cent. Accuracy above $1.5,20$ per cent.

General.-Four-mile creek is a small creek flowing from the east into Slocan lake, near Silverton. It drains a mountainous country, abundant in mineral wealth, and the creek is used for mining purposes by Standard, Hewitt, and Van Roi mines.

Discharge Measurements of Four Mile Creek, Silverton, below Hewitt Mill, for 1914.

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity	Gauge Height.	Discharge.
			Feet.	Sq. ft.	Ft. per sec	Feet.	Sec.-ft.
April 19	C. E. W., D. O'B. G.	1,048	$26 \cdot 5$	$43 \cdot 0$	3.97	0.85	171
May 12.	J. A. E., G. K. B ...	1,672	33.5	63.5	$4 \cdot 69$	1.20	298
June 11	G. K. B, C. E. R.	1,927	$30 \cdot 0$	57.2	$4 \cdot 81$	1.15	275
June 18.	G.K.B ${ }^{\text {D }}$ O	1,927	37.0	$95 \cdot 6$	$5 \cdot 01$	$2 \cdot 10$	479^{1}
July 9	D. O, B. G., J. A E	1,929	28.0	$66 \cdot 0$	$4 \cdot 30$	1.25	283
Aug. 18	D. O'B. G ${ }^{\prime}$, ${ }^{\text {d }}$	1,929 1,909	24.0 22.0	$33 \cdot 1$ $32 \cdot 5$	2.64	0.5	${ }_{101}^{87} \cdot 6$
Nov. 3.	J. A. E., G. K. B..	1,909	$22 \cdot 0$	$32 \cdot 5$	3-12	$0 \cdot 5$	101

[^78]
SESSIONAL PAPER No. 25e

Daily Gauge Height and Discharge of Four-Mile River, below Hewitt Mill, for 1914.

6 GEORGE V, A. 1916
Daily Gatge Height and Discharge of Four-Mile River, below Hewitt Mill, for 1914.

Dix.	July:		August.		September.		October.		November.		December.	
	Gauge Height	Discharge	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height	Discharge	Gauge Height.	Discharge.	Gauge Height.	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Fcet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1	1.65 1.7	436 4.55	0.70 0.70	140 140	0.30 0.30	65	0.55 0.50	108 98	0.62 0.67	122 133	$0 \cdot 10$ 0.15	41 46
2.	1.7	4.55 4.55	0.70 0.70	140 140	0.30 0.30	65	$0 \cdot 50$ C .50	98	0.67 0.65	129	0.15 0.15	46 46
4	1.7	455	0.70	146	$0 \cdot 30$	65	$0 \cdot 45$	89	0.55	108	$0 \cdot 10$	41
5....	$1 \cdot 6$	417	0.70	140	$0 \cdot 25$	59	$0 \cdot 45$	89	$0 \cdot 50$	98	$0 \cdot 10$	41
6	$1 \cdot 5$	381	0.70	140	$0 \cdot 32$	68	$0 \cdot 45$	89	0.45	89	$0 \cdot 10$	41
7.	$1 \cdot 4$	346	$0 \cdot 80$	165	$0 \cdot 40$	80	$0 \cdot 45$	89	$0 \cdot 45$	89	$0 \cdot 10$	41
8	$1+4$	346	$0 \cdot 70$	140	$0 \cdot 40$	80	$0 \cdot 40$	80	$0 \cdot 45$	89	$0 \cdot 10$	41
9.	1+3	312	$0 \cdot 60$	118	$0 \cdot 40$	88	0.40	80	$0 \cdot 45$	89	$0 \cdot 10$	41
10.	1+25	296	$0 \cdot 60$	118	$0 \cdot 37$	76	$0 \cdot 40$	80	$0 \cdot 45$	89	0.05	36
11	1.2	280	0.60	118	$0 \cdot 35$	73	$0 \cdot 40$	80	$0 \cdot 40$	80	0.05	36
12.	$1 \cdot 2$	280	$0 \cdot 55$	108	$0 \cdot 35$	73	0.40	80	$0 \cdot 40$	80	0.05	36
1.	$1 \cdot 25$	296	$0 \cdot 50$	98	$0 \cdot 35$	73	$0 \cdot 35$	73	$0 \cdot 40$	80	0.05	36
14.	$1 \cdot 3$	312	$0 \cdot 50$	98	$0 \cdot 38$	77	0.35	73	$0 \cdot 45$	89	0.02	34
15	$1 \cdot 25$	296	$0 \cdot 50$	98	$0 \cdot 40$	80	$0 \cdot 30$	65	$0 \cdot 30$	65	0.05	36
16.	1.22	286	0.50	95	$0 \cdot 50$	98	$0 \cdot 30$	65	0.30	65	0.05	36
17.	1.07	$2 \$ 1$	$0 \cdot 55$	1 C	$0 \cdot 55$	108	$0 \cdot 55$	108	$0 \cdot 25$	59	0.05	36
18.	1.00	220	0.50	98 89	0.65 0.65	129	0.55	108	0.25	59	0.00	32
19	1.00	220	0.45	89 89	0.65	129	0.55	108	0.25	59 59	0.00 0.00	32
20.	1.00	220	0.45	89	$0 \cdot 60$	118	$0 \cdot 55$	108	$0 \cdot 25$	59	0.00	32
21.	0.87	183	0.42	84	$0 \cdot 35$	108	0.52	102	$0 \cdot 25$	59	-0.05	28
22.	0.85	177	$0 \cdot 40$	80	0.50	98	$0 \cdot 40$	80	0.25	59	-0.10 -0.18	25
23.	0.80	165	$0 \cdot 40$	80	$0 \cdot 50$	98	0.40	80	0.25	39	-0.18	21
24	0.80	165	$0 \cdot 40$	80	$0 \cdot 30$	98	$0 \cdot 40$	80	$0 \cdot 25$	59	-0.20	20
25.	0.80	165	$0 \cdot 35$	73	0.50	98	$0 \cdot 40$	80	$0 \cdot 20$	52	-0.10	25
26.	0.80	165	$0 \cdot 35$	73	0.50	98	$0 \cdot 40$	80	$0 \cdot 25$	59	-0.00	32
27.	0.80	165	$0 \cdot 30$	65	$0 \cdot 68$	136	$0 \cdot 35$	73	0.25	59	-0.05	36
28	0.75	152	$6 \cdot 30$	65	$0 \cdot 60$	118	$0 \cdot 35$	73	0.25	59	-0.05	36
29.	0.75	132	0.35	73	0.60 0.55	118	0.35 0.46	73	0.25 0.20	59 59	-0.00 0.00	32 32
30.	0.70	140	$0 \cdot 35$	73	0.55	108	$0 \cdot 46$	91	$0 \cdot 20$	52	$0 \cdot 00$	32
31.	$0 \cdot 70$	140	$0 \cdot 30$	65			0.50	98			0.00	32

Monthly Discharge of Four-Mile Creek near Silverton, for 1914.
(Drainage area, 41 squarc miles.)

SESSIONAL PAPER No. 25e

Four Mile Creek Above Hewitt Intake (3028).
Location.-Immediately above Hewitt intake, about 5 miles from Silverton. Nelson district.

Records Available.-May to December, 1914.
Climatic Conditions.-Similar to Four-mile creek below Hewitt mill.
Gauge.-Vertical staff, enamel, read daily by Mr. P. Harding, of Van Roi mill.

Channel.-Water smooth and swift, controlled by Hewitt diversion dam.
Discharge Measurements.-Five measurements were made in 1914, by wading.

Accuracy.-No high-water measurements were made. The gauge readings have been somewhat intermittent. The results may not be closer than 20 per cent.

General.-Granite creek flows in below this station and above the station located below Hewitt mill.

Discharge Measurements of Four Mile Creek near Silverton, above Hewitt Intake, for 1914.

	Date.	Hydrographer.		Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
					Feet.	Sq. ft .	Ft. per sec.	Feet.	Sec.-ft.
April		G. E, W, D, $O^{\prime} \mathrm{B}, \mathrm{G}$.		1048	38.5 28.2	69.7 55.0	$1 \cdot 27$ $3 \cdot 55$	1.05 1.52	80. 195.01
June	11..	G. A. E., D. O'B. G		1927	$28 \cdot 2$ $30 \cdot 5$	55.0 57.8	3. $3 \cdot 56$	1.52 1.58	$195 \cdot 0^{1}$ $206 \cdot 0$
Aug.	18.	D. O'B. G..		1929	26	26.9	1. 86	0.8	$50 \cdot 1$
Nov.	3.	J. A. E., G. K. B		1909	25	$22 \cdot 6$	$2 \cdot 09$	0.8	47.4

[^79]6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Four Mile Creek above Hewitt Intake near Silverton, for 1914.

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Four Mile Creek above Hewitt Intake near Silverton, for 1914.

Day.	July,		August.		September.		October.		November.		Decernber.	
	Gauge Height.	Discharge.	Gauge Height.	Discharge	Gauge Height	Discharge	Gauge Height.	Discharge	Gauge Height	Discharge	Gauge Height	Discharge
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft	Feet	Sec.-It.
1.	1.5	183.0	1.0	$71 \cdot 5$	0.80	48.0	0.82	50.4	0.8	48.0	0.5	26.7
2		183.0	$1 \cdot 0$	71.5	0.75	$43 \cdot 8$	0.82	$50 \cdot 4$ 48.0	0.9 0.8 0.8	$60 \cdot 0$ $50 \cdot 4$	0.48 0.45	25.2 23.7
3		183.0	1.0	71.5	0.75	$43 \cdot 8$	0.80	48.0	0.82 0.8	50.4 48.0	0.45 0.4	23.7 21.2
4		183.0 183.0	1.0 0.9	71.5 60.0	0.75 0.75	$43 \cdot 8$ $43 \cdot 8$	0.78 0.78	$46 \cdot 3$ $46 \cdot 3$	0.8 0.85	$48 \cdot 0$ 54.0	0.4 0.4	21.2
6		183.0	$0 \cdot 9$	$60 \cdot 0$	0.55	29.0	0.72	$41 \cdot 2$	0. 82	50.4	$0 \cdot 4$	21.2
7		183.0	1.0	71.5	$0 \cdot 50$	$26 \cdot 2$	$0 \cdot 69$	$37 \cdot 9$	0.78	$46 \cdot 3$	$0 \cdot 5$	$26 \cdot 2$
8.		183.0	1.0	71.5	$0 \cdot 60$	31.7	0.70	39.5	0.7	$39 \cdot 5$	$0 \cdot 5$	$26 \cdot 2$
9	1.5	183.0	$1 \cdot 0$	71.5	$0 \cdot 62$	$33 \cdot 3$	0.68	$37 \cdot 9$	$0 \cdot 72$	$41 \cdot 2$	$0 \cdot 5$	$26 \cdot 2$
10.	1.45	$170 \cdot 0$	$1 \cdot 0$	71.5	$0 \cdot 62$	$33 \cdot 3$	$0 \cdot 68$	$37 \cdot 9$	0.7	$39 \cdot 5$	0.5	$26 \cdot 2$
11	$1 \cdot 45$	$170 \cdot 0$		$70 \cdot 0$	$0 \cdot 68$	37.9	$0 \cdot 7$	39-5	0.7	$39 \cdot 5$	0. 45	23.7
12.	1.6	$212 \cdot 0$		$65 \cdot 0$	$0 \cdot 68$	37.9	$0 \cdot 68$	37.9	0.7	$39 \cdot 5$	$0 \cdot 45$	23.7
13	1.65	226.0		60.0	0.68	37.9	$0 \cdot 65$	35.6	$0 \cdot 68$	$37 \cdot 9$	Ice	20.0
14	1.65	$226 \cdot 0$		$60 \cdot 0$	$0 \cdot 68$	37.9	$0 \cdot 62$	33.3	$0 \cdot 65$	35-6		18.0
15.	$1 \cdot 65$	226.0		$60 \cdot 0$	$0 \cdot 68$	$37 \cdot 9$	$0 \cdot 6$	$31 \cdot 7$	$0 \cdot 62$	$33 \cdot 3$		$17 \cdot 0$
16	1.45	$170 \cdot 0$		55.0	0.60	31.7	$0 \cdot 6$	31.7	0. 57	$30 \cdot 0$		$16 \cdot 0$
17.	$1 \cdot 25$	121.0		$50 \cdot 0$	$0 \cdot 68$	37.9	0.82	50.4	$0 \cdot 60$	31.7		15.0
18.	$1 \cdot 25$	121.0	0.8	48.0	0.78	$46 \cdot 3$	0.88	57.6	$0 \cdot 60$	$31 \cdot 7$		$15 \cdot 0$
19	1.35	144.0	0.9	$60 \cdot 0$	0.97	68.0	0.85	54.0	$0 \cdot 60$	31.7		$15 \cdot 0$
20.	$1 \cdot 30$	132.0	0.95	65.8	0.98	$69 \cdot 2$	0.78	$46 \cdot 3$	$0 \cdot 58$	$30 \cdot 6$		16.0
21	$1 \cdot 15$	100.0	0.9	60.0	0.85	54.0	0.7	$39 \cdot 5$	$0 \cdot 60$	$31 \cdot 7$		16.0
22	1.15	$100 \cdot 0$	0.95	$65 \cdot 8$	0.88	$57 \cdot 6$	$0 \cdot 7$	$39 \cdot 5$	$0 \cdot 58$	$30 \cdot 6$	$0 \cdot 3$	16.8
23.	$1 \cdot 20$	$110 \cdot 0$	0.9	$60 \cdot 0$	0.78	$46 \cdot 3$	0.68	37.9	$0 \cdot 55$	$29 \cdot 0$	$0 \cdot 3$	16.8
24.	1.10	90.0	1.0	71.5	0. 80	48.0	0.65	35.6	0.52	$27 \cdot 3$	$0 \cdot 3$	16.8 13.6
25	1.10	$90 \cdot 0$	$1 \cdot 0$	71.5	0.80	48.0	$0 \cdot 65$	$35 \cdot 6$	$0 \cdot 5$	$26 \cdot 2$	0.25	$13 \cdot 6$
26	$1 \cdot 1$	90.0	$0 \cdot 85$	54.0	0.85	54.0 65.8	0.65 0.69		0.55			
27.	$1 \cdot 1$	90.0	0.85	54.0	0.95	65.8	0.62 0.6	$33 \cdot 3$ 31.7	$0 \cdot 52$ 0.5	$27 \cdot 3$ 26.2	0.25 0.25	$13 \cdot 6$ $13 \cdot 6$
28.	$1 \cdot 1$	$90 \cdot 0$	0.85	54.0	0.95 0.95	65.8 65.8	0.6 0.6	31.7 31.7	$0 \cdot 5$	$26 \cdot \frac{2}{2}$	0.25	$13 \cdot 6$ $13 \cdot 6$
29.	1.1	$90 \cdot 0$ 90.6	0.85 0.85	54.0 54.0	0.95 0.88	$65 \cdot 8$ $57 \cdot 6$	$0 \cdot 6$ 0.65	$31 \cdot 7$ $35 \cdot 6$	0.5 0.5	26.2 26.2	0.25 0.25	$13 \cdot 6$ $13 \cdot 6$
30.	$1 \cdot 1$	$90 \cdot 6$	0.85	$54 \cdot 0$	0.88	$57 \cdot 6$	0.65	$35 \cdot 6$	0.5	$26 \cdot 2$	$0 \cdot 25$	$13 \cdot 6$
31.	$1 \cdot 0$	71.5	0. 80	48.0			0.70	$39 \cdot 5$			$0 \cdot 20$	$12 \cdot 5$

Monthly Discharge of Four Mile Creek near silverton, for 1914.
(Drainage area, 30 square miles.)

Monzit.	Dischabge in Second-F'eet.				R1- $\mathrm{N-Ory}$.		Aecuraes
	Maximum	Ainimum.	Mean.	$\begin{aligned} & \text { Por } \\ & \text { xyunre } \\ & \text { mile. } \end{aligned}$	1)ept li in inchess oll 1)rainage area.	$\begin{aligned} & \text { Totat } \\ & \text { in } \\ & \text { acre-fewt } \end{aligned}$	
May	381	60	234	$7 \cdot 80$	8. 90	14. 1141	1)
June	431	157	2911	$9 \cdot 66$	111. 8	17,3m	1)
July	224	71.5	148	4-83	S ts	19, 1641	
August	71.5	is	83.4	$\cdots+18$	2.41	3. 5.511	
Replomber	619.2	211.2	+11. 1	1-54	1.79	2, \%11	(
Fetolere	$57 \cdot 6$	31.7	111-3	1-34	1.34	2. tsu	!
Novernler	(10).11	$26 \cdot 2$	$38 \cdot 6$	122	130	\cdots	(
Wecember	26.2	12.5	18.8	(1-13	11.73	1. lim	

Location.-Immediately above bridge near Erickson, and 5 miles from Creston. Nelson district.

Records Available.-May to November, 1914.
Climatic Conditions.-Similar to Nelson (see Kootenay river near Nelson), being affected by Kootenay lake, only a few miles distant. The river generally freezes over, however, for two or three weeks at a time, but seldom for the whole winter. Frazil ice may be expected.

Gauge.-Vertical staff gauge, located immediately above head of canyon, 20 yards from Canyon Siding station, on C.P.R. The control is permanent.

Channel.-At the gauge, permanent; below measuring section, shifting.
Discharge Measurements.-Seven measurements were made in 1914 from the highway bridge below the canyon, one-quarter mile from Erickson. This section is temporary. One measurement was made on December 21, under ice conditions, and a discharge of 261 c.f.s. was obtained.

General.-Goat river is a large stream discharging into Kootenay river immediately above Kootenay lake. The drainage area is about 275 square miles of mountainous country. There are however, no high peaks, and it is not probable that the stream is glacial fed. During August the river may get very low; in fact the discharge was lower at the end of August than at the end of December, 1914.

The canyon near Erickson affords a good power, which will probably be harnessed in the future. A head of at least 100 feet may be obtained, and the low flow is probably in the neighborhood of 100 c.f.s.

Accuracy.-Daily gauge readings are obtained. The gauge control is permanent. The measurements are fair, and the gauge-height discharge curve is very good. Accuracy, 5 per cent.

Discharge Measurements of Goat River near Erickson, for 1914.

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
1914.			Feet.	Sq. tt .	Ft. per sec.	Feet.	Sec.-feet.
May 8.	C. E. R,, G. K. B	1672	99	549	4.55	$3 \cdot 9$	2,500
May June 18	J. A. Elliott.	1909 1672	99 103	589	$5 \cdot 00$ $6 \cdot 02$	$3 \cdot 5$ 4.95	2,940 4,280
June 18. July 21.	C. E. R. ${ }^{\text {D }}$ G.	1672 1929	103 87	711	6.02 1.7	4.95 0.00	4,280 735
Aug. 4	do	1929	79	367	0.95	-1.10	348
Oct. 18.		1929	96	394	$1 \cdot 26$	-0.69	498
Dec. 21.	J. A. E., C. B. C	1909	32	$22 \cdot 9$	$1 \cdot 14$	-1.20	$231{ }^{1}$

[^80]
SESSIONAL PAPER No. 25e

Daily Gauge Height and Discharge of Goat River near Erickson, B.C., for 1914.

Daily Gauge Height and Discharge of Goat River near Erickson, B.C., for 1914.

D.x.	July.		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge.	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height	Discharge.	Gauge Height	Discharge.
	Feet.	Sec.-ft.	Feet.	See.-ft.	Feet.	Sec.-ft.	Feet.	Sse.-ft.	Feet.	Sec.-ft.	Feet.	Sce.-ft.
1.	$2 \cdot 70$	2,310	-0.95	400	-1.60	205	$-1 \cdot 10$	355	$0 \cdot 10$	785	-0.8	445
2.	$2 \cdot 65$	2,270	-1.00	385	$-1 \cdot 60$	205	$-1 \cdot 10$	355	$0 \cdot 40$	930	-0.83	430
3	$2 \cdot 70$	2,310	$-1 \cdot 10$	355	-1.60	205	-1.60	385	$1 \cdot 30$	1,410	-0.85	430
4	$2 \cdot 70$	2,310	$-1 \cdot 10$	355	$-1 \cdot 60$	205	-1.15	340	1.30	1,410	-0.80	445
5.	$2 \cdot 25$	2,000	$-1 \cdot 10$	355	-1.60	205	$-1 \cdot 10$	355	1.45	1,490	-0.80	445
6	1.95	1.800	$-1 \cdot 10$	355	$-1 \cdot 60$	205	-1.15	340	1.90	1,760	-0.90	415
7.	1.65	1.610	-1.20	325	-1.60	205	-1.10	355	$1 \cdot 50$	1,520	-0.90	415
8	1.55	1,560	-1.20	325	-1.60	205	$-1 \cdot 10$	355	1.9	1.760	-0.90	415
9.	1.40	1,460	-1.20	325	-1.50	235	$-1 \cdot 10$	355	1.75	1,670	-0.90	415
10.	$1 \cdot 10$	1,300	-1.20	325	-1.50	235	-1.08	361	1.45	1,490	-0.90	415
11.	1.05	1,270	-1.20	325	-1.50	235	-1.05	370	$1 \cdot 1$	1,306	-0.90	415
12.	$0 \cdot 75$	1,100	-1.20	325	-1.50	235	-1.00	385	$0 \cdot 8$	1,130	-1.00	385
13.	1.00	1,240	-1.20	325	-1.50	235	-1.00	385	$0 \cdot 35$	900	ice	385
14.	1.30	1,410	$-1 \cdot 20$	325	-1.40	265	-1.00	385	$0 \cdot 05$	765		385
15.	$1 \cdot 15$	1,330	$-1 \cdot 20$	325	-1.35	280	-0.90	415	$0 \cdot 0$	745		385
16.	$0 \cdot 80$	1,130	-1.20	325	-1.30	295	-0.70	480	-6.05	725		385
17.	$0 \cdot 50$	980	$-1 \cdot 15$	340	-1.20	325	-0. 55	530	-0.05	725		
18.	$0 \cdot 35$	900	-1.30	295	-0.90	415	-0.40	585	-0.15	685		
19.	0.30	880	-1.35	280	-0.50	550	-0.25	645	-0.20	665		
20.	$0 \cdot 25$	850	-1.40	265	-0.40	585	-0.25	645	-0.25	645		
21.	0.10	785	-1.40	265	-0.55	530	-0.45	565	-0.30	625		
22.	-0.10	705	-1.40	265	-0.65	500	-0.60	515	-0.35	605		
23.	-0.30	625	-1.40	265	-0.85	430	-0.65	495	-0.40	585		
24	-0.30	625	-1.40	265	-1.00	385	-0.70	480	-0.40	585		
25.	-0.45	565	-1.40	265	-1.00	385	-0.70	450	-0.50	550		
26.	$-0 \cdot 50$	550	-1.50	235	-1.05	370	-0.70	480	-0.50	550		
27.	-0.50	550	-1.50 -1.50	235	$-1 \cdot 10$ -1.10	355	-0.65 -0.60	500 515	-0.50 -0.50	550		
28.	-0.60	515 480	$-1 \cdot 50$ -1.60	235	-1.10 -1.10	355	-0.60 -0.65	515 500	-0.50 -0.50	550 550 5		
$29 .$		480	$-1 \cdot 60$ -1.60	205	-1.10 -1.10	355	-0.65 -0.50	500 550	-0.50 -0.70	550		
30.	-C. 80	445	-1.60	205	$-1 \cdot 10$	355	$-0 \cdot 50$	550	-0.70	480		
31.	-0.90	415	$-1 \cdot 60$	205			-0.40	585				

Monthly Discharge of Goat River near Erickson, B.C., for 1914.
(Drainage area. 276 square miles.)

Month.	Discharge in Second-Feet.				Run-Off.		Accuracy.
	Viaximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	Total in acre-fcet,	
June..	5,780	1.730	3,200	$11 \cdot 6$	$12 \cdot 9$	190,000	B
July...	2,316	415	1,170	$4 \cdot 25$	$4 \cdot 90$	71.900	A
August...	400	205	299	1.08	$1 \cdot 24$	18.400	A
Reptember	585	205	318	$1 \cdot 15$	1.28	18, 9×0	A
October.	${ }^{645}$	340	440	1.59	1.83	27, 100	A
November.	1,760	480	938	$3 \cdot 40$	$3 \cdot 79$	55,800	A

Kaslo Creek (3029).
Location.-At the second highway bridge from the mouth near Kaslo. Nelson district.

Records Available.-June to December, 1914.
Climatic Conditions.-From December 1, 1913, to November 30, 1914, the precipitation at Kaslo was $24 \cdot 4$ inches. The summers are hot and generally dry in July and August. The winters are mild, the temperature seldom going below $O^{\circ} \mathrm{F}$. The snowfall is not very heavy, and considerable rain falls in the fall and spring. The creek freezes over during cold spells, but seldom for more than two weeks at a time. Frazil ice is a possibility.

Gauge.-A chain gauge is read daily by Mr. W. F. Hurst, of Kaslo.
Channel. -The bed of the stream is full of large boulders, but apparently permanent, and the water is very fast and not at right angles to the bridge.

Discharge Measurements.-Five well distributed measurements were made in 1914.

Accuracy.-Daily gauge readings are obtained, the measurements may not be very accurate, and the gauge height discharge curve seems fairly good. The results should be well within 15 per cent.

General.-Kaslo creek is a turbulent mountain stream, about 25 miles long (two forks), flowing eastward into Kootenay lake, near Kaslo. The drainage area is about 120 square miles of country containing valuable mineral deposits. Four miles from the mouth the stream divides into what are known as North and South Forks of Kaslo creek. It is along the North Fork that the old narrow gauge railway (Great Northern) was built during the rush several years ago. The narrow gauge has long been out of commission, and, in 1914, the C.P.R. completed their line from Kaslo to Sandon and Rosebery.

Kaslo creek and its tributaries are used still for mining purposes, and the town of Kaslo has a water-power development for lighting purposes, near the mouth.

Discharge Measurements of Kaslo Creek near Kaslo, B.C., for 1914.

	Date.	Hydrographer.	Meter	Width.	Area of vection.	Mean Velocity:	Gauge Height.	Discharge
				Feet.	Siq. ft .	F't. perseec	Feot.	See -ft.
May	23	J. $\mathrm{J}_{\text {¢ }}$	1.672	64	2 n 2	$7 \cdot 11$	2.90	
June	17...	C. E. R..	1.872	73	349	$9 \cdot 35$	3.75	$3,271$
July	22.		1,672	65.9	191	3. $\mathbf{3} 6$	1.95	737
Siept.	23	J. A, E...	1.929	62.9	131	$2 \cdot 711$	1.25	334
Nov.	31.	C. F. R., G. K. B.	1.920			$2 \cdot 14$	0.45	195

6 GEORGE V. A. 1916
Daily Gauge Height and Discharge of Kaslo Creek near Kaslo, B.C., for 1914.

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Kas!o Creek near Kaslo, B.C., for 1914.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height	Discharge.
	Feet.	Sec.-ft.										
1	$3 \cdot 32$	2,580	2.0	880	1.20	330	$1 \cdot 28$	370	$1 \cdot 3$	380	0.83	185
2	$3 \cdot 45$	2,790	1.92	810	1.18	321	1.30	405	$1 \cdot 45$	458	0.85	192
3	$3 \cdot 57$	2,990	1.92	810	$1 \cdot 15$	307	$1 \cdot 25$	355	1.4	430	0.85	192
4	$3 \cdot 6$	3,040	1.83	727	1.22	340	1.20	330	1.27	365	0.73	154
5.	$3 \cdot 3$	2,550	1.65	585	1.17	316	$1 \cdot 10$	285	$1 \cdot 3$	380	0.75	160
6.	$3 \cdot 25$	2,470	1.72	636	$1 \cdot 10$	245	1.08	277	$1 \cdot 3$	380	0.77	166
7.	$3 \cdot 15$	2,320	1.8	700	$1 \cdot 20$	330	1.08	277	$1 \cdot 25$	355	0.83	185
8.	$3 \cdot 1$	2,240	1.57	530	$1 \cdot 25$	355	1.02	253	1.25	355	0.7	145
9.	3.05	2,160	1.45	458	$1 \cdot 15$	307	1.00	245	1.12	294	$0 \cdot 7$	145
10.	3.05	2,160	$1 \cdot 42$	441	$1 \cdot 02$	253	0.98	238	1.15	307		145
11.	$3 \cdot 05$	2,160	1.42	441	$1 \cdot 12$	294	1.07	273	$1 \cdot 25$	355		135
12.	$3 \cdot 17$	2,340	1.45	458	$1 \cdot 15$	307	1.0	245	1-15	307		125
13.	$3 \cdot 2$	2,390	1.55	518	1.02	253	$1 \cdot 0$	245	$1 \cdot 2$	330		120
14	$3 \cdot 15$	2,320	1.45	458	1.05	265	0.97	235	1.05	265		115
15.	3.05	2,160	$1 \cdot 52$	498	1.07	273	0.93	220	$1 \cdot 1$	285		115
16.	2.67	1,630	$1 \cdot 55$	518	$1 \cdot 60$	245	0.95	227	0.92	217		115
17.	$2 \cdot 5$	1,420	1.52	498	1.05	265	1.07	273	1.07	273		115
18	$2 \cdot 6$	1.540	$1 \cdot 37$	415	$1 \cdot 27$	365	$1 \cdot 27$	365	0.95	227		115
19.	$2 \cdot 6$	1,540	1.40	430	1.78	684	1.33	395	0.98	235		115
20.	$2 \cdot 65$	1,600	$1 \cdot 35$	405	1-52	498	1.25	355	1.05	265		113
21.	$2 \cdot 30$	1,200	1.35	405	1.35	405	$1 \cdot 15$	307	0.97	235		115
22.	2.00	880	$1 \cdot 37$	415	$1 \cdot 30$	380	$1 \cdot 12$	294	$0 \cdot 92$	217		115
23.	1.95	835	$1 \cdot 32$	390	$1 \cdot 35$	405	1.05	265	0.95	227		115
24	2.08	960	$1 \cdot 28$	370	1.30	405	1.02	253	0.98	238		115
25.	2.05	930	1.25	355	1.48	474	$1 \cdot 05$	265	0.95	227		115
26.	1.95	835	$1 \cdot 25$	355	1.60	550	$1 \cdot 05$	265	0.95	227		115
27.	$2 \cdot 0$	880	$1 \cdot 25$	355	1.80	700	1-C5	265	0.98	238		115
28.	1.95	835	$1 \cdot 28$	370	1.58	537	$1 \cdot 05$	265	0.95	227		115
29.	1.9	790	1.32	390	1.42	441	1.05	265	1.02	253		115
30.	1.85	745	$1 \cdot 32$	390	1.35	405	$1 \cdot 15$	307	$0 \cdot 82$	182		115
31.	1.95	835	$1 \cdot 25$	355			$1 \cdot 25$	355				

Monthly Discharge of Kaslo Creek near Kaslo, for 1914.
(Drainage area, 170 square miles.)

Month.	Dischahge in Second-Feet.				Run Ory.	
	Maximum.	Minimum.	Mean.	Per square mite.	Depth in inches on Drainage arew.	Total in acre-feet.
	4, 160	1,420	2,390	$14 \cdot 1$	15.7	142.000
	3,04)	79)	1,754)	$10 \cdot 3$	11.9	115, (4x)
August ${ }^{\text {datha }}$	880	355	$+45$	2.91	$3 \cdot 36$	30. fik)
	684	245	375	$2 \cdot 20$	$2 \cdot 46$	22.3015
	345	220)	2sy	170	1.46	17, M(0)
Noveruber	458	152	291 133	1.71 0.75	1.91	17, 3 kl
Decomber	102	113	133	0.78	0.20	8,180

[^81]Kooskanax Creek Near Nakusp (3022).
Location.-At bridge over canyon, 1 mile from Nakusp and about 1 mile from the mouth. Nelson district.

Records Available.-May to December, 1914.
Climatic Conditions.-The precipitation at Nakusp, from December, 1913, to November 30, 1914, was 26.8 inches. The summers are hot and fairly dry. The winters are mild. Occasionally, for a day or two, the temperature will go below zero, but the mean temperature of winter months is probably 25° to $35^{\circ} \mathrm{F}$. Frazil ice may be expected for a few days at a time only.

Gauge.-A chain is located at the bridge, and read by Mr. L. H. Rawlings twice a week.

Channel.-The river is confined between perpendicular walls, 38 feet apart at the gauging and measuring section. The control is a sand and gravel bar, and seems faily permanent.

Discharge Measurements.-Nine measurements were made in 1914.
Accuracy.-These results should be within 20 per cent. The gauge readings only being twice a week almost prohibit giving an accuracy during May, June, and July.

General-Kooskanax creek is a stream about 25 miles long, rising in the divide between Trout lake and Upper Arrow lake, southeast of Nakusp, and discharging into Upper Arrow lake near Nakusp. The drainage area is about 125 square miles.

There is a power site in the canyon about a mile from the mouth, where, at some future date, the town of Nakusp might obtain a suitable development for lighting purposes and small industries. The canyon is about 100 feet long, 30 feet wide, and about 40 to 50 feet deep. The low-water flow is seldom less than 100 c.f.s. Mr. C. E. Webb made a preliminary report in March, 1914, on the power possibilities of this creek near Nakusp. His report is included in part 2 of this report.

Discharge Measurements of Kooskanax River near Nakusp, B.C., for 1914.

Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
Mar 19	C. E. Webb	1048	27	204	0. 59	$0 \cdot 7$	122
May 16.	J. A. E. and G. K. B	1672	26	274	5.63	$4 \cdot 2$	1,540
June 13.	G. K. B.	1927	26	${ }_{2} 73$	$4 \cdot 30$	$3 \cdot 50$	1,150
" 20. " 28.	$\mathrm{G}, \mathrm{~K}, \mathrm{~B}$	1927	26	275	5.40	3.80	1,480
" 28.	J. A. E.	1909	27	293	$4 \cdot 73$	3. 34	1,390
Aug. 12.	J.A. E.	1969	27	229	1.07	$1 \cdot 1$	245
Sept. 4	J. A. E., C, E. R.	1928	28	221	$0 \cdot 62$	$0 \cdot 65$	137
Oct. 28	J. A. E. O. . B	1909	29	${ }_{29}^{240}$	1,28	1.15	309
Nov. 23.	J. A. E., O. J. B	1909	28	230	$0 \cdot 95$	1.2	220

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge at Kooskanax Creek near Nakusp, for 1914.

Daily Gauge Height and Discharge at Kooskanax Creek near Nakusp, for 1914-Concluded.

DAY.	July.		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge.						
	Feet.	Sce.-ft.	Feet,	Sec.-ft.	Feet.	Sec.-ft	Feet.	Sec. ft .	Feet.	See.-ft.	Feet.	Sec.-ft.
1		1,470		990		128		680	$1 \cdot 3$	355 345		235
3	$3 \cdot 7$	1,530 1,590	$2 \cdot 5$	820	$0 \cdot 7$	115		690 700		345	$1 \cdot 0$	225
4		1,570		720		115	$2 \cdot 1$	720		325		215
5.		1,560	$1 \cdot 9$	620		115		700	1.2	315		205
6		1,550		560	0.7	115		685		335	0.9	195
7	$3 \cdot 6$	1,530 1,500		500 445		118	$2 \cdot 0$	670 650		365 395		195
8		1,500		445 395		120		650 630	1.4	395 395		195
9.		1,470 1,440	$1 \cdot 4$	395 365	0.72	123		630 610		395 395	0.9	195
11.	$3 \cdot 4$	1,410		335		119	$1 \cdot 85$	597	$1 \cdot 4$	395		195
12.		1,380	$\cdots 1.2$	315		117		590	$1 \cdot 4$	385		195
13.		1,350		305	$0 \cdot 7$	115		580		375	$0 \cdot 9$	195
14.		1,320		295		111	1.8	575		365		195
15.	$3 \cdot 2$	1,300		285		107		545	$1 \cdot 3$	355		195
16.		1,300	$1 \cdot 1$	275	$0 \cdot 65$	102		525		370 380	0.9	195
17.		1,300 1,300		261 248		155 210		505		380 395	185 175
18.		1,300 1,300		248		210	$1 \cdot 6$	485 470	14	395 395		175
19.	$3 \cdot 2$	1,300 1,280	$1 \cdot 0$	235 225		260 315		470		395 395		165 155
20.		1,280		225	$1 \cdot 20$	315		455		395	0.8	155
21.		1,260		215		355	$1 \cdot 5$	440		395 395		
22.	$3 \cdot 1$	1,250		205 195		395 440	415 395	1.4	395 365		155 155
23.		1,250	$0 \cdot 9$	195	1.50	440		395 375		365 335		155 155
24.		1,250 1,250		195		485		375 355		335 315		155 155
25.		1,250		195		530	$1 \cdot 3$	355	$1 \cdot 2$	315		155
26.	$3 \cdot 1$	1.250	0.9	195		575		340		295		155
27.		1,230		185	1.90	620		330		275	$0 \cdot 8$	155
28.		1,210		175		630	$1 \cdot 2$	315		255	140
29.	$3 \cdot 0$	1,200		165		650	325	$1 \cdot 0$	235		130
30.		1,130	0.8	155	$2 \cdot 00$	670		335		235	$0 \cdot 7$	115
31.		1,060		141				345				115

Monthly Discharge of Kooskanox Creek near Nakusp, B.C., for 1914.
(Drainage area, 125 square miles.)

Month.	Discharge in Second-Feet.				Run-Off.	
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	Total in acre-feet.
April.	1,080	115	530	$4 \cdot 25$	4.74	31,500
May..	1,880	920	1,330	$10 \cdot 6$	12.2	81,800
June.	1,820	1,410	1,600	12.8	$14 \cdot 3$	95,200
July	1,590	1,060	1,350	$10 \cdot 8$	$12 \cdot 4$	83,000
August	990	141	362	$2 \cdot 90$	$3 \cdot 34$	22,300
September	670	102	272	$2 \cdot 18$	$2 \cdot 43$	16,200
October...	720	315	517	$4 \cdot 14$	$4 \cdot 77$	31,800
November.	395	235	336	$2 \cdot 69$	$3 \cdot 00$	20,000
December	235	115	178	1.42	$1 \cdot 64$	10,900

Accuracy "D."

Kootenay River at Upper Bonnington Falls (3075).

Location.-At the head-race of the West Kootenay Power and Light Company's plant No. 2, at Upper Bonnington, 10 miles west of Nelson and about 15 miles from the mouth of the Kootenay, near Castlegar. Nelson district.

Records Available.-October, 1907, to December, 1914, through the courtesy of the West Kootenay Power and Light Company.

Climatic Conditions.-The climatic conditions are similar to those at Nelson (see Kootenay river near Nelson). The warming influence of Kootenay lake keeps the water of the river below the lake at a temperature such that the river never freezes over, and very little, if any, frazil ice and anchor ice is formed.

Gauge.-The elevation of the water each day was determined by means of measuring the distance to the surface of the water from a known point. These readings were taken by the West Kootenay Power and Light Company for their own information. The gauge is located at a point at the upstream end of the head-race, where part of the water is diverted to the turbines, and the remainder flows over the falls, some 200 feet below.

Method of Compilation.-The only metering section on Kootenay river between the lake and the mouth is near Glade, about 6 miles below Upper Bonnington. The only stream of any size entering between these points is Slocan river. The discharge curve for the Kootenay at Bonnington falls, near Nelson, and at Bonnington pool, is obtained by subtracting the discharge of Slocan river from the discharge of the Kootenay river near Glade. For more complete information on the studies carried on regarding the Kootenay between Kootenay lake and the mouth see report in Part 2, called, "Compilation of data on Kootenay river, between Kootenay lake and the mouth."

Accuracy. - As we do not know sufficient regarding the gauge, these data are not guaranteed, but it appears that they agree very well with similar data gathered in 1914 at Bonnington pool and near Nelson.

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Kootenay River near Bonnington Falls, for 1907.

Monthly Discharge of Kootenay River near Bonnington Falls, for 1907.
(Drainage area, 17, 800 square miles.)

	Month.	Discharge in Second-Feet.				Ren-Off.	
		Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	$\begin{gathered} \text { Depth in } \\ \text { inches } \\ \text { on } \\ \text { Drainage } \\ \text { area. } \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$
October		36,200			1.47	1.70	1,610,000
November		18,800	9.900	14,200	0. 80	0.89	845,000
December		13,000	9,600	11, 100	$0 \cdot 62$	0.72	$6 \mathrm{S2}, 000$

SESSIONAL PAPER No. 25e

Daily Gauge Height and Discharge of Kootenay River near Bonnington Falls, for 1908.

Day.	January.		February.		March.		April.		May.		June.	
	Gauge Height.	Discharge.	Gauge Height.	charge.	Gauge Height	Discharge	Gauge Height.	Discharge	Gauge Height.	Discharge	Gauge Height.	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-It.	Feet.	Sec.-ft.
1.	187.0	10,200	186.1	7.500	185.9	7,000	187.4	11,809	193.0	43,200	196.5	73.000
2	166.9	9,900	$186 \cdot 0$	7. 200	185.9	7.000	187.4	11,800	193-3	45,300	196.7	75.000
3	$186 \cdot 9$	9,900	186.0	7,200	185.9	7.000	187.4	11, 800	193.5	46,700	$196 \cdot 8$	76.000
4	186.8	9,600	186.0	7. 200	$185 \cdot 9$	7,000	187.4	11, 000	$193 \cdot 5$	46.700	196.9	77,000
5	$186 \cdot 7$	9,300	186.0	7,200	$185 \cdot 9$	7,000	$187 \cdot 4$	11,800	$193 \cdot 6$	47.400	197-0	79,000
6	$186 \cdot 7$	9.300	186.0	7.200	185.9	7,000	187.4	11,800	193.8	48.500	197.2	81.000
7	$186 \cdot 6$	9,004	$186 \cdot 0$	7.200	$185 \cdot 9$	7,000	187, 4	11,800	$194 \cdot 1$	51.200	197.5	\$. 4.000
8	186.6	9,000	186.0	7,200	185.9	7,000	157.4	11,500	$194 \cdot 5$	54.500	197.8	AS. 060
9	$186 \cdot 6$	9.000	$186 \cdot 0$	7,200	185.9	7,060	187.4	11,800	194.9	58.100	198.0	91.000
10.	$186 \cdot 6$	9.000	$186 \cdot 0$	7,200	185.9	7,000	$187 \cdot 4$	11,800	$195 \cdot 1$	59,990	$198 \cdot 3$	94.000
11.	$186 \cdot 6$	9,000	186.0	7.200	$185 \cdot 9$	7,000	187.5	12.200	$195 \cdot 3$	61,700	198.5	98.500
12.	$186 \cdot 6$	9,000	156.0	7,209	185.9	7,000	157.5	12,200	$195 \cdot 5$	63,500	198.8	101.000
13	$186 \cdot 6$	9,000	186.0	7. 200	185.9	7,000	187.6	12,600	195.6	64,400	199.0	104.000
14.	186.7	9,300	186.0	7,200	186.0	7,200	187.7	13,000	195.9	67,100	199-2	107.000
15.	186.7	9.300	186.0	7.200	186.0	7,200	188.0	14,200	196.0	68.000	$199 \cdot 3$	105.000
16.	186.5	8,700	186.0	7,200	$186 \cdot 1$	7.500	188.3	15, 400	196.2	70.000	199-5	110.000
17.	186.4	8.400	$186 \cdot 0$	7,200	$186 \cdot 2$	7,800	188.5	16.400	196.3	71,000	199.7	113,000
18	186.4	8,490	186.0	7. 200	186.4	8, 400	189.0	18, 800	196.4	72,000	199.7	113,000
19	186.5	8,700	186.0	7,200	186.5	8,700	189.4	20,800	$196 \cdot 5$	73,000	199.7	113,000
20.	$186 \cdot 6$	9,000	186.0	7,200	186.6	9,000	$190 \cdot 0$	24.000	$196 \cdot 4$	72,000	199.7	113,000
21.	$186 \cdot 6$	9,000	186.0	7,200	$186 \cdot 6$	9,000	190.5	27,000	196.4	72,000	$199 \cdot 6$	111,000
22	$186 \cdot 6$	9,090	$186 \cdot 0$	7,200	186.7	9,300	191.0	30,000	196.4	72,000	199.5	110,000
23	186.5	8.700	$186 \cdot 0$	7,200	186.8	9,600	191.5	33,000	$196 \cdot 4$	72.000	199.3	108,000
24	186.5	8,700	186.0	7. 200	186.9	9,900	191.9	33,300	$196 \cdot 4$	72.000	199.1	106,000
25.	186.4	8,400	$186 \cdot 0$	7,200	186.9	9,990	$192 \cdot 2$	37,600	$196 \cdot 4$	72,000	199.0	104,000
26.	186.4	8,430	186.0	7,200	186.9	9,900	192.5	39,700	$196 \cdot 4$	72,000	198.9	102,000
27	186-3	8,100	186.0	7,200	187.0	10,200	192.8	41,800	$196 \cdot 4$	72,000	198.7	99.500
28	186.2	7,800	186.0	7,200	187.0	10,200	$193 \cdot 0$	43, 200	$196 \cdot 4$	72, (0)0	198.5	96, 500
29	186.4	8,400	186.0	7,200	187.1	10,600	193.0	43,200	196.4	72,000	198.4	95,000
30	186.4	8,400			$187 \cdot 4$	11,800	193.0	43,200	196-4	72,000	$198 \cdot 3$	94,000
31	$1 \times 6 \cdot 2$	7,800			$187 \cdot 4$	11,800			196.5	73,000		

Daily Gauge Height and Discharge of Kootenay River near Bonnington Falls, for 1908-Concluded.

Day.	July .		August.		September.		October.		November.		December.	
	Gauge Height	Discharge	Gauge Height.	Discharge.	Gauge Height.	Discharge.						
	Feet.	Sec.-ft.										
1	198.1	92,000	195.1	59,900	$190 \cdot 2$	25,200	188.5	16,400	$187 \cdot 2$	11,000	187.7	13,000
2	198.0	91,000	$194 \cdot 8$	57,200	$190 \cdot 1$	24,600	188.5	16,400	$187 \cdot 3$	11,400	187.9	13,800
3	198.0	91,000	194.5	54,500	$190 \cdot 1$	24,600	188.5	18,400	$187 \cdot 3$	11,400	187.9	13, 800
4	198.0	91,000	194-3	52,800	190.0	24,000	188.4	15,900	$187 \cdot 3$	11,400	187.9	13,800
5	$197 \cdot 9$	89,500	194-1	51,200	$190 \cdot 0$	24,000	188.3	15,400	$187 \cdot 3$	11,400	187.9	13,800
6	197.7	86,500	$194 \cdot 0$	50,400	190.0	24,000	188.2	15,000	187.3	11,400	$187 \cdot 6$	12,600
7	197.5	84,000	$193 \cdot 9$	49,600	$190 \cdot 0$	24,000	188.1	14,600	$187 \cdot 3$	11,400	187.4	11,800
8	197.5	84,000	$193 \cdot 6$	47,400	$190 \cdot 0$	24,000	188.0	14,200	$187 \cdot 3$	11,400	$187 \cdot 3$	11,400
9	197.5	84,000	$193 \cdot 5$	46,700	189.7	22,400	187.9	13,800	$187 \cdot 2$	11,000	$187 \cdot 2$	11,000
10	$197 \cdot 5$	84,000	$193 \cdot 3$	45,300	189.6	21,900	187.8	13,400	$187 \cdot 2$	11,000	$187 \cdot 1$	10,600
11	$197 \cdot 2$	81,000	$193 \cdot 1$	43,900	$189 \cdot 6$	21.900	$187 \cdot 7$	13,000	187.2	11,000	$187 \cdot 0$	10,200
12	$197 \cdot 2$	81,000	$193 \cdot 0$	43,200	189.6	21,990	187.7	13, 000	$187 \cdot 2$	11,000	$187 \cdot 0$	10,200
13	197.2	81,000	19.4.9	42,500	189.6	21,900	$187 \cdot 7$	13,000	187.2	11,000	187.0	10,200
14	197.2	81,000	$192 \cdot 7$	41, 100	189.6	21,900	187.7	13,000	187.2	11,000	187.0	10,200
15.	197.2	81,000	$192 \cdot 5$	39,700	189.5	21,400	$187 \cdot 6$	12,600	187.0	10,200	187.0	10,200
16	197.2	81,000	$192 \cdot 3$	38,300	189.5	21,400	187.6	12,600	187.0	10,200	187.0	10,200
17	197.1	80,000	$192 \cdot 0$	35,200	189.5	21,400	$187 \cdot 6$	12,600	187.0	10,200	$187 \cdot 0$	10,200
18	$197 \cdot 0$	79,000	191.8	34,800	$189 \cdot 5$	21,400	$187 \cdot 6$	12,600	187.0	10,200	186.5	8,700
19	$197 \cdot 0$	79,000	$191 \cdot 7$	34, 200	$189 \cdot 4$	20,800	187.6	12,600	187.0	10, 200	$186 \cdot 5$	8,700
20.	$196 \cdot 7$	75,000	$191 \cdot 6$	33,600	$189 \cdot 3$	20,300	$187 \cdot 6$	12,600	187.0	10,200	$186 \cdot 5$	8,700
21.	196.6	74,000	191.5	33,000	189.2	19,800	187.6	12,600	187.1	10,600	$186 \cdot 5$	8,700
22	196.5	73,000	191.4	32,400	189.2	19,800	$187 \cdot 6$	12,600	$187 \cdot 4$	11,800	$186 \cdot 5$	8,700
23	196.5	73,000	$191 \cdot 3$	31, 800	$189 \cdot 1$	19,300	$187 \cdot 5$	12,200	187.5	12, 200	$186 \cdot 4$	8,400
24.	$196 \cdot 5$	73,000	191.2	31,200	189.1	19,300	187.5	12,200	187.5	12,200	186.4	8,400
25	$196 \cdot 3$	71,000	$191 \cdot 0$	30,000	$189 \cdot 0$	18,800	$187 \cdot 5$	12,200	187.5	12,200	$186 \cdot 4$	8,400
26	$196 \cdot 2$	70.000	191.0	30,000	189.0	18,800	187.5	12,200	187.5	12,200	$186 \cdot 4$	8,400
27	$196 \cdot 1$	69,000	190.9	29,400	188.9	18,300	187.5	12,200	187.5	12,200	186.4	8,400
28	$196 \cdot 0$	68,000	$190 \cdot 7$	28, 200	188.8	17,900	$187 \cdot 4$	11,800	$187 \cdot 5$	12,200	$186 \cdot 4$	8,400
29.	$195 \cdot 7$	65,300	$190 \cdot 6$	27,600	188.7	17,400	187.3	11,400	187.5	12,200	$186 \cdot 4$	8,400
30.	$195 \cdot 5$	63.500	$190 \cdot 5$	27.000	$188 \cdot 6$	16.900	187.3	11,400	$187 \cdot 5$	12,200	186.2	7,800
31.	$195 \cdot 3$	61,700	$190 \cdot 5$	27,000			$187 \cdot 3$	11,400			186.0	7,200

Monthly Discharge of Kootenay River near Bonnington Falls, for 1908.
(Drainage area, 17,800 square miles.)

Month.		Discharge in Second-Feet.				Ren-Ofr.	
		Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	$\begin{gathered} \text { Depth in } \\ \text { inches } \\ \text { on } \\ \text { Drainage } \\ \text { area. } \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$
January		10, 200	7.800	8,880	0.50	0.58	546,000
February		7,500	7,200	7,200	$0 \cdot 40$	0.43	414,000
March.		11,800	7.000	8,600	$0 \cdot 45$	$0 \cdot 55$	529.000
April.		43,200 73,000	11.800	21,700	1.22 3.58	$1 \cdot 36$ 4.13	1. 2900,000
June...		73,000 113,000	43,200 73,010	63,810 94,100	3.58 $5 \cdot 29$	4.13 5.90	$3,920,000$ $5,600,000$
July.		92,000	61,700	72,100	$4 \cdot 05$	4.67	4, 430,000
August.		59,900	27,000	39,700	2. 23	2.57	2,440,000
September.		25, 200	16,900	$\stackrel{21,300}{ }$	1.21	1.35	1,270,000
October November		16.400	11.400	$\begin{array}{r}13,300 \\ \hline 10300\end{array}$	0.75 0.58 0.5	${ }_{0}^{0.86}$	818,000
November December.		12,200 13,800	10,200 7,200	10,300 10,100	0.58 0.57	${ }_{0}^{0.65}$	613,000 621,000

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Kootenay River near Bonnington Falls, for 1909.

D. ${ }^{\text {y }}$	January.		February.		March.		April.		May.		June.	
	Gauge Height.	Discharge	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge
	Feet.	Sec.-ft.										
1.	$186 \cdot 3$	8,100	$186 \cdot 1$	7.500	186.2	7.800	186.4	8,400	188.0	14,200	195.0	59,000
2	$186 \cdot 1$	7,500	$186 \cdot 1$	7,500	$186 \cdot 2$	7,800	$186 \cdot 6$	9,000	188.0	14,600	195.5	63,500
3	$186 \cdot 0$	7,200	$186 \cdot 1$	7,500	185.2	7,800	186.7	9,300	188.3	15,400	196.0	68,000
4	$186 \cdot 1$	7,500	186.1	7,500	$186 \cdot 2$	7,800	186.8	9,600	188.4	15,900	196.5	73,000
5	$186 \cdot 2$	7,800	$186 \cdot 1$	7,500	186.2	7,800	186.9	9,9:0	188.5	16,400	197.0	79,000
6	186.1	7,500	$186 \cdot 1$	7,500	$186 \cdot 1$	7.500	186.9	9,900	188.6	16,900	197.4	83,000
7	186.0	7,200	$186 \cdot 1$	7,500	$186 \cdot 1$	7,500	187.0	10,200	188.8	17,900	$197 \cdot 7$	86,000
8	186.0	7,200	186.1	7,500	$186 \cdot 1$	7,500	187.0	10,200	189.0	18,800	198.0	91,000
9	$186 \cdot 0$	7,200	$186 \cdot 1$	7,500	$186 \cdot 1$	7,500	187.0	10,2c0	$189 \cdot 1$	19,300	$198 \cdot 2$	93.000
10.	186.2	7,800	186.1	7,500	$186 \cdot 1$	7,500	$187 \cdot 0$	10,200	189-3	20,300	198.4	95,000
11.		7,800	$186 \cdot 2$	7,800	$186 \cdot 1$	7,500	187.0	10,200	189.4	20,800	$198 \cdot 6$	95.000
12.	Ice.	7.800	$186 \cdot 2$	7,800	$186 \cdot 1$	7,500	187.0	10,200	189.5	21,400	$198 \cdot 6$	98,000
13.	186.2	7.800	$186 \cdot 2$	7,800	$186 \cdot 1$	7,500	187.0	10,200	189.6	21,900	$198 \cdot 7$	99,000
14	185.9	7,000	186.2	7,800	186.1	7,500	187.0	10,200	189.8	22.900	198.9	102.000
15.	185.8	6,800	$186 \cdot 2$	7,800	$186 \cdot 1$	7,500	187.0	10,200	189.9	23,400	199.0	104,000
16.	185.8	6,800	186.2	7.800	186.1	7,500	187.0	10,200	$190 \cdot 0$	24,600	199.0	104,000
17.	185.8	6,800	$186 \cdot 2$	7,800	186.1	7,500	$157 \cdot 1$	10,800	$190 \cdot 1$	24,600	$199 \cdot 1$	106,000
18	185.8	6,800	186.2	7,800	$186 \cdot 2$	7.800	$187 \cdot 1$	10,600	$190 \cdot 3$	25,800	$199 \cdot 2$	107,000
19.	185.8	6,800	$186 \cdot 2$	7,800	186.3	8,100	$187 \cdot 1$	10,600	190.5	27,000	$199 \cdot 3$	108,000
20.	$185 \cdot 9$	7,000	$186 \cdot 3$	8,100	186.3	8,100	187.2	11,000	$190 \cdot 7$	28.200	$199 \cdot 3$	108,000
21.	185.9	7,000	$186 \cdot 3$	8,100	$186 \cdot 2$	7,800	$187 \cdot 2$	11,000	190.8	28.800	$199 \cdot 4$	109,00c
22.	186.0	7,200	186.3	8,100	$186 \cdot 1$	7,500	$187 \cdot 3$	11, 400	191.1	30,600	199.5	110,000
23.	186.0	7,200	$186 \cdot 2$	7.800	186.1	7,560	187.4	11,800	191.2	31,200	$199 \cdot 4$	109,000
24.	$186 \cdot 1$	7,500	186.2	7,800	$186 \cdot 1$	7,500	187.4	11.800	191.5	33,000	199.1	106.000
25.	$186 \cdot 1$	7,500	$186 \cdot 2$	7,800	186.1	7,500	$187 \cdot 5$	12,200	$191 \cdot 7$	34, 200	199-0	104.000
26.	$186 \cdot 1$	7,500	$186 \cdot 2$	7,800	$186 \cdot 1$	7,500	187.5	12,200	$192 \cdot 1$	36,900	198.9	102,000
27.	$186 \cdot 1$	7,500	$186 \cdot 2$	7.800	$156 \cdot 1$	7,560	157.6	12,600	$192 \cdot 5$	39,700	198.7	99,000
28	$186 \cdot 1$	7,500	$186 \cdot 2$	7,800	$186 \cdot 1$	7,500	187.7	13,000	193.0	43.200	198.5	96,000
29.	$186 \cdot 1$	7,500			186.2	7,800	187.8	13,400	$193 \cdot 5$	46,700	198.3	94.000
30.	$186 \cdot 1$	7,500			$186 \cdot 2$	7,800	$187 \cdot 9$	13,800	$194 \cdot 0$	50,400	198.2	93,010
31.	$186 \cdot 1$	7,500			$186 \cdot 3$	8,100			$194 \cdot 5$	54,500		

Daily Gauge Height and Discharge of Kootenay River near Bonnington Falls, for 1909.

Dax.	July.		August.		September.		October.		November.		December.	
	Gauge Height	Discharge	Gauge Height	Discharge.	Gauge Height.	Discharge.	Gauge Height	Dis. charge	Gauge Height	Discharge.	Gauge Height	Discharge
	Feet.	Sec.-ft.	Feet.	Sec--ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	See.-ft.	Fect.	See. -ft .
1.	$198 \cdot 7$	99,000	$194 \cdot 6$	55, 400	$190 \cdot 1$	24,600	188.5	16,400	$187+5$	12,2C0	188.7	17,400
2.	$198 \cdot 6$	98,000	$194 \cdot 6$	55,400	$190 \cdot 0$	24,000	188.5	16,400	$187 \cdot 5$	12,200	188.9	18,300
3.	198.5	96,000	$194 \cdot 5$	54,500	189.9	23,400	188.5	16,400	187.5	12,200	$189 \cdot 0$	18,800
4.	$194 \cdot 4$	95,000	$194 \cdot 2$	52,000	189.9	23.400	$188 \cdot 5$	16,400	$187 \cdot 5$	12,200	$189 \cdot 0$	18,800
5.	$198 \cdot 3$	94,000	$194 \cdot 0$	$50,4 \mathrm{C} 0$	$189 \cdot 9$	23,400	188.5	16,400	$187 \cdot 6$	12,600	$189 \cdot 0$	18,800
6	$198 \cdot 3$	94,000	193.8	48,800	$189 \cdot 9$	23,400	$185 \cdot 5$	16.400	187.7	13,000	$189 \cdot 0$	18,800
7	$198 \cdot 3$	94,000	$193 \cdot 6$	47, 400	189.9	23, 400	188.5	16,400	187.8	13.400	$189 \cdot 0$	18,800
8.	$198 \cdot 3$	94,000	193.5	46,700	189.9	23,400	188.5	16,400	187.9	13.800	189.0	18,800
9	$198 \cdot 3$	94,000	193.4	46,000	$189 \cdot 7$	22,400	188.5	16,400	$187 \cdot 9$	13,800	189.0	18, 800
10.	198.3	94,000	193.2	44,600	189.5	21.4 C 0	188.5	16,400	187.9	13,800	$188 \cdot 7$	17,400
11	198-2	93,0c0	193.0	$43,2 \mathrm{Co}$	$189 \cdot 5$	21,400	188.5	16,400	187.9	13,800	188.5	16,400
12	$198 \cdot 1$	92,000	192.9	42,5c0	189.5	21,400	188.5	16,400	187.9	13,800	$188 \cdot 6$	16,900
13	$198 \cdot \mathrm{C}$	91,000	192.8	41,800	189.5	21,4c0	$188 \cdot 5$	16,400	187.8	13,4C0	$188 \cdot 6$	16,900
14	197.8	88.000	$192 \cdot 6$	40,460	189.4	20,800	188.5	16,4C0	$187 \cdot 7$	13,000	$188 \cdot 6$	16,900
15	$197 \cdot 6$	85.000	$192 \cdot 3$	39.700	$189 \cdot 3$	20,300	$188 \cdot 3$	15,400	$187 \cdot 7$	13,000	$188 \cdot 7$	17,400
16	197.5	84,000	192.2	37,600	189-1	19,300	188.2	15.000	187.6	12,600	188.8	17,900
17.	197.4	83,000	192.0	36.200	189.1	19,300	$188 \cdot 1$	14,600	$187 \cdot 6$	12,600	188.8	17,900
18.	197.2	81,000	191.8	34.800	$189 \cdot 1$	19,300	$188 \cdot 0$	14.200	$187 \cdot 6$	12,600	188.6	16,900
19.	197.0	79,000	191.7	34.200	$189 \cdot 1$	19,300	188.0	14.200	$187 \cdot 7$	13,000	188.5	16,400
20.	$196 \cdot 9$	77,000	$191 \cdot 6$	33,660	189-1	19,300	188.0	14.200	$187 \cdot 7$	13,000	188.2	15,000
21	$196 \cdot 7$	75,000	191.5	$33,0 \subset 0$	189.1	19,300	188.0	14,200	187.7	13,000	188.0	14,260
22	$196 \cdot 5$	73,000	191.4	32,400	188.9	18,300	187.9	13,800	$187 \cdot 6$	12,600	188.0	14,200
23	196-2	70,000	191-3	31,800	188.7	17,400	187.8	13,400	$187 \cdot 6$	12,600	188.0	14,200
24	$196 \cdot 0$	65,000	191.1	30,600	188.5	16,400	$187 \cdot 7$	13,000	187.5	12, 200	188.0	14,200
25.	195.8	66,000	191.0	30,600	188.5	16,400	$187 \cdot 7$	13,000	$187 \cdot 5$	12,200	187.8	13,400
26	$195 \cdot 7$	65, 300	$191 \cdot 0$	30,000	188.5	16,400	187.7	13,000	$187 \cdot 7$	13,400	187.6	12,600
27	195.5	63,500	$190 \cdot 9$	29,460	188.5	16,400	$187 \cdot 7$	13,000	188.0	14,2C0	$187 \cdot 5$	12,200
28	$195 \cdot 4$	62, 600	$190 \cdot 7$	28,200	188.5	16,400	187.7	13,000	188.1	14,600	$187 \cdot 2$	11,000
29	$195 \cdot 2$	60, 800	$190 \cdot 6$	27,600	188.5	16,400	$187 \cdot 7$	13,000	$188 \cdot 2$	15,000	$187 \cdot 1$	10,600
30.	$194 \cdot 9$	58, 100	$190 \cdot 5$	27,000	188.5	16,400	$187 \cdot 7$	13,000	188.3	15,400	$187 \cdot 0$	10,200
31	$194 \cdot 8$	57,200	$190 \cdot 4$	26,400			$187 \cdot 7$	13,000			$187 \cdot 0$	10,200

Monthly Discharge of Kootenay River near Bonnington Falls, for 1909.
(Drainage area, 17,800 square miles.)

Month.	Discharge in Second-Feet.				Run-Off.	
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { Mile. } \end{aligned}$	Depth in inches on Drainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$
January.	8,100	6,800	7,350	0.41	$0 \cdot 47$	452,000
February	8,160	7,500	7,740	0.44	0.46	430,000
March.	8,100	7,500	7,650	0.43	$0 \cdot 50$	470,000
April.	13,800	8,400	10,800	0.61	$0 \cdot 68$	643,000
May..	54,500	14,200	27, 100	$1 \cdot 52$	1.75	1,670,000
June.	110,000	59,000	98,200	$5 \cdot 52$	$6 \cdot 16$	5,840,000
July.	99,000	57, 200	81,500	$4 \cdot 58$	5.28	$5,010,000$
August	55,400	26,400	40,200	$2 \cdot 26$	$2 \cdot 61$	$2,470,000$
September	24,600	16,400	20,100	1.13	1.26	1,200,000
October..	16,400	13,000	14,900	0.84	0.97	916,000
November	15,400	12, 200	13,200	$0 \cdot 74$ 0.89	$0 \cdot 83$	786,000
December.	18,800	10,200	15,800	0,89	$1 \cdot 03$	972,000

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Kootenay River near Bonnington Falls, for 1910.

Day.	January.		February.		March.		April.		May.		June.	
	Gauge Height.	Discharge	Gauge Height.	Discharge	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge	Gauge Height.	Discharge.
	Feet.	Sec.-ft.										
1.	187.5 187.3	12,200 11,400	$186 \cdot 5$ $186 \cdot 5$	8,700 8,700	186.0	7,200	189.5	21,400	195.5	63,500	197.8	88,000
3	$187 \cdot 3$ 187.2	11.400 11.000	$186 \cdot 5$ $186 \cdot 5$	8.700 8.700	186.0 186.0	7.200 7,200	$189 \cdot 5$ $189 \cdot 5$	21,400 21,400	$195 \cdot 8$ 195.8	66, 200	197.8	88,000
4	187.0	10,200	186.5	8,700	186.0	7,200	189.5	21,400 21,400	195.8 195.8	66,200 66,200	197.8	88.000
5.	186.9	9,900	186.5	8,700	186.0	7,200	189.5	21,400	195.8	66,200	$197 \cdot 7$ $197 \cdot 6$	86,500 85,000
6.	186.9	9,900	186.4	8,490	186.1	7.800	189.5	21.400	195.8	66.200	197.6	85.000
7.	186.8	9,600	186.2	7,800	$186 \cdot 3$	8.100	189.6	21,900	195.9	67.100	197.5	84,000
8	186.8	9,6c0	186.2	7,800	$186 \cdot 4$	8.400	189.6	21,900	196.1	69,000	$197 \cdot 4$	83,000
9	186.7	9,300	$186 \cdot 2$	7.800	$186 \cdot 5$	8.700	189.7	22,400	$196 \cdot 3$	71,000	$197 \cdot 5$	84,0000
10.	186.7	9,300	$186 \cdot 2$	7,800	$186 \cdot 5$	8.700	189.9	23,400	$196 \cdot 5$	73,000	$197 \cdot 3$	S2,000
11	186.6	9.000	$186 \cdot 2$	7,800	186.5	8,700	190.0	24.000	196.8	76,000	$197 \cdot 1$	80,000
12.	186.6	9.000	$186 \cdot 3$	8,100	$186 \cdot 6$	9,000	$190 \cdot 3$	25, 8.0	197.0	79,000	$197 \cdot 0$	79.000
13.	186.6	9.000	186.3	8,100	186.7	9.300	$190 \cdot 4$	26.400	$197 \cdot 1$	80,000	$197 \cdot 0$	79,000
14	$186 \cdot 6$	9,000	186.4	8,400	186.8	9,600	$190 \cdot 6$	27,600	$197 \cdot 3$	82,000	$197 \cdot 0$	79,000
15.	$186 \cdot 6$	9,000	$186 \cdot 4$	8,400	186.9	9,900	$190 \cdot 8$	28,800	$197 \cdot 4$	83,000	197.0	79,000
16	186.5	8,700	186.4	8,400	187.1	10,600	191.0	30,000	197.5	84,000	197.0	79.000
17	186.4	8,400	186.4	8,400	187.3	11,400	191-1	30,600	197.5	84,000	196.9	77.000
18	186.4	8,400	$186 \cdot 4$	8,400	187.4	11,800	$191 \cdot 4$	32,400	$197 \cdot 5$	84,000	196.9	77.000
19.	186.5	8,700	$186 \cdot 4$	8,400	187.5	12,200	191.5	33,000	$197 \cdot 3$	82,000	196.8	76.000
20.	186.6	9,000	$186 \cdot 4$	8,400	$187 \cdot 5$	12,200	191.8	34,800	196.8	76,000	196.8	76,000
21.	$186 \cdot 6$	9,000	186.4	8,400	187.5	12,200	$192 \cdot 0$	36,200	196-2	70,000	$196 \cdot 9$	77.000
22.	$186 \cdot 6$	9,000	$186 \cdot 4$	$8,4 \mathrm{CO}$	187.8	13,400	$192 \cdot 4$	39,000	$196 \cdot 1$	69,000	196.9	77,000
23.	$186 \cdot 5$	8,700	186-3	8,100	188.1	14.600	$192 \cdot 6$	40,400	$196 \cdot 1$	69,000	$196 \cdot 8$	76,000
24.	186.5	8,700	186.9	7, 200	188.6	16,900	193.0	43, 200	$196 \cdot 1$	69,000	196.7	75,000
25	186.5	8,700	$185 \cdot 9$	7,000	$189 \cdot 2$	19,800	193.8	45,300	$196 \cdot 2$	70,000	196.5	73,000
26.	$186 \cdot 4$	8,400	185.9	7,000	189.5	21,400	193.7	48, IC0	$196 \cdot 4$	72.000	196-4	
27.	186.5	8.700 8.700	$185 \cdot 9$	7,000	189.5	21,400	$194 \cdot 1$	51, 200	$196 \cdot 5$	73,000	$196 \cdot 4$ $196 \cdot 3$	$\begin{array}{r} 72.000 \\ 71,000 \end{array}$
98.	$186 \cdot 5$	8,700	$185 \cdot 9$	7,000	189.5	21,400	$194 \cdot 5$	54,500	$196 \cdot 5$	73,000	196.3	71,000
29.	186.5 186.5	8,700 8,700	-......		189.4	20, 800	195.0	59, 600	196.5	73,0c0	$196 \cdot 3$	71,000
	$186 \cdot 5$	8,700			189.5	21,400	$195 \cdot 2$	60, 80e	197.1	80,000	$196 \cdot 2$	70,000
1.	186.5	8,700			189 -5	21,400			197.5	84,000		

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Kootenay River near Bonnington Falls, for 1910.

Day.	July .		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge	Gauge Height	Discharge.	Gauge Height.	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec. -ft .	Feet.	Sec.-ft.
1	196.0	68,000	192.6	40,400	189.4	20,800	188.1	14,600	188.8	17,900	$189 \cdot 0$	18, 800
2	$196 \cdot 0$	68, 000	$192 \cdot 4$	39,000	189.4	20,800	188.1	14,600	188.7	17,400	$188 \cdot 7$	17,400
3	196.0	68,000	$192 \cdot 3$	38,300	189-3	20,300	188.1	14,600	$188 \cdot 7$	17,400	188.5	16,400
4	19.5 .9	67, 100	$192 \cdot 1$	36,900	189.1	19,300	188.1	14,600	188.7	17,400	188.5	16,400
5	195.7	65,300	192.0	35,200	189.0	18,800	188.2	15,000	$188 \cdot 7$	17,400	188.5	16,400
,	195.5	63,500	191.9	35,500	188.9	18,300	188.2	15,000	188.7	17,460	188.4	15,900
7	195.4	62,600	191.8	34,800	188.8	17,900	188.3	15,400	188.7	17,400	188.4	15,900
8	195.4	62,600	191.6	33,600	188.6	16,990	185.3	15,400	$188 \cdot 7$	17,400	$188 \cdot 3$	15,400
9	195.3	61,700	191.5	33,000	188.6	16,900	188.5	16,400	188.8	17,900	$188 \cdot 1$	14,600
10.	195.2	60,800	191.5	33,000	188.5	16, 400	188.6	16,900	188.8	17,900	$188 \cdot 1$	14,600
11.	$195 \cdot 1$	59,900	191.4	32,400	188.5	16,400	188.6	16,900	188.9	18,300	188.1	14,600
12	$195 \cdot 0$	59,000	$191 \cdot 3$	31,800	188.4	15,900	188.7	17,400	$188 \cdot 9$	18,300	188.5	16,400
13	194.9	58,100	191.2	31,200	188.4	15,900	$188 \cdot 7$	17,400	188.9	18,300	$188 \cdot 4$	15,900
14	194.8	57,200	191.2	31,200	188.4	15,900	$188 \cdot 7$	17, 400	188.9	18,300	$188 \cdot 3$	15,400
15.	$194 \cdot 6$	55,400	191.1	30,600	$188 \cdot 3$	15,460	188.8	17,900	189.0	18, 800	188.2	15,000
16	194.5	54,500	191.1	30,600	188.3	15,400	188.9	18,300	$189 \cdot 0$	18,800	188.1	14,600
17.	194.4	53,600	191.0	30,000	158.2	15,000	185.9	18,300	189.1	19,300	188.0	14,200
18.	$194 \cdot 3$	52,800	$190 \cdot 9$	29,400	188.1	14,600	188.8	17,900	$159 \cdot 2$	19,800	188.0	14,200
19	194-2	52,000	$190 \cdot 7$	28,200	188.0	14,200	188.9	18, 300	$189 \cdot 2$	19,800	188.0	14,200
20.	$194 \cdot 1$	51,200	$190 \cdot 6$	27,600	188.0	14,200	189.0	18,800	189.1	19,300	188.0	14,200
21	$194 \cdot 1$	51,200	190.5	27,000	188.0	14,200	$189 \cdot 1$	19,300	189.0	18, 500	187.8	13,400
22	194.1	51, 200	190.4	26,400	188.0	14,200	188.9	18,300	$189 \cdot 0$	18,800	$187 \cdot 7$	13,060
23	$194 \cdot 0$	50,400	190.4	26, 400	188.0	14,200	188.9	18,300	$189 \cdot 1$	19,300	$187 \cdot 6$	12,600
24	193.9	49,600	$190 \cdot 2$	25, 200	188.1	14,600	188.9	18,300	189.1	19,300	$187 \cdot 6$	12,600
25.	$193 \cdot 6$	47,400	190.1	24,600	188.2	15,000	188.9	18,300	189.2	19,800	187.5	12,200
26	$193 \cdot 5$	46,700	$190 \cdot 0$	24,000	188.2	15,000	188.9	18,300	$189 \cdot 2$	19, 800	187.5	12, 200
27.	$193 \cdot 5$	46,700	189.9	23, 400	188.1	14,600	188.9	18,200	$1 \varepsilon 9 \cdot 2$	19,800	$187 \cdot 5$	12, 200
28.	$193 \cdot 3$	45,300	$189 \cdot 8$	22,900	188.1	14.600	$188 \cdot 9$	18,300	189.2	19,800	187.5	12, 200
29	193.0	43,200	189.7	22,400	188.1	14,600	188.9	18,300	189.2	19,800	187.5	12, 200
30	$192 \cdot 9$	42,500	$189 \cdot 6$	21,900	188.1	14,600	188.9	18,300	189.2	19,800	$187 \cdot 5$	12,200
31	$192 \cdot 7$	41,100	$189 \cdot 5$	21,400			$188 \cdot 9$	18,300			$187 \cdot 5$	12,200

Monthly Discharge of Kootenay River near Bonnington Falls, for 1910.
(Drainage area, 17,800 sqaure miles.)

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Kootenay River near Bonnington Falls, for 1911.

Dax.	January.		February.		March.		April.		May.		June.	
	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge	Gauge Height.	Discharge	Gauge Height	Discharge.	Gauge Height.	Discharge.
	Feet.	Sec.-ft.	Feet.	See.-ft.	Feet.	See.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1	187.4	11,800	186.1	7,500 7	185.5	6,300	188.0	14,200	191.3	31,800	194.7	56,300
2	$187 \cdot 3$ $187 \cdot 1$	11,400 10,600	186.1 186.1	7,500 7,500	$185 \cdot 5$ $185 \cdot 5$	6,300 6,300	$188 \cdot 0$ 188.1	14,200 14,600	191.4 191.6	32,400 33,600	$194 \cdot 9$ $195 \cdot 2$	58,100 60,800
4	$187 \cdot 0$	10,200	186.1	7,560	185.5	6,300	188.2	15,000	191.8	34,800	$195 \cdot 4$	62,600
5.	$186 \cdot 9$	9,900	186.1	7,500	$185 \cdot 5$	6,300	188.2	15,000	$192 \cdot 0$	36,200	$195 \cdot 6$	64,400
6	186.8	9,600	186.1	7,500	$185 \cdot 5$	6,300	188.3	15,400	$192 \cdot 4$	39,000	$195 \cdot 8$	66,200
7	186.8	9,600	$186 \cdot 1$	7,500	$185 \cdot 5$	6,300	$188 \cdot 3$	15,400	$192 \cdot 7$	41, 100	$196 \cdot 0$	68,000
8	186.7	9,300	$186 \cdot 1$	7,500	185.5	6,300	188.4	15,900	$193 \cdot 0$	43,200	$196 \cdot 2$	70,000
9	186.7	9,300	186-1	7,500	$185 \cdot 6$	6,400	188.4	15,900	$193 \cdot 3$	45,300	$196 \cdot 3$	71,000
10	$186 \cdot 7$	9,300	$186 \cdot 1$	7,500	$185 \cdot 6$	6,400	188.4	15,900	$193 \cdot 5$	46,700	$196 \cdot 3$	75,000
11	$186 \cdot 6$	9,000	186.2	7,800	$185 \cdot 7$	6,600	188.4	15,900	$193 \cdot 6$	47,400	$196 \cdot 6$	74,000
12.	$186 \cdot 6$	9,000	$186 \cdot 2$	7,860	$185 \cdot 8$	6, 800	188.4	15,900	193.7	48,100	196.9	77,000
13.	$186 \cdot 6$	9,000	$186 \cdot 2$	7.860	185.8	6,800	188.5	16,400	193.8	48,800	197-1	80,000
14	186.4	8,400	186.2	7,800	185.8	6,800	188.5	16,400	193.8	48,800	197.4	83,000
15.	$186 \cdot 3$	8,100	186.2	7,800	$185 \cdot 9$	7,000	188.5	16,400	193.9	49,600	$197 \cdot 6$	85,000
16	186.1	7,500	186.2	7,800	185.9	7,000	188.5	16,400	$194 \cdot 0$	50,400	197.9	59,500
17	$186 \cdot 0$	7,200	$186 \cdot 2$	7,800	186.0	7,200	188.5	16,400	$194 \cdot 0$	50,460	$198 \cdot 1$	92,000
18	185.9	7,000	186.3	8.100	$186 \cdot 0$	7,200	188.5	16,400	$194 \cdot 1$	51,200	198.3	94,000
19	185.9	7,000	$186 \cdot 3$	8,100	186.1	7,500	188.5	16,400	$194 \cdot 3$	52,800	198.5	96,500
20	$186 \cdot 0$	7,200	$186 \cdot 3$	8,100	$186 \cdot 3$	8,100	188.5	16,400	$194 \cdot 5$	54,500	198.7	99,500
21	186.1	7,500	186.3	8,100	186.4	8,400	188.6	16,900	$194 \cdot 6$	55,400	198.8	101,000
22	$186 \cdot 3$	8.100	$186 \cdot 2$	7,800	186.5	8,700	188.7	17,400	$194 \cdot 7$	56,300	199.0	104.000
23	$186 \cdot 2$	7, 800	$185 \cdot 8$	6, 800	$186 \cdot 6$	9,000	188.9	18,300	$194 \cdot 7$	56,300	199.0	104,000
24	186.2	7,800	185.7	6,600	186.7	9,300	$189 \cdot 0$	18.800	$194 \cdot 6$	55, 400	$199 \cdot 0$	104,000
25	186.2	7,800	$185 \cdot 7$	6,600	186.8	9,600	189.5	21,400	$194 \cdot 6$	55,400	199.0	104,000
26	186.4	8,400	185.7	6,600	187.0	10,200	189.8	22,900	$194 \cdot 5$	54, 500	199.0	104,000
27	$186 \cdot 4$	8,400	$185 \cdot 7$	6,600	187.2	11,000	$190 \cdot 2$	25, 200	$194 \cdot 5$	54,500	$199 \cdot 0$	104,000
28	$186 \cdot 3$	8,100	$185 \cdot 6$	6,400	187.4	11,800	$190 \cdot 5$	27,000	$194 \cdot 5$	54.500	199.0	104,000
29	186.4	8,400			$187 \cdot 6$	12,600	190.9	29,400	194.5	54,500	$199 \cdot 0$	104,000
30	186.4	8,400			$187 \cdot 7$	13,000	191.2	31,200	$194 \cdot 5$	54,500	$199 \cdot 0$	104,000
31.	186.2	7,800			187.9	13,800			$194 \cdot 5$	54.500		

Daily Gauge Height and Discharge of Kootenay River near Bonnington Falls, for 1911.-Con.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge	Gauge Height	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge	Gauge Height	Discharge	Gauge Height.	Discharge
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sce.-ft.	Feet.	Sec.-ft.
1.	198.9	102,000	194.3	52,800	$190 \cdot 5$	27,000	188.7	17,400	187.2	11,000	187.0	10,200
2.	$198 \cdot 8$ 198.7	101,000 99,500	$194 \cdot 2$ $194 \cdot 0$	52,000 50,400	190.4	26,400 26,400	$188 \cdot 7$ 188.6	17,400	$187 \cdot 1$	10,800 10,600	186.9 186.7	9, 900 9,300
4	198.5	96,500	193.7	48,100	$190 \cdot 4$	26,400	188.5	16,400	187.0	10,200	$186 \cdot 6$	9,000
5	198.4	95,000	$193 \cdot 6$	47,400	190.4	26,400	188.5	16,400	187.0	10,200	$186 \cdot 5$	8,700
6	198.2	93,000	$193 \cdot 5$	46,700	$190 \cdot 3$	25,800	188.5	16,400	187.0	10,200	186.5	8,700
7.	198.0	91,000	193.4	46,000	190-2	25, 200	188.4	15,900	187.0	10,200	$186 \cdot 5$	8,700
8.	197.8	88,000	193.3	45,300	$190 \cdot 2$	25,200	188.3	15,400	187.0	10,200	186.4	8,400
9	197.7	86,000	193.1	43,900	190.1	24,600	$188 \cdot 3$	15,400	$187 \cdot 0$	10,200	186.4	8,400
10.	197-5	84,000	$193 \cdot 0$	43,200	$190 \cdot 0$	24,000	188.2	15,000	186.9	9,900	186.4	8,400
11	197.3	82,000	193.0	43,200	189.9	23,400	188.2	15,000	186.9	9,900	$186 \cdot 3$	8.100
12	197.2	81,000	193.0	43,200	189.9	23,400	188.2	15,000	$186 \cdot 8$	9,600	$186 \cdot 3$	8,100
13.	197.1	80,000	192.8	41,800	189.8	22,900	188.2	15,000	186.7	9,300	$186 \cdot 3$	8,100
14	197.0	79,000	192.7	41,100	189.7	22,400	188.2	15,000	$186 \cdot 5$	8,700	$186 \cdot 3$	8,100
15.	$197 \cdot 0$	79,000	$192 \cdot 5$	39,700	189.7	22,400	188.0	14, 200	$186 \cdot 4$	8,400	$186 \cdot 3$	8,100
16.	196.9	77,000	$192 \cdot 4$	39,000	189.6	21,900	187.9	13, 800	186.4	8,400	$186 \cdot 3$	8,100
17.	$196 \cdot 7$	75,000	192.2	37,600	189.6	21,900	187.8	13,400	186.4	8,400	$156 \cdot 3$	8,100
18	$196 \cdot 6$	74,000	$192 \cdot 1$	36,900	189.5	21,400	187.8	13,400	$186 \cdot 4$	8,400	$186 \cdot 3$	8,100
19	$196 \cdot 5$	73,000	191.9	35,500	189.5	21,400	187.7	13,000	$186 \cdot 5$	8,700	$186 \cdot 3$	8.100
20	$196 \cdot 3$	71,000	191.7	34,200	189.4	20,800	$187 \cdot 7$	13,000	$186 \cdot 5$	8,700	$186 \cdot 2$	7,800
21.	$196 \cdot 1$	69,000	$191 \cdot 6$	33,600	189.4	20,800	$187 \cdot 6$	12,600	$186 \cdot 5$	8,700	186.2	7,800
22.	$195 \cdot 9$	67, 100	191.5	33,000	189.3	20,300	$187 \cdot 6$	12,600	$186 \cdot 6$	9,000	$186 \cdot 1$	7,500
23.	$195 \cdot 7$	65,300	191.4	32,400	$189 \cdot 3$	20,300	$187 \cdot 6$	12,600	186.7	9,300	$186 \cdot 1$	7,500
24	$195 \cdot 6$	64.400	$191 \cdot 3$	31,800	$189 \cdot 2$	19,800	187.5	12,200	186.7	9,300	$186 \cdot 1$	7,500
25.	195.5	63,500	191-2	31,200	$189 \cdot 2$	19,800	$187 \cdot 5$	12,200	186.8	9,600	$186 \cdot 0$	7,200
26.	$195 \cdot 3$	61,700	191.1	30,600	189.0	18,800	$187 \cdot 5$	12,200	186.9	9,900	186.0	7,200
27.	$195 \cdot 2$	60,800	$190 \cdot 9$	29,400	188.9	18,300	$187 \cdot 5$	12,200	187.0	10,200	186.0	7,200
28	195.0	59,000	190.8	28,800	188.9	18,300	$187 \cdot 5$	12,200	187.0	10,200	186.0	7,200
29	$194 \cdot 9$	58,100	$190 \cdot 7$	28,200	188.8	17,900	$187 \cdot 4$	11,800	$187 \cdot 0$	10,200	186.0	7,200
30	$194 \cdot 7$	56,300	$190 \cdot 6$	27,600	188.8	17,900	$187 \cdot 3$	11,400	$187 \cdot 0$	10,200	186.0	7,200
31	$194 \cdot 5$	54,500	$190 \cdot 5$	27,000			$187 \cdot 2$	11,000			$185 \cdot 8$	6,800

Monthly Discharge of Kootenay River near Bonnington Falls, for 1911.
(Drainage area, 17,800 square miles.)

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Kootenay River near Bonnington Falls, for 1912.

Day.	January		February:		March.		April.		May.		June.	
	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height	Discharge.						
	Feet.	Sec.-ft.	Feet.	Sec. -ft .	Feet.	Sec.ft.	Feet.	Sec. -ft .	Feet.	Sec. -ft .	Feet.	Sec. -ft .
,	185.8	6,800	185.0	5,800	185.4	6, 200	185.2	6,000	189.8	22,900	195.0	59,000
2.	185.8 185.8	6,800	185.0	5,8C0	185.3	6,100	$185 \cdot 2$	6,030	189.9	23,400	$194 \cdot 9$	58,100
3	185.8 185.8 185	6,800 6,800	$185 \cdot 0$	5, 800	$18.5 \cdot 3$ 185.3	6,100	$185 \cdot 5$	6.300	190.0	24.090	194.9	58.100
4	$185 \cdot 8$ 185.8	6,800	$185 \cdot 2$ $185 \cdot 3$	6,000 6,100	$185 \cdot 3$	$6.10)$ 5.900	185.5	6,300	$190 \cdot 0$	24,000	195.0	59,000
5	185.8	6,800 6,800	$185 \cdot 3$	6,100	$185 \cdot 1$	5,900	$185 \cdot 6$	6,400	190.0	24,000	194.8	57, 200
7	185.8		185.1	5,9C0	185.0	5,800	185.9	7.000	$190 \cdot 1$	24.600	194.8	57,200
7	185.8	6,800	185.1	5,900	185.2	6,0¢0	$186 \cdot 1$	7. 500	$190 \cdot 1$	24,600	194.8	57,200
8	186.0 184.9	7,200	185.1	5,900	185.0	5,800	$186 \cdot 1$	7,500	$190 \cdot 2$	25.200	194.7	56,300
9.	$184 \cdot 9$ 185.0	5,700 5,800	$185 \cdot 1$	5,900 5	185.0	5,800	$186 \cdot 5$	8. 700	190.5	27,0:0	$194 \cdot 7$	56,300
10.	185.0	5,800	$185 \cdot 1$	5,900	185.0	5,800	186.5	8,700	190.7	28,200	194.7	56,300
11	185.0	5,800	$185 \cdot 3$	6,100	185.0	5,800	186.9	8,900	$192 \cdot 0$	30,000	$194 \cdot 5$	
12	18.5 .0 185.0	5,800	185.3	6,100	185.0	5,800	187.1	10,600	191.3	31,860	$194 \cdot 5$	54,500
13	185.0	5,800	185.0	5, 800	185.0	5,800	187.1	10,600	191.5	33,000	$194 \cdot 7$	56,300
14	185.0	5,800	185.0	5, 800	185.0	5, 800	$187 \cdot 6$	12,600	193.0	36,200	194.8	57, 200
15.	185.0	5,800	185.0	5,800	$185 \cdot 0$	5,800	187.9	13,800	$192 \cdot 3$	38,300	194.9	56,100
16.	185.0	5,800	184.9	5,700	185.0	5,800	188.0	14,200	$192 \cdot 6$	40,400	195.0	
17.	185.0	5,800	185.1	5,900	$185 \cdot 0$	5,800	188.2	15,000	193.0	43, 200	$195 \cdot 0$	59,000
18.	185.0	5,800	184.9	5,700	$185 \cdot 0$	5,800	188.4	15.900	193.3	45,300	$195 \cdot 1$	59,000
19	185.0 185.0	5,800	184.9 184.9	5,700	184.9 185.0	5,700	188.7	17, 400	193.5	46,700	$195 \cdot 1$	59,900
20.	185.0	5,800	184.9	5,700	$185 \cdot 0$	5,800	189.0	18,300	193.7	48,100	195.2	60.800
21.	185.0	5,800	185.0	5,800	185.0	5,800	189.1	19,300	$194 \cdot 0$	50,400	$195 \cdot 2$	
22	185.0	5,800	185.5	6,300	184.9	5,700	$189 \cdot 2$	19,800	$194 \cdot 2$	52,000	175.2	$60,800$
23.	185.0	5,800	185.5	6,300	185.0	5.800	189.3	20,300	194.4	53,600	195.3	61.700
24.	185.0	5,800	185.4	6,200 5,800	184.9	5,700	189.4	20,860	$194 \cdot 5$	54,500	195.4	62,600
	185.0	5,800	185.0	5,800	185.0	5,800	189.4	20,800	$194 \cdot 6$	55, 440	$195 \cdot 5$	63,500
26.	185.0	5,800	184.9	5,700	184.8	5,600	189.4	20,800	194.7	56,300	$195 \cdot 5$	
27.	185.0	5,800	184.9 184.9	5,700	184.8 184.9	5,600	189.6	21,900	194.7	56,3,10	195.5	63,510
28	185.0 185.0	5,800	$184 \cdot 9$ 184.9	5,700	184.9 184.9	5,700	189.6	$\stackrel{21,900}{ }$	194.8	57,200	195.5	63,500
29.	185.0	5,800	184.9	5,700	$184 \cdot 9$	5,700	189.7	22,406	195.0	59,000	$195 \cdot 4$	62,600
30.	185.0	5,800			184.9	5,700	$189 \cdot 7$	22,400	195.0	59,000	195.0	59,000
31.	185.0	5,800			$184 \cdot 9$	5,700			$195 \cdot 1$	59.900		

Daily Gauge Height and Discharge of Kootenay River near Bonnington Falls, for 1912.-Concluded.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height	Discharge.	Gauge Height	Discharge.	Gauge Height	Discharge	Gauge Height	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge.
	Feet.	Sec.-ft	Feet.	Sec.-ft.								
1	$195 \cdot 0$	59,000	192.9	42,500	$190 \cdot 4$	26,400	188.5	16,400	187 +6	12,600	187.5	12,200
2	$195 \cdot 0$	59,000	$192 \cdot 8$	41,800	$190 \cdot 3$	25,800	188.5	16,400	187.5	12,200	$187 \cdot 4$	11,800
3	$195 \cdot 0$	59,000	$192 \cdot 7$	41, 100	$190 \cdot 2$	25,200	188.4	15,900	$187 \cdot 4$	11, 800	187.4	11,800
4	$194 \cdot 5$	54,600	$192 \cdot 6$	40,400	$190 \cdot 1$	24,600	188.2	15,000	$175 \cdot 3$	11,400	$187 \cdot 3$	11,400
5.	$194 \cdot 5$	54,500	$192 \cdot 5$	39,700	$190 \cdot 0$	24,000	188.1	14,600	187-3	11,400	$187 \cdot 2$	11,000
6	194.4	53,600	192.4	39,000	$190 \cdot 0$	24,000	188.1	14,600	187.3	11,400	$187 \cdot 1$	10,600
7	194-3	62,800	$192 \cdot 4$	39,000	$190 \cdot 0$	24,000	188.1	14,600	$187 \cdot 3$	11,400	$187 \cdot 2$	11,000
8	$194 \cdot 0$	50,400	192-2	37,600	$190 \cdot 0$	24,000	188.0	14,200	187.3	11,400	$187 \cdot 2$	11,000
9.	194.0	50,400	$192 \cdot 1$	36,900	$190 \cdot 0$	24.000	188.0	14,200	$187 \cdot 4$	11,800	$187 \cdot 1$	10,600
10.	194.0	50,400	$192 \cdot 0$	35,200	$190 \cdot 0$	24,000	188.0	14,200	$187 \cdot 5$	12,200	$187 \cdot 1$	10,600
11.	194.0	50,400	191.9	35,500	189.7	22,400	188.0	14,200	187.5	12,200	187.1	10,600
12.	193.8	48,800	191.9	35,500	$189 \cdot 8$	22,900	187.9	13,800	187.5	12,200	$187 \cdot 1$	10,690
13.	193.8	48,800	191.9	35,500	189.7	22,400	187.9	13,800	187.5	12,200	187.0	10,200
14.	$193 \cdot 9$	49,600	191.6	33,600	$189 \cdot 8$	22,900	187.9	13,800	$187 \cdot 6$	12,600	187.0	10,200
15.	$193 \cdot 9$	49,600	$191 \cdot 6$	33,600	189.8	22,900	$187 \cdot 9$	13,800	$187 \cdot 7$	13,000	$187 \cdot 0$	10,200
16	$193 \cdot 9$	49,600	191.5	33,000	$189 \cdot 7$	22,400	187.7	13,000	187.8	$13,4 \mathrm{CO}$	186.9	9,900
17.	$193 \cdot 9$	49,600	191.4	32,400	$189 \cdot 6$	21,900	187.7	13,000	188.0	14,200	$186 \cdot 9$	9,900
18	$193 \cdot 9$	49,600	$191 \cdot 3$	31,800	189.5	21,400	$187 \cdot 7$	13,000	188.0	14,200	$186 \cdot 8$	9,600
19.	$193 \cdot 7$	48,100	191.1	30,600	$189 \cdot 3$	20,300	$187 \cdot 7$	13,000	188.0	14,200	186.8	9,600
20	193-7	48, 160	191.0	30,000	$189 \cdot 3$	20,300	$187 \cdot 7$	13,000	$188 \cdot 0$	14,200	186.7	9,300
21	$193 \cdot 7$	48, 100	191.0	30,000	$189 \cdot 3$	20,300	187.6	13,400	187.9	13,800	$186 \cdot 7$	9,300
22	$193 \cdot 5$	46,700	191.0	30,000	189-1	19,300	187.8	13,400	187.9	13,800	186.7	9,300
23	$193 \cdot 6$	46,700	191.0	30,000	189.0	18,800	187.7	13,000	188.0	14,200	186.9	9,900
24	193.5	46,700	191.0	30,000	189.0	18,800	$187 \cdot 7$	13,000	188.0	14,200	186.8	9,600
25.	$193 \cdot 4$	46,000	191.0	36,000	189.0	18,800	187.8	13,400	188.9	13,800	186.8	9,500
26	$193 \cdot 1$	43,900	$190 \cdot 8$	28,000	$189 \cdot 0$	18,800	$187 \cdot 7$	13,000	188.9	13,800	$186 \cdot 7$	9,300
27.	$193 \cdot 0$	43,200	$190 \cdot 6$	27,600	188.8	17,900	187.7	13,000	$188 \cdot 8$	13,400	$186 \cdot 6$	9,000
28	$192 \cdot 9$	42,500	$190 \cdot 6$	27,600	188.8	17,900	$187 \cdot 7$	13,000	$188 \cdot 8$	13,400	186.7	9,300
29.	193.0	43,200	$190 \cdot 6$	27,600	189.8	17,900	$187 \cdot 7$	13,000	$188 \cdot 7$	13,000	186.7	9,300
30.	$192 \cdot 9$	42,500	$190 \cdot 6$	27,600	$188 \cdot 6$	16,900	$187 \cdot 7$	13,000	$188 \cdot 5$	12,200	$186 \cdot 3$	8,100
31.	$192 \cdot 9$	42,500	$190 \cdot 6$	27,600			$187 \cdot 7$	13,000			$186 \cdot 1$	7,500

Monthly Discharge of Kootenay River near Bonnington Falls, for 1912.
(Drainage area, 17,800 square miles.)

Month,	Discharge in Second-Feet.				Run-Off.	
	Maximum.	Minimum.	Mean.	l Per square mile.	Depth in inches on Drainage area.	Total in acre-feet.
January .	7,200	5,700	6,070	$0 \cdot 34$	$0 \cdot 39$	373,000
February	6,300	5,700	5,880	$0 \cdot 33$	$0 \cdot 36$	338,000
March..	6,200	5,600	5,820	0.33	$0 \cdot 38$	358,000
April.	22,400	6,000	14,000	0.79	0.88	833,000
May..	59,900	22,900	40,500	2.27	$2 \cdot 62$	2,490,000
June.	63,500	54,500	59,200	$3 \cdot 32$	$3 \cdot 70$	3,520,000
July.	59,000	42,500	49,300	$2 \cdot 77$	3.19	$3,030,000$
August.	42,500	27,600	33, 600	1.88	$2 \cdot 17$	2,070,000
September	26,400	16,900	21,700	$1 \cdot 22$	1.36	1,290,000
Oetober...	16,400	13,000	13,800	0.78	$0 \cdot 90$	848,000
November.	14,200	11,400	12,800	0.71	0.79	762,000
December..	12,200	7,500	10,100	0.57	$0 \cdot 66$	621,000

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Kootenay River at Bonnington Falls, for 1913.

Day.	January.		February.		March.		April.		May.		June.	
	$\begin{aligned} & \text { Gauge } \\ & \text { Height. } \end{aligned}$	$\begin{gathered} \text { Dis- } \\ \text { charge. } \end{gathered}$	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge. } \end{aligned}$	Gauge Height	Dis-	Gauge Height	Discharge	Gauge Height.	Discharge	Gauge Height.	Discharge
	Feet.	Sec.ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec. -ft .
1.	186.3	8, 100	185.6	6,400	185.5	6.300	$186 \cdot 1$	7.500	191.5	33,000	197.5	84,000
${ }_{3}^{2}$	186.3	8,100	185.9	7,000	185.8 185	6,200	186.1	7,500	191.5 191.7	33,000 34,200	197.9 198.5	89,500 96,500
4.	$186 \cdot 6$	9,000	$185 \cdot 8$	6,800	185.5	6,300	$186 \cdot 1$	7,500	191.6	34,200 33,600	198.5 199.0	96,500 104,000
5	186.5	8,700	185.7	6,660	185.5	6,300	185.9	7.000	191.5	33,000	199.2	107,000
6.	186.4	8,400	185.6	6,400	185.5	6,300	186.2	7.860	191.5	33,000	199.4	109,000
7	$186 \cdot 3$	8. 100	185.7	6,600	185.5	6,300	186.0	7.200	191.4	32.400	199.8	114,000
8.	186.2	7,800	185.6	6.400	185.4	6,200	186.0	7.200	191.4	32,400	200.1	119,000
10	186.2	7,800	185.8	6,800	185.6	6.400	186.2	7.800	191.5	33,000	$200 \cdot 5$	125,000
10.	$186 \cdot 2$	7,800	185.7	$6,6 \subset 0$	$185 \cdot 6$	6,400	186.2	7,800	191.7	34,200	$200 \cdot 6$	126,000
11	186.2	7,800	185.6	6,400	185.6	6,400	$186 \cdot 3$	8.100	192.0	36,200	$200 \cdot 7$	12S,000
12	186.3 186.2	8,100 7800	185.6	6,400	185.6	6.460	186.4	8.400	192.3	38. 300	$200 \cdot 8$	130.000
13	186.2 186.0	7,800 7,200	185.5 185.3	6,300 6.100	185.6 185.6	6,400 6,400	186.8 187.0	9,600	192.3	38,300	$200 \cdot 7$	128,640
15	186.0	7,200	$185 \cdot 3$	6.100	$185 \cdot 7$	6,400 6,600	187.2	10,200	$192 \cdot 6$	40,40	$200 \cdot 8$	130,000
16.	186.0	7,200	$185 \cdot 6$	6,400	185.7	6,600	187.6	12,6C0				
17	186.0	7,200	$185 \cdot 6$	6,460	185.6	6,400	187.9	13,800	193.0	43,200	200.0	132.000
18	$185 \cdot 8$	6,800	185.6	6,400	$185 \cdot 8$	6,800	188.3	15,4c0	193.2	44,600	$200 \cdot 4$	124,000
19	186.0	7,200	$185 \cdot 6$	6,400	185.1	5,900	188.7	17,400	$193 \cdot 3$	45,300	$200 \cdot 3$	122,000
20	185.7	6,600	185.7	6,600	185.8	6,800	189.2	19,880	193.4	46,000	$200 \cdot 2$	120,000
21	185.8	6,800	185.8	6,800	185.8	6,800	189.5	21,400	193.3			
22	185.8	6,800	185.5	6,300	185.7	6,600	189.8	22,900	$193 \cdot 4$	46,000	$200 \cdot 0$	118,000
23	185.7	6,600	185.8	6, 800	186.0	7, 200	190.0	24,000	193.5	46,700	199.7	113.000
24	185.8	6,800	185.6	6,400	$185 \cdot 8$	6,800	189.4	20,800	193-8	48,800	$199 \cdot 3$	108.000
25	185.8	6,800	$185 \cdot 6$	6,400	$185 \cdot 9$	7,000	$190 \cdot 6$	27,600	$194 \cdot 2$	52,000	199.4	109,000
26.	185.8	6,800	185.6	6,400	186.0	7,200	190.8	28,800	$194 \cdot 4$	53, 600	199.2	107,000
27	185.8	6,800	185.5	6,300	185.8	6,800	191.2	31,200	194.9	58,100	199.1	106.000
28	186.3	8.100	185.4	6,2.0	185.9	7,000	191.3	31,800	195.5	63,500	198.8	101,000
29	186.0	7,200			185.9	7.000	$191-4$	32,400	196.0	68,000	198.7	99,500
30	186.0	7,200			186.0	7,200	191.4	32,400	196.5	73,000	198.5	96,500
31.	186.0	7,200			186.0	7,200			197.1	80.000		

Daily Gauge Height and Discharge of Kootenay River at Bonnington Falls, for 1913.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge.	Gauge Height	Discharge.								
	Feet.	Sec. -ft .	Feet.	Sec.-ft.								
1	198.3	94,000	$194 \cdot 0$	50,400	191.2	31,200	189.3	20,300	188.0	14,200	181.7	13,000
2.	198.2	93,000	193.8	48,800	$191 \cdot 1$	30,600	$189 \cdot 2$	19,800	188.2	15,000	187.7	13,000
3	198.1	92,000	193.7	48, 100	190.9	29,400	189.2	19,800	188.0	14,200	187.7	13,000
4	197.9	89,500	$193 \cdot 3$	45,300	$190 \cdot 9$	29,400	189.1	19,300	188.0	14,200	187.7	13,000
5.	$197 \cdot 7$	86,500	$193 \cdot 3$	45,300	191.0	30,000	189.1	19,300	188.0	14,200	$187 \cdot 5$	12,200
6	197.6	85,000	$193 \cdot 3$	45, 300	191.0	30,000	189.2	19,800	187.8	13,400	$187 \cdot 6$	12,600
7.	197.4	83,000	$193 \cdot 0$	43,200	191.0	30.000	189.2	19,800	187.7	13,000	$187 \cdot 6$	12,600
8.	197.4	83,000	193.0	43,200	191.0	30,000	189.0	18,800	$187 \cdot 7$	13,000	$187 \cdot 3$	11,400
9	197.2	81,000	$192 \cdot 8$	41,800	191.0	30,000	188.9	18,300	$187 \cdot 8$	13,400	$187 \cdot 4$	11,800
10.	$197 \cdot 0$	79,000	193.0	43,200	191.0	30,000	188.8	17,900	187.8	13,400	$187 \cdot 4$	11,800
11	196.8	76,000	192.8	41,800	191.0	30,000	188.9	18,300	188.0	14,200	187.2	11,000
12.	196.9	77,000	192.7	41,100	190.8	28,800	188.9	18,300	187.7	13,000	$187 \cdot 2$	11,000
13	196.8	76,000	$192 \cdot 8$	41,800	$190 \cdot 8$	28,800	188.8	17,900	$187 \cdot 7$	13,000	187.2	11,000
14	196.5	73,000	$192 \cdot 7$	41,100	$190 \cdot 7$	28,200	188.7	17,400	187.7	13,000	$187 \cdot 3$	11,400
15.	196.3	71,000	$192 \cdot 5$	39,700	$190 \cdot 6$	27,600	188.8	17,900	$187 \cdot 6$	12,600	186.8	9,600
16	$196 \cdot 2$	70,000	$192 \cdot 3$	38,300	$190 \cdot 6$	27,600	188.7	17,400	187.8	13,400	186.8	9,600
17	$196 \cdot 0$	68,000	$192 \cdot 3$	38,300	$190 \cdot 5$	27,000	188.7	17,400	187.8	13,400	186.7	9,300
18	195.7	65,300	$192 \cdot 2$	37, 600	$190 \cdot 3$	25,800	188.7	17,400	187.8	13,400	186.7	9,300
19	$195 \cdot 6$	64,400	192.0	36,200	$190 \cdot 0$	24,000	183.8	17,900	187.2	11,000	$186 \cdot 6$	9,000
20.	$195 \cdot 4$	62,600	$191 \cdot 9$	35,500	$190 \cdot 0$	24,000	188.7	17,400	187.8	13,400	$186 \cdot 5$	8,700
21	$195 \cdot 1$	59,900	191.8	34,800	$190 \cdot 2$	25,200	185.5	16,400	187.8	13,400	$186 \cdot 5$	8,700
22	195.0	59,000	191.6	33, 600	$190 \cdot 2$	25,200	188.6	16,900	187.8	13,400	186.4	8,400
23	195.0	59,000	$191 \cdot 6$	33, 600	$190 \cdot 0$	24,000	188.3	15,400	187.8	13,400	$186 \cdot 3$	8,100
24	194.9	58,100	191.5	33,000	$190 \cdot 0$	24,000	188.4	15,900	187.8	13,400	$186 \cdot 3$	8,100
25.	$194 \cdot 6$	55,400	$191 \cdot 3$	31,800	189.9	23,400	188.3	15,400	$187 \cdot 7$	13,000	$186 \cdot 6$	9,000
26.	$194 \cdot 6$	55,400	191.5	33,000	$189 \cdot 7$	22,400	188.7	17,400	187.7	13,000	186.5	8,700
27	194.4	53,600	$191 \cdot 3$	31,800	$189 \cdot 6$	21,900	188.4	15,900	187.7	13,000	186.2	7,800
28	$194 \cdot 3$	52,800	191.3	31,800	$189 \cdot 6$	21,900	188.4	15,900	$187 \cdot 7$	13,000	$186 \cdot 2$	7,800
29.	$194 \cdot 2$	52,000	191.2	31,200	$189 \cdot 4$	20,800	188.3	15,400	$187 \cdot 8$	13,400	186.3	8,100
30.	$194 \cdot 2$	52,000	191.2	31,200	$189 \cdot 3$	20,300	$188 \cdot 3$	15,400	$187 \cdot 7$	13,000	$186 \cdot 3$	8,100
31.	$194 \cdot 0$	50,400	191 -2	31,200			$188 \cdot 1$	14,600			$186 \cdot 2$	7,800

Monthly Discharge of Kootenay River near Bonnington Falls, for 1913.
(Drainage Area 17, 800 square miles).

Month.	Discharge in Second-Feet.				Run-Off.	
	Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on Drainage area.	Total in acre-teet.
January	9,000	6,600	7,490	0.42	0.48	461,000
February	7,000	6,100	6,490	$0 \cdot 36$	$0 \cdot 38$	360,000
March.	7,200	5,900	6,610	$0 \cdot 37$	0.43	406,000
April.	32,400	7,200	15,800	0.89	0.99	940,000
May.	80,000	32,400	44,600	$2 \cdot 51$	2.89	2,740,000
June.	137,000	84,000	114,000	6.40	$7 \cdot 14$	6,780,000
July	94,000	50,400	70,200	3.94	$4 \cdot 54$	4,320,000
August	50, 400	31,200	38, 800	$2 \cdot 18$	$2 \cdot 5$	2,390,000
September	31, 200	20,300	26,700	1.50	1.67	1,590,000
October .	20,300	14,600	17,600	0.99	1.14	1,080,000
November.	15,000	11,000	13,300	$0 \cdot 75$	0.84	791,000
December..	13,000	7,800	10,200	$0 \cdot 57$	$0 \cdot 66$	627,000

SESSIONAL PAPER No. 25e

Daily Gauge Height and Discharge of Kootenay River near Bonnington
Falls, for 1914.

Day	January.		February.		March.		April.		May.		June.	
	Gauge Height	Discharge.	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge. } \end{gathered}$	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge. } \end{aligned}$	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height	Discharge.	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge. } \end{aligned}$
	Feet.	See.ft.	Feet.	Sec.-ft.	Feet.	Sec.-tt.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1.	186.2	7,800	186.7	9,300	186.2	7.800	187.4	11,800	192.2	37,600	196.8	76,000
2	186.3	8. 100	186.7	9,300	186.1	7,500	187.4	11,800	192.3	38,300	196.8	76.000
3	186.2 186.3	7. 800 8,100	186.6 186.5	9,000 8,700	186.3 186.2	8,100 7,800	187.4 187.4	11,800 11,800	192.4 192.8	39,000 41,800	196.8 197.1	76,000 80.000
5	186.3	8,100	186.7	9,300	186.2 186.7	7. 9	188.4 187.4	11,800 11,800	192.8 192.9	41,800 42,500	${ }_{197.3}^{197.1}$	80,000 82,000
6	186.3	8.100	186.5	8.700	186.3	8,100	187.4	11,800	193.2	44,600	197.5	84,000
7.	186.7	9,300	186.4	8.400	186.2	7,800	187.5	12,200	193.4	46,000	197.5	84.000
8	187.0	10,200	186.7	9,303	156.3	8,100	187.8	${ }^{13,400}$	193.5	46,700	197.6	85,000
9.	187.0	10,200	186.5	8,700	186.2	7.800	157.9	13.800	193.7	48, 100	197.6	85,000
10	187.2	11,000	186.4	8.400	186.1	7,500	188.1	14,600	193.9	49,600	197.6	85.000
11	187.3	11,400	186.4	8.490	186.1	7,500	188.3	15,400	194.1	51,200	197.4	83,000
12	187.4	11,800	186.3	8,100	186.1	7,500	188.5	16.400	194.2	52,000	197.3	82,000
13	187.3	11,400	186.3	8.100	186.2	7,800	188.6	16,900	194.3	52,800	197.2	81,000
14	187.3	11,400	186.3	8.100	186.2	7,800	189.0	18,800	194.6	55,400	197.2	81,000
15	187.4	11,800	186.4	8.400	186.4	8,400	189.3	20,300	194.8	57,200	197.3	82,000
16	187.7	13,000	186.3	8,100	186.3	8,100	189.6	21,900	195.0	59,000	197.1	s0,000
17.	187.7	13,000	186.3	8.100	186.3	8.100	189.8	22,900	195.3	61.700	197.2	81.000
18	187.3	11,400	186.2	7, 800	186.6	9,000	$190 \cdot 0$	24.000	195.6	64, 400	197.3	82,000
19	187.3	11,400	186.1	7,500	186.8	9,600	193.4	26,400	195.8	66,200	197.5	84,000
20.	187.3	11,400	186.1	7.500	186.8	9,600	190.7	28,200	195.9	67,100	197.7	86,500
21.	187.3	11,400	186.3	8.100	186.8	9.600	190.8	28,870	196.2	70,000	197.8	88,000
22	187.3	11,400	186.2	7.800	186.9	9,900	191.0	30,000	196.3	71,000	197.8	88.000
23	187.0	10,200	186.2	7.800	187.3	11,400	191.3	31,800	196.3	71,000	197.8	85,000
24	187.0	10,200	186.1	7.500	187.3	11, 400	191.3	31, 800	196.5	73,000	197.7	86,500
25.	187.0	10,200	186.2	7,800	187.3	11,400	191.6	33,600	196.7	75,000	197.8	88.000
26	187.0	10,200	186.0	7,200	187.4	11, 800	191.8	34,800	196.8	76,000	197.8	88,000
27.	187.0	10.200	185.9	7,000	187.4	11,800	191.8	34.800	196.8	76,000	197.6	85,000
28.	186.8	9,600	186.3	8,100	187.4	11,800	192.0	36,200	196.7	75.000	197.4	$\times 3,040$
${ }_{30}^{29}$	186.8	9,600			187.5	12.200	192.0	36,200	196.9	77,000	197.4	83,000
30.	186.8	9,600			187.3	11,410	192.1	36.900	197.0	79,000	$197 \cdot 3$	82,000
31.	186.8	9,600			187.2	11,000			196.8	76,000		

Daily Gauge Height and Discharge of Kootenay River near Bonnington Falls, for 1914-Concluded.

Monthly Discharge of Kootenay River near Bonnington Falls, for 1914.
(Drainage area, 17,800 square miles).

Kootenay River near Bonnington Pool (3076).
Location.-At the upper end of Bonnington or Slocan pool, one quarter mile from South Slocan, 12 miles from Nelson, and about 13 miles from the mouth. Nelson district.

Records Available.-June to December, 1914.
Climatic Conditions.-The climatic conditions are similar to those at Nelson (see Kootenay river near Nelson.)

Gauge.-Three vertical staff gauges, 10 feet long, have been used and read by Mr. John Anderson of South Slocan.

Method of Compilation.-Bonnington pool is above the mouth of Slocan river, and the same method of compilation is used as on Kootenay river at Bonnington falls, q.v. For more complete information see report in part 2 called "Compilation of data on Kootenay river between Kootenay lake and the mouth."

Accuracy.-These results should be within 15 per cent.

Daily Gavge Height and Discharge of Kootenay River near Bonnington Pool, for 1914.

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Kootenay River near Bonnington Pool, for 1914-Concluded.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height	Discharge.	Gauge Height	Discharge.	Gauge Height	Discharge	Gauge Height	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-lt.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
,	15.5	84,700	10.8	51,500	6.04	23,500	5.14	19,000	4.94 4.95	18, 100	4.94	18,100
2	15.4	84,000	$10 \cdot 6$	50,200	$5 \cdot 94$	23,000	$5 \cdot 14$	19,000	$4 \cdot 95$	18,100	$4 \cdot 94$	18, 100
3.	15.3	83,200	$10 \cdot 4$	88,800	5.74	22,000	$5 \cdot 14$	19,000	$4 \cdot 97$	18,260	4.89	17, 800
4	15-2	82,500	$10 \cdot 2$	47,500	$5 \cdot 64$	21,500	$5 \cdot 14$	19,000	$4 \cdot 98$	18,400	4.84	17, 660
5.	$15+3$	83,200	$10 \cdot 0$	46,200	$5 \cdot 44$	20,500	$5 \cdot 14$	19,000	$5 \cdot 54$	21,000	4.79	17,400
6	$15 \cdot 5$	84,700	$9 \cdot 8$	44,900	5.44	20,500	$5 \cdot 14$	19,000	$5 \cdot 64$	21,500	$4 \cdot 74$	17, 100
7	15.5	84,700	$9 \cdot 6$	43, 600	5.44	20,500	$5 \cdot 09$	18,800	$5 \cdot 69$	21,800	$4 \cdot 74$	17,100
8	15-5	84.700	$9 \cdot 4$	42,400	$5 \cdot 44$	20,500	$5 \cdot 04$	18,600	$5 \cdot 74$	22,000	$4 \cdot 64$	16,600
9.	15.4	84,000	$9 \cdot 2$	41,200	$5 \cdot 44$	20,500	5.04	18,600	5.79	22,200	$4 \cdot 5$ k	16, 100
10.	$15 \cdot 3$	83,200	$9 \cdot 0$	40,000	$5 \cdot 44$	20,500	4.89	18,400	$5 \cdot 94$	23,000	4.49	15,800
11.	$15 \cdot 2$	82,500	$8 \cdot 8$	38,800	$5 \cdot 44$	20,500	4.94	18,100	$5 \cdot 94$	23,000	$4 \cdot 34$	15,100
12.	$15 \cdot 1$	81,700	$8 \cdot 6$	37,600	$5 \cdot 34$	20,000	$4 \cdot 89$	17,900	$5 \cdot 89$	22,800	$4 \cdot 29$	14,800
13.	15.1	81,700	$8 \cdot 24$	35,500	$5 \cdot 34$	20,000	4.85	17,600	5.84	22,500	$4 \cdot 14$	14, 100
14	15.0	81,000	8.14	35,000	$5 \cdot 24$	19.500	4.85	17,600	$5 \cdot 84$	22,500	4.09	13,800
15.	$15 \cdot 0$	81,000	$7 \cdot 94$	33,800	$5 \cdot 24$	19,500	4.80	17,400	5.89	22,800	$4 \cdot 04$	13,600
16	14.9	80,200	7.94	33,800	$5 \cdot 24$	19,500	4.75	17, 100	5.79	22,200	3.94	13,200
17	14.9	80.200	$7 \cdot 84$	33, 300	$5 \cdot 14$	19,000	$4 \cdot 75$	17, 100	5.79	22,200	$3 \cdot 78$	12,400
18	14-8	79,500	7.74	32,700	$5 \cdot 04$	18,600	4.84	17,600	$5 \cdot 64$	21,500		12,000
19.	14.6	77,900	$7 \cdot 54$	31,600	$5 \cdot 04$	18,600	4.94	18,100	$5 \cdot 59$	21,200		12,000
20.	$14 \cdot 2$	75,000	$7 \cdot 44$	31,000	$5 \cdot 04$	18,600	4.95	18,100	$5 \cdot 54$	21,000	$3 \cdot 53$	11,200
21.	13.8	72,100	$7 \cdot 34$	30,500	$5 \cdot 04$	18,600	$4 \cdot 95$	18, 100	$5 \cdot 44$	20,500	$3 \cdot 43$	10,800
22.	$13 \cdot 6$	70,700	$7 \cdot 24$	29,900	5.09	18,800	4.95	18, 100	$5 \cdot 34$	20,000	$3 \cdot 43$	10,800
23	13.3	68,600	7.44	31,000	$5 \cdot 09$	18,800	$4 \cdot 95$	18, 100	$5 \cdot 24$	19,500	$3 \cdot 33$	10,400
24	13.0	66,500	7.24	29,900	5.09	18,800	4.95	18, 100	$5 \cdot 19$	19,200	$3 \cdot 33$	10,400
25	$12 \cdot 7$	64,400	$7 \cdot 04$	28,800	$5 \cdot 14$	19,000	4.94	18, 100	$5 \cdot 14$	19,000	$3 \cdot 33$	10,400
26	$12 \cdot 3$	61,500	6.84	27,700	$5 \cdot 14$	19,000	4.94	18,100	$5 \cdot 14$	19,000	3.33	10,400
27.	$12 \cdot 0$	59,409	$6 \cdot 64$	26,600	$5 \cdot 14$	19,000	$4 \cdot 89$	17,900	$5 \cdot 14$	19,000	$3 \cdot 23$	10, 100
28	11.8	58,000	$6 \cdot 54$	26, 100	5.15	19,000	$4 \cdot 89$	17,900	$5 \cdot 09$	18,800	3.23	10, 100
29	11.5	56,000	6.44	25,500	5.15	19,000	$4 \cdot 84$	17,600	$4 \cdot 94$	18,100	$3 \cdot 23$	10,100
30.	11.2	54,100	$6 \cdot 34$	25,000	$5 \cdot 14$	19,000	4.84	17,600	$4 \cdot 89$	17,900	$3 \cdot 23$	10,100
31.	11.2	54, 100	$6 \cdot 14$	24,000			4.84	17,600			$3 \cdot 13$	9,800

Monthly Discharge of Kootenay River near Bonnington Pool, for 1914.
(Drainage area, 17,800 square miles.)

Kootenay River near Nelson (3077).
Location.-At Astley's wharf, Nelson, about 2 miles above the outlet of Kootenay lake, 25 miles from the mouth. Nelson District.

Records Available.-1913 and 1914.

SESSIONAL PAPER No. 25e
Climatic Conditions.-The precipitation at Nelson, from December 1, 1913, to November 30, 1914, was 27.6 inches. This may be considered slightly less than usual. Considerable rain generally falls from spring till the end of June. July and August, and sometimes September, are usually dry months. October and November are generally unsettled, but not cold. The winters are mild. The thermometer seldom goes below zero, and then possibly only for one night during the winter. The average temperature throughout the winter is about $30^{\circ} \mathrm{F}$. The precipitation through the winter months is fairly heavy, sometimes snow, sometimes rain. The lake no doubt has an effect on the climate. One effect of the lake is very apparent in that the river below the lake seldom, if ever, freezes. The main lake never freezes, and the west arm, on which Nelson is situated, only occasionally.

Gauge.-The gauge is a vertical staff, 20 feet long, situated on Astley's wharf, and read daily by Mr. F. A. Lidgate of Nelson.

Method of Compilation.-As in the case of Kootenay river at Bonnington falls and at Bonnington pool, discharges for the Nelson gauge are determined by subtracting the discharges of Slocan river from discharges of Kootenay river near Glade. To compensate for the inflow to Kootenay river below the outlet of the lake and above Glade, the discharge is reduced by 1 per cent.

Daily Gauge Height and Discharge of Kootenay River near Nelson, for 1913.

Daily Gauge Height and Discharge of Kootenay River near Nelson, for 1913.-Concluded.

Dar.	July .		August.		September.		October.		November.		December.	
	Gauge Height	Discharge.	Gauge Height.	Discharge.	Gauge Height	Discharge	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sce--it.	Feet.	Sce-ft.	Feet.	Sec.-ft.
1	15.6	96,100	8.7	47,000	5.6	28,800	4.0 3.9	20,700	2.8	14,900	1.95	11.100
2	15.4	94,600	8.6	46, 400	$5 \cdot 6$	28,800	3.9	20,200		14,900	1.95	11, 100
3	15.2	93,100		45,500	$5 \cdot 5$	28,300	$3 \cdot 8$	19,700	${ }_{2}^{2.8}$	14,900	1.9	10,900
4	15.0	91,600	8.3	44,500	$5 \cdot 5$	28,300	$3 \cdot 7$	19.200	2.8	14,900	1.9	10,900
5.	$14 \cdot 65$	88,800	$8 \cdot 2$	43,900	$5 \cdot 6$	28,800		18,900	$2 \cdot 8$	14,900	1.85	10,700
6		86,800	8.05	43,000	$5 \cdot 7$	29,300	$3 \cdot 6$	18,700	$2 \cdot 7$	14,400	1.85	10,700
7	14.1	84,700	$8 \cdot 0$	42,700		29,300	$3 \cdot 6$	18,700	$2 \cdot 7$	14,499		10,700
8	13.9	83,200	7.9	42, 100	$5 \cdot 7$	29,300	$3 \cdot 6$	18,700	$2 \cdot 6$	13,900	1.85	10,700
9.	$13 \cdot 6$	81,000	$7 \cdot 8$	41,500	$5 \cdot 7$	29,300	$3 \cdot 5$	18,300		13,400	$1 \cdot 85$	10,700
10	13.5	80,300		40,900	$5 \cdot 7$	29,300	3-5	18,300	$2 \cdot 4$	13,000	1.85	10,700
11.	$13 \cdot 2$	78,100	$7 \cdot 6$	40,300	$5 \cdot 6$	28,800	$3 \cdot 45$	18,000	$2 \cdot 3$	12,600	1.8	10,500
12	$13 \cdot 0$	76,700	$7 \cdot 5$	39,700	$5 \cdot 5$	28,300		17, 900	$2 \cdot 2$	12,200	1.8	10,500
13		74,500	$7 \cdot 4$	39, 100	$5 \cdot 4$	27,700	$3 \cdot 4$	17,800	$2 \cdot 1$	11,800	1.7	10,100
14.	$12 \cdot 4$	72,300	$7 \cdot 3$	38,500		27, 200	$3 \cdot 3$	17,300	$2 \cdot 1$	11,800		9,900
15.	$12 \cdot 2$	70,900	$7 \cdot 3$	38,500	$5 \cdot 2$	26,700	3-3	17,300	$2 \cdot 1$	11,800	$1 \cdot 6$	9,700
16.	11.7	67,400	$7 \cdot 2$	37,900	$5 \cdot 1$	26,200	3-3	17,300		11,800	$1 \cdot 6$	9,700
17	11.45	65, 600		37,300	$5 \cdot 0$	25, 700	$3 \cdot 3$	17,300	$2 \cdot 1$	11,800	1.6	9,700
18	11.05	62,800	$7 \cdot 0$	36,700	$5 \cdot 0$	25,700	$3 \cdot 2$	16,800	$2 \cdot 1$	11,800	$1 \cdot 6$	9,700
19.	10.85	61,400	6.8	35,500	$4 \cdot 9$	25,100		16,800	$2 \cdot 1$	11,800	1.55	9,500
20.		59,800	$6 \cdot 7$	34,900	4.8	24,600	$3 \cdot 2$	16,800	$2 \cdot 05$	11,600	$1 \cdot 55$	9,500
21.	10.4	58,300	$6 \cdot 6$	$34,3 \mathrm{CO}$		24,100	$3 \cdot 2$	16,800	2.05	11,600		9,400
22.	$10 \cdot 2$	56,900	$6 \cdot 5$	33,800	$4 \cdot 6$	23,600	$3 \cdot 2$	16, 800	$2 \cdot 05$	11,600	$1 \cdot 5$	9,300
23.	$10 \cdot 1$	56,200	6.4	33,200	$4 \cdot 6$	23,600	3.2	16,800		11,600	1.45	9, 100
24.	$10 \cdot 0$	55,600		32,400	$4 \cdot 5$	23,100	$3 \cdot 2$	16,800	2.05	11,600	1.4	8.950
25.	$9 \cdot 95$	54,600	$6 \cdot 1$	31,500	$4 \cdot 5$	23, 100	$3 \cdot 1$	16,300	$2 \cdot 05$	11,600	$1 \cdot 3$	8,650
26.	9.8	54,200	$6 \cdot 0$	31,000	$4 \cdot 4$	22,600		16,300	$2 \cdot 1$	11,800	1.25	8,500
27.		52,900	$6 \cdot 0$	31,000	$4 \cdot 3$	22,100	3-1	16,300	$2 \cdot 05$	11,600	$1 \cdot 2$	8,350
28.	9.4	51,600	$6 \cdot 0$	31,000		21,600	$3 \cdot 0$	15,900	$2 \cdot 05$	11, 600		8,200
29.	$9 \cdot 3$	50,900	$5 \cdot 9$	30,400	$4 \cdot 1$	21, 100	$3 \cdot 0$	15,900	$2 \cdot 0$	11,400	$1 \cdot 1$	8,050
$30 .$.	$9 \cdot 1$	49,600	$5 \cdot 8$	29,800	$4 \cdot 0$	20,700	$3 \cdot 0$	15,900		11,200	$1 \cdot 1$	8,050
31.	8.9	48,300		29,800			$2 \cdot 9$	15,400			$1 \cdot 1$	8,050

Monthly Discharge of Kootenay River near Nelson, for 1913.
(Drainsge area, 77,703 square miles.)

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Kootenay River near Nelson, for 1914.

Day.	January.		February.		March.		April.		May.		June.	
	Gauge Height.	Discharge.	Gauge Height	Discharge.								
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	See.-ft.	Feet.	Sec.-ft.
1.	$1 \cdot 1$	8,050	$1 \cdot 6$	9,700	0.9	7,450	1.9	10,900	6.90	36, 100	13.00	76,700
2.	$1 \cdot 1$	8,050	$1 \cdot 5$	9,300	$0 \cdot 9$	7,450	1.9	10,900	$7 \cdot 10$	37,300	$13 \cdot 15$	77,700
3.	1-1	8.050	1.3	8,650	C.9	7,450	$2 \cdot 0$	11,400	$7 \cdot 50$	39,700	$13 \cdot 15$	77,700
4.	$1 \cdot 1$	8,050	$1 \cdot 2$	8,350	0.9	7,450	$2 \cdot 0$	11,460	$7 \cdot 90$	42,100	$13 \cdot 70$	81,700
5.	$1 \cdot 1$	8,050	$1 \cdot 1$	8,050	0.95	7,6C0	$2 \cdot 04$	11,600	$8 \cdot 10$	43,300	13.90	83,200
6	$1 \cdot 2$	8,350	1.0	7,750	$0 \cdot 95$	7,600	$2 \cdot 10$	11,800	8. 20	43,900	$14 \cdot 00$	84,000
7	1.4	8,95C	1.0	7,750	0.95	7,600	$2 \cdot 20$	12,200	8.40	4.5,100	$14 \cdot 10$	84,700
8	$1 \cdot 5$	9,300	1.0	7,750	0.98	7,690	$2 \cdot 45$	13,200	8.70	47,000	$14 \cdot 10$	84,700
9.	1.7	10,100	$1 \cdot 0$	7,750	1.0	7,750	$2 \cdot 55$	13,700	8.90	48,300	$14 \cdot 10$	84,700
10.	1.9	10,900	1.0	7,750	1.0	7,750	$2 \cdot 60$	13,900	9.05	49,300	$14 \cdot 00$	84,000
11.	1.95	11, 100	1.0	7,750	1.0	7,750	$2 \cdot 90$	15,400	$9 \cdot 20$	50,200	13.90	83,200
12.	$2 \cdot 0$	11,400	1.0	7.750	1.0	7.750	3.00	15,900	$9 \cdot 40$	51,600	13.50	52, 400
13.	$2 \cdot 0$	11,400	1.0	7.750	1.0	7.750	$3 \cdot 10$	16,300	9.70	53,500	13.70	81,700
14.	$2 \cdot 0$	11,400	$1 \cdot 0$	7.750	$1 \cdot 0$	7.730	$3 \cdot 50$	18.300	$9 \cdot 90$	54,900	13.70	81,700
15.	$2 \cdot 0$	11,40C	0.95	7,600	$1 \cdot 1$	8,050	$4 \cdot 00$	20,700	$10 \cdot 40$	58,300	13.80	82,460
16.	$2 \cdot 0$	11,400	$0 \cdot 9$	7,450	$1 \cdot 2$	8,350	$4 \cdot 40$	22,600	10.70	60,400	13.80	82,400
17.	$2 \cdot 0$	11,400	$0 \cdot 9$	7,450	$1 \cdot 3$	8,650	$4 \cdot 60$	23,600	11.05	62,800	13.95	83,600
18	$2 \cdot 0$	11,400	0.9	7,450	$1 \cdot 4$	8,950	4.80	24,600	11.40	65,300	$14 \cdot 15$	85,00C
19	$2 \cdot 1$	11,800	0.9	7,450	1.5	9,300	5-10	26,200	11.80	68, 100	$14 \cdot 45$	87, 400
20.	$2 \cdot 0$	11,400	0.8	7,150	$1 \cdot 6$	9,700	$5 \cdot 40$	27,7C0	$12 \cdot 00$	69,500	$14 \cdot 60$	88,560
21.	1.9	10,900	0.8	7,150	1.7	10,10C	$5 \cdot 60$	28,800	$12 \cdot 20$	70,900	$14 \cdot 60$	88,500
22.	$1 \cdot 9$	10,900	0.8	7,150	1.75	10,300	$5 \cdot 80$	29.800	$12 \cdot 40$	72,3C0	$14 \cdot 70$	89,260
23.	1.8	10,500	0.8	7,150	1.8	10,5CC	6.00	31,000	$12 \cdot 60$	73,860	$14 \cdot 70$	89.260
24.	1.7	10,100	0.8	7,150	1.8	10,500	$6 \cdot 20$	32,0c0	$12 \cdot 80$	75,200	$14 \cdot 60$	88.500
25.	1.7	10,100	$0 \cdot 8$	7,150	1.85	10,700	$6 \cdot 30$	32,600	$13 \cdot 00$	76,700	$14 \cdot 50$	87,800
26.	1.7	10,100	0.9	7,450	1.9	10,900	$6 \cdot 40$	33,200	$13 \cdot 20$	78,100	$14 \cdot 40$	87,000
27	1.7	10,100	0.9	7,450	$2 \cdot 0$	11,400	$6 \cdot 50$	33,800	$13 \cdot 20$	78,100	$14 \cdot 20$	85,400
28	1.8	10,500	0.9	7,450	$2 \cdot 0$	11,400	6.60	34,300	13.25	78,400	14. 10	84,700
29.	1.75	10,300			1.95	11, 100	6.70	34,900	$13 \cdot 25$	78, 400	13.90	83,200
30.	1.7	10,100			1.9	10,900	6.80	35,50C	$13 \cdot 20$	78,100	13.90	83,200
31.	1.7	10,100			$1 \cdot 9$	10,900			$13 \cdot 10$	77,400		

6. GEORGE V, A. 1916

Daily Gauge Height and Discharge of Kootenay River near Nelson, for 1914.-Concluded.

Day.	July .		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge.	Gauge Height	Discharge	Gauge Height.	Discharge.						
	Feet.	Sec.-ft.										
,	13.70	81,700	$9 \cdot 25$	50,500	$4 \cdot 70$	24,100	$3 \cdot 65$	18,900	$3 \cdot 30$	17,300	$3 \cdot 45$	18,000
2	13.70	81,700	$9 \cdot 00$	49,000	$4 \cdot 60$	23,600	$3 \cdot 65$	18,900	$3 \cdot 40$	17,800	$3 \cdot 40$	17, 800
3.	$13 \cdot 70$	81,700	8.80	47,600	$4 \cdot 55$	23,300	$3 \cdot 60$	18,700	$3 \cdot 55$	18,500	$3 \cdot 35$	17,500
4.	$13 \cdot 70$	81,700	$8 \cdot 60$	46,400	$4 \cdot 50$	23,100	$3 \cdot 55$	18,500	$3 \cdot 70$	19,200	$3 \cdot 35$	17,500
5.	13.80	82,400	8.40	45,100	$4 \cdot 40$	22,600	$3 \cdot 6 \mathrm{C}$	18,700	3.90	20,200	$3 \cdot 25$	17,000
6.	13.80	82,400	8.20	43,900	$4 \cdot 25$	21,800	$3 \cdot 55$	18,500	4.05	20,900	$3 \cdot 20$	16,800
7.	$13 \cdot 80$	82,400	8.00	42,700	$4 \cdot 10$	21,100	$3 \cdot 50$	18,300	$4 \cdot 15$	21,300	$3 \cdot 15$	16,500
8	$13 \cdot 80$ $13 \cdot 80$	82,400	7.90	42,100	$4 \cdot 05$	20,900	$3 \cdot 45$	18,000	$4 \cdot 25$	21, 800	$3 \cdot 10$	16,300
${ }_{10} 9$	$13 \cdot 80$ $13 \cdot 80$	82,400 82,400	$7 \cdot 60$ 7.50	40,300 39,700	$4 \cdot 00$ 4.00	20,700	$3 \cdot 45$	18,000	4.30 4.35	22,100	3.00 2.85	15,900
10.	$13 \cdot 80$	82,400	$7 \cdot 50$	39,700	4.00	20,700	$3 \cdot 40$	17,800	$4 \cdot 35$	22,300	$2 \cdot 85$	15, 100
11.	$13 \cdot 80$	82,400	7.30	38,500	3.90	20,200	3.40	17,800	4.40	22,600	$2 \cdot 70$	14,400
12.	13.70 13.60	81,700 81,000	$7 \cdot 10$ 6.90	$37,30 \mathrm{C}$ 36,100	$3 \cdot 85$ 3.75	19,906	$3 \cdot 35$ $3 \cdot 35$	17, 500	$4 \cdot 40$ $4 \cdot 35$	22,600 22,300	$2 \cdot 60$ $2 \cdot 45$	13,900 13,200
13.	$13 \cdot 60$ $13 \cdot 50$	81,000 80,300	$6 \cdot 90$ $6 \cdot 60$	36,100 34,300	3.75 3.65	19,400	$3 \cdot 35$ $3 \cdot 30$	17,500	$4 \cdot 35$ $4 \cdot 40$	22, 300	$2 \cdot 45$	13,200
14.	$13 \cdot 50$ $13 \cdot 40$	80,300 79,500	$6 \cdot 60$ 6.40	34,300 33,200	$3 \cdot 65$ $3 \cdot 55$	18,900 18,500	$3 \cdot 30$ $3 \cdot 25$	17,300 17,000	$4 \cdot 40$ $4 \cdot 40$	22,600 22,600	$2 \cdot 35$ $2 \cdot 25$	12,800 12,400
16	$13 \cdot 30$	78,800	$6 \cdot 20$	32,C00	$3 \cdot 60$	18,700	$3 \cdot 25$	17,000	$4 \cdot 35$	22,300	$2 \cdot 20$	12,200
17	$13 \cdot 15$	77,700	$6 \cdot 10$	31,500	3. 55	18,500	$3 \cdot 20$	16,800	$4 \cdot 30$	22,100	$2 \cdot 10$	11,800
18	$13 \cdot 00$	76,700	$6 \cdot 10$	31,500	$3 \cdot 50$	18,300	$3 \cdot 25$	17,000	$4 \cdot 25$	21,800	2.05	11,600
19.	$12 \cdot 85$	75,560	6.00	31,060	$3 \cdot 55$	18,500	$3 \cdot 30$	17,300	$4 \cdot 15$	21,300	1.90	10,900
20.	$12 \cdot 65$	74,100	$5 \cdot 90$	30,400	$3 \cdot 60$	18,706	$3 \cdot 35$	17,500	$4 \cdot 05$	20,900	1.80	10,500
21	$12 \cdot 45$	72,700	$5 \cdot 80$	29,800	$3 \cdot 60$	18,700	$3 \cdot 40$	17,800	3.95	20,400	1.70	10,100
22.	$12 \cdot 15$	70,500	$5 \cdot 70$	29,300	$3 \cdot 65$	18,900	$3 \cdot 40$	17,800	$3 \cdot 90$	20,200	1.70	10,100
23.	11.85	68,400	$5 \cdot 60$	28,800	$3 \cdot 65$	18,900	$3 \cdot 45$	18,000	$3 \cdot 80$	19,700	1.61	9,740
24.	11.55	66,300	$5 \cdot 50$	28,300	$3 \cdot 60$	18,700	$3 \cdot 40$	17,800	$3 \cdot 75$	19,400	1.61	9,740
25.	$11 \cdot 15$	63,500	$5 \cdot 40$	27,700	$3 \cdot 65$	18,900	$3 \cdot 40$	17,800	$3 \cdot 70$	19,200	$1 \cdot 61$	9,740
26.	10.90	61,800	$5 \cdot 30$	27,200	$3 \cdot 55$	18,500	$3 \cdot 35$	17,500	3.70	19,200	$1 \cdot 60$	9,700
27.	$10 \cdot 60$	59,700	$5 \cdot 20$	26,700	$3 \cdot 60$	18,700	$3 \cdot 30$	17,300	$3 \cdot 65$	18,960	1.55	9,500
28	$10 \cdot 30$	57,600	$5 \cdot 10$	26,200	$3 \cdot 65$	18,900	$3 \cdot 30$	17,300	$3 \cdot 55$	18,500	1.55	9,500
29.	9.95	55,200	5-c0	25,700	$3 \cdot 65$	18,900	$3 \cdot 25$	17,000	$3 \cdot 50$	18,300	1.55	9,500
30.	$9 \cdot 65$	53,200	$4 \cdot 90$	25,100	$3 \cdot 60$	18,700	$3 \cdot 20$	16,800	$3 \cdot 50$	18,300	$1 \cdot 50$	9,300
31.	$9 \cdot 45$	51,900	$4 \cdot 80$	24,600			$3 \cdot 25$	17,000			1.50	9,300

Monthly Discharge of Kootenay River near Nelson, for 1914.
(Drainage area, 17,700 square miles.)

Month.	Discharge in Second-Feet.				Run-Off.		Accuracy,
	Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on Drainage area.	Total in acre-feet.	
January .	11,800	8,050	10,200	C. 58	$0 \cdot 67$	627,000	
February..	9,700	7,150	7,730	0.44	0-46	42,960	
March...	11,400	7,450	9,010	0.51	0.59	554,000	
April	35,500	10,900	21,900	$1 \cdot 24$	1.38	1,300,000	
May....	78,400 89	36,100	60, 100	3.40 4.75	3.92 5.30	3,700,000	B
June.....	89,200 82,400	76,760 51,900	84,100	4.75 4	$5 \cdot 30$	5,000,000	B
July.... August	82,400 50,500	51,900	73,900	$4 \cdot 18$	4.82	4,540,000	B
August	50,500	24,600 18,300	34,000	$1 \cdot 92$	$2 \cdot 21$	2,090,000	C
September October.	24,100 18,900	18,300 16,800	20,000	1.13	1.26	1,190, cco	C
October.	18,900	16,800	17,700	1.00	$1 \cdot 15$	1,090,000	C
November	18,600 18,000	17,300 9,300	120,500 12,500	1.16 0.71	1.29 0.82	$1,220,000$ 769,000	$\stackrel{C}{C}$

SESSIONAL PAPER No. 25e

Kootenay River near Glade (3014).
Location.-Ten miles from the mouth below the mouth of Slocan river; 16 miles from Nelson at the ferry cable near Glade B.C. Nelson district.

Records Available.-July, 1913, to December, 1914.
Climatic Conditions.-The climatic conditions are similar to those at Nelson. (See Kootenay river near Nelson.) The river is open all the year round.

Gauge.-Four 5-foot gauges reading from 0 to 5 feet, 5 to 10 feet 10 to 15 feet and 15 to 20 feet are used and read twice daily by F. Striloiff of Glade.

Channel.-The channel is straight for one half mile above and below section and very uniform. There are riffles 1,000 yards above and below the section which is ideal for metering purposes.

Discharge Measurements.-Seven measurements in 1913 and seven in 1914 were made from a cable car used on the ferry cable.

Accuracy.-Accurate gauge readings are obtained, accurate measurements were taken and the gauge height-discharge curve is very satisfactory. The results at this station are considered to be within 5 per cent.

Daily Gauge Height and Discharge of Kootenay River near Glade, for 1914.

Day.	January.		February.		March.		April.		May.		June.	
	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec. -ft .	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1	1.55	8,700	2.25	11,400	1.55	8,700	$2 \cdot 7$	13,100	$8 \cdot 10$	43,200	$13 \cdot 4$	88,600
2	1. 55	8,700	$2 \cdot 25$	11, 400	1.45	8,330	$2 \cdot 7$	13, 100	8.40	45,400	$13 \cdot 6$	90, 600
4	1.55	8,700 9,100	$2 \cdot 35$	11,800	1.45	8,330 8,700	$2 \cdot 7$	13,100	8.80	48,400	14.1	95,600
4.	1.65	9,100	$2 \cdot 35$	11.800	$1 \cdot 55$	8,700	2.8	13,500	8.95	49,500	14.2	96,6019
5.	1.65	9.100	$2 \cdot 15$	11,000	1.55	8,700	$2 \cdot 7$	13,100	$9 \cdot 35$	52,600	$14 \cdot 2$	96,600)
6.	1.85	9,900	2.05	10,700	1.55	8,700	2.95	14,200	9.50	53,800	14.2	96,60kl
7	$2 \cdot 35$	11,800	1.85	9,900	1.55	8,700	$3 \cdot 25$	15,400	$9 \cdot 5$	53,800	$14 \cdot 1$	95.661
8.	2.50	12,300	1.85	9,900	1.55	8,700	$3 \cdot 45$	16,200	9.85	56,600	$14 \cdot 0$	94,610
9.	2.45	12,100	1.75	9,500	1.60	8.900	3.55	16,600	$10 \cdot 1$	58,600	13.9	93, 6140
10.	$2 \cdot 50$	12,300	1.75	9,500	1.60	8,900	$3 \cdot 8$	17,700	$10 \cdot 3$	60,300	13.95	94,100
11.	2.65	12,900	1.75	9,500	1.60	8,900	3.95	18, 400	$10 \cdot 4$	61.100	13.8	92.604
12.	2.65	12,900	1.65	9, 100	1.60	8,900	+15	18,250	10.6	62,5100	13.75	92.100
13.	$2 \cdot 6.5$	12,900	1.65	9,100	1.60	8.900	4.50	20,900	10.8	64.510	13.75	92, 1(1)
14	$2 \cdot 65$	12,900	$1 \cdot 65$	9,100	1.60	8,900	+.85	22,610	11.05	68, 6i0	$13 \cdot 85$	$93,110)$
15.	$2 \cdot 65$	12,900	1.65	9,100	1.70	9,300	5.35	25,5(0)	11.35	69,410	14.05	95, 100
18	$2 \cdot 70$	13,100	1.65	9,100	1.80	9,700	5.75	27, 800	11.75	73.060)	14.2	96, 6×00
17.	$2 \cdot 75$	13,400	1.55	8,700	1.80)	9,700	5. 961	2s,700	11.95	74.900	14.7	
18.	$2 \cdot 65$	12,900	1.55	8.700	$2 \cdot 10$	10,900	6. 10	29,900	12.15	76,400	$1+55$	(14), 140)
19.	2.55	12,5101	1.55	8.700	$2 \cdot 10$	10,9610	$6 \cdot 30$	31,200	$12 \cdot 30$	78, 200	14.7	102, 100
20.	$2 \cdot 5.5$	12,500	1.55	8.700	$2 \cdot 30$	11,600	6.80	34,300	12.5	80, (6) ${ }^{\text {c }}$	14.7	102, 16(\%)
21.	$2 \cdot 6.5$	12,900	1.55	8,700	$2 \cdot 30$	11.630	6.80)	34,300)	$12 \cdot 7$	81, 9xal		102.060
22.	$2 \cdot 55$	12,500	1.55	$\times, 700$	$2 \cdot 36$	11,880	6. 90	35,000	12.9	83, 8601	14.6	101, (k)
23.	$2 \cdot 45$	12, 200	$1 \cdot 45$	8,330	$2 \cdot 40$	12,060	7.20	37,100	13.05	85, 240)	14.5	(0) Mex
24.	$2 \cdot 45$	12,200	1.45	8,330	2.50	12,310	$7 \cdot 40$	38, 300	13.3	87, 606)	$14+$	以下, 600
25	$2 \cdot 45$	12,2161	1.45	8,330	$2 \cdot 60$	12,700	7.50	39,000	13.45	s9, 100	14.3	87. 6 ¢0
26	$2 \cdot 35$	11,800	1.45	8.330	$2 \cdot 70$	13.100	7.80	+1,100	13.5	89,0641	$14 \cdot 3$	97, (4)
27.	$2 \cdot 35$	11,800	1.45	8, 3340	2. 70	13,1161	$7 \cdot 81$	41,106	13.45	$89,100)$	14.2	18, (ta)
25.	2.25	11,400	1.45	8,330	2.70	13, 100	7.80	41, 100)	13.45	89, 104	14.05	45. 1 (1)
29	$2 \cdot 25$	11.400			3.70	13, 160	7. 161	41,840	13.35	8s, 1010	13 - 13	(1). (10)
31.	$2 \cdot 15$	$11.06 \mathrm{k})$		-	2 . 61	12,700	8.40	42,300	13.25	87,2(x)	13.43	93, 1(1)
31	$2 \cdot 15$	11,063)			$2 \cdot 61$	12,700)			13.2	86, 700		

Daily Gauge Height and Discharge of Kootenay River near Glade, for 1914.-Concluded.

D.y.	July.		August.		September		October.		November.		December.	
	Gauge Height	Discharge	Gauge Height	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height	Discharge	Gauge Height	Discharge
	Feet.	Sec.-ft.	Feet.	Sec-ft.								
1.	13.85 13.8	93, 100	9.95 9.8	57,400	5.5	26,400	$4 \cdot 4$	20,400	$4 \cdot 15$	19,200	$4 \cdot 2$	19,500
2	13.8 13.85	92,600	$9 \cdot 8$	56,200 54	$5 \cdot 4$	25, 800	$4 \cdot 4$	20,400	$4 \cdot 25$	19,800	$4 \cdot 1$	19,000
4	13.85 13.85 13.85	93,100 93,100	$9 \cdot 6$ 9.4	54,600 53,000	$5 \cdot 3$ $5 \cdot 2$	25,200	$4 \cdot 35$ $4 \cdot 3$	20,200	$4 \cdot 35$	20, 200	$4 \cdot 1$	19,000
5.	13.85	93,160	$9 \cdot 2$	51,400	$5 \cdot 2$ $5 \cdot 1$	24,100 24,100	$4 \cdot 3$ $4 \cdot 3$	20,000 20,000	4.45 4.75	20,600 22,200	$4 \cdot 1$ $4 \cdot 0$	19,000 18,600
6	13.85	93,100	$9 \cdot 0$	49,900	$5 \cdot 0$	23,500	$4 \cdot 3$	20,000	$4 \cdot 9$	22,900	$4 \cdot 0$	18,600
7	13.9	$93,6) 0$	$8 \cdot 8$	48,400	$4 \cdot 9$	22,990	$4 \cdot 25$	19,809	$5 \cdot 0$	23,500	$4 \cdot 0$	18,600
8	13.85	93,100	$8 \cdot 7$	47,600	$4 \cdot 8$	22,400	$4 \cdot 20$	19,500	$5 \cdot 2$	24,600	$3 \cdot 8$	17,700
9.	13.75	92, 100	$8 \cdot 6$	46,800	$4 \cdot 7$	21,900	$4 \cdot 20$	19,500	$5 \cdot 1$	24,100	$3 \cdot 7$	17,300
10.	$13 \cdot 7$	91,600	$8 \cdot 4$	45, 400	$4 \cdot 6$	21,400	$4 \cdot 20$	19, 5 ¢0	$5 \cdot 3$	25,200	$3 \cdot 6$	16,900
11.	$13 \cdot 65$	91, 100	$8 \cdot 2$	43,900	$4 \cdot 5$	20,970	$4 \cdot 2$	19,500	$5 \cdot 3$	25,200	$3 \cdot 5$	16,400
12.	$13 \cdot 5$	89,600	$8 \cdot 0$	42,500	$4 \cdot 5$	20,900	$4 \cdot 1$	19,000	$5 \cdot 3$	25, 200	$3 \cdot 3$	15,600
13	13.5	89,600	$7 \cdot 9$	41, 800	$4 \cdot 4$	20,400	$4 \cdot 0$	18,600	$5 \cdot 4$	25,800	$3 \cdot 1$	14,800
14	$13 \cdot 45$	89,100	$7 \cdot 7$	40,400	$4 \cdot 2$	19,500	$4 \cdot 0$	18,600	$5 \cdot 3$	25, 200	$3 \cdot 0$	14,400
15.	13.4	88,600	$7 \cdot 5$	39,000	$4 \cdot 2$	19,500	$4 \cdot 0$	18,600	$5 \cdot 3$	25,200	$2 \cdot 9$	14,000
16.	$13 \cdot 35$	88,100	$7 \cdot 3$	37,700	$4 \cdot 2$	19,500	$4 \cdot 0$	18,600	$5 \cdot 3$	25,200	$2 \cdot 8$	13,500
17.	$13 \cdot 15$	86,200	$7 \cdot 1$	36,300	$4 \cdot 2$	19,500	$3 \cdot 9$	18, 100	$5 \cdot 2$	24,600	$2 \cdot 7$	13,100
18	$13 \cdot 0$	84,700	7.0	35,700	$4 \cdot 25$	19,800	$4 \cdot 1$	19,000	$5 \cdot 1$	24,100	$2 \cdot 6$	12,700
19	$12 \cdot 85$	83,300	$7 \cdot 0$	35,700	$4 \cdot 35$	20,200	$4 \cdot 2$	19,500	$5 \cdot 0$	23,500	$2 \cdot 6$	12,700
20.	$12 \cdot 6$	81,000	$6 \cdot 7$	33,700	$4 \cdot 35$	20,200	$4 \cdot 1$	19,000	$4 \cdot 85$	22,600	$2 \cdot 4$	12,000
21.	$12 \cdot 4$	79,100	$6 \cdot 5$	32,400	$4 \cdot 30$	20,000	$4 \cdot 2$	19,500	$4 \cdot 7$	21,900	$2 \cdot 3$	11,600
22.	$12 \cdot 15$	76,800	$6 \cdot 4$	31,800	$4 \cdot 3$	20,000	$4 \cdot 2$	19,500	$4 \cdot 7$	21,900	$2 \cdot 3$	11, 600
23	$12 \cdot 0$	75,400	$6 \cdot 4$	31,800	$4 \cdot 3$	20,000	$4 \cdot 2$	19,500	$4 \cdot 55$	21,200	$2 \cdot 2$	11,200
24	11.75	73,000	$6 \cdot 4$	31,800	$4 \cdot 3$	20,000	$4 \cdot 2$	19,500	$4 \cdot 5$	20,900	$2 \cdot 2$	11, 200
25	$11 \cdot 35$	69,400	$6 \cdot 3$	31,200	$4 \cdot 35$	20,200	$4 \cdot 15$	19,200	$4 \cdot 4$	20,400	$2 \cdot 2$	11,200
26.	$11 \cdot 3$	68,900	$6 \cdot 1$	29,900	$4 \cdot 4$	20,400	$4 \cdot 1$	19,006	$4 \cdot 4$	20,400	$2 \cdot 2$	11,200
27.	$11 \cdot 1$	67, 100	$6 \cdot 0$	29,300	$4 \cdot 4$	20,400	$4 \cdot 1$	19,000	$4 \cdot 4$	20,400	$2 \cdot 15$	11,000
28	$10 \cdot 35$	60,700	$5 \cdot 9$	28,700	$4 \cdot 4$	20,400	$4 \cdot 1$	19,000	$4 \cdot 25$	19,800	$2 \cdot 10$	10,900
29	$10 \cdot 3$	60,300	$5 \cdot 8$	28, 100	$4 \cdot 45$	20,630	$4 \cdot 1$	19,000	$4 \cdot 3$	20,000	$2 \cdot 1$	10,900
30	$10 \cdot 3$	60,300	$5 \cdot 7$	27,500	$4 \cdot 4$	20,400	$4 \cdot 1$	19,000	$4 \cdot 3$	20,000	$2 \cdot 0$	10,500
31.	$10 \cdot 65$	58,200	$5 \cdot 6$	26.900			$4 \cdot 0$	18,600			$2 \cdot 0$	10,500

Discharge Measurements of Kootenay River near Glade, B.C., for 1914.

SESSIONAL PAPER No. 25e
Monthly Discharge of Kootenay River near Glade, for 1914.
(Drainage area, 19,100 square miles.)

Monte.	Discharge in Second-Feet.				Run-Off.		Acceracy.
	Maximum.	Miniumm.	Mean.	Per square mile.	Depth in inches on Drainage area.	Total in acre-feet.	
January .	13,400	8,700	11,700	$0 \cdot 61$	0.70	719,000	A
February	11,800	8,330	9,430	$0 \cdot 49$	$0 \cdot 51$	524,000	A
March...	13, 100	8,330	10,400	$0 \cdot 54$	$0 \cdot 62$	640,000	A
April...	42,500	13,100	26,500	1.39	1.55	1,380,000	A
May...	89,6C0	43,200	70,690	3.70	$4 \cdot 27$	4,340,000	A
June...	102,000	88,600	96,100	5.03	$5 \cdot 61$	5,720,000	A
July....	93,600	58,200	82,300	4.31	$4 \cdot 97$	5,060,000	A
August.....	57,400	26,900	39,600	$2 \cdot 07$	$2 \cdot 39$	2,430,000	C
September.	26,400	19, 500	21,400	1.12	$1 \cdot 25$	1,270,000	A
October...	20,400	18,100	19,300	1.01	1.16	1,190,000	A
November.	25, 800	19,200	22,500	1.18	1.32 0.86	$1,340,000$ 885,000	A
December..	19,560	10,500	14,400	0.75	$0 \cdot 86$	885,000	A

Nakusp Creek near Nakusp (3021.)

Location.-Station is located west of Brouse and near R. H. Baird's ranch, about 2 miles from Nakusp. Nelson district.

Records Available.-March 20th to December 31, 1914.
Climatic Conditions.-Similar to Kooskanax creek. q.v.
Gauge.-Vertical staff enamel gauge, about 40 feet below measuring section. Read twice a week. March to December, 1914, by Mr. R. H. Baird.

Channel.-Sandy, with vegetation, and subject to shift. Beaver dams of recent construction above the section have a marked effect on the channel.

Accuracy.-Beavers were working in the vicinity of the gauge. The gauge readings are infrequent. Although results are probably within 20 per cent, they are not guaranteed.

General.-Nakusp creek rises on the west slope of the Goat mountains and flows westward, emptying into Upper Arrow lakes about 1 mile below Nakusp. This creek drains an area of approximately 40 square miles. The probable future use of Nakusp creek waters is irrigation and domestic supply.

Discharge Measurements of Nakusp Creek near Nakusp, B.C., for 1914.

Date.	Hydrographer.	Meter No.	Width.	Arexi of seection.	Mesun Velocity	Gauge Height.	Discharge
1014.			Feet.	Hig. ft.	Ft. per sece	Fieet.	see. -ft.
Mar. 20.	C. 1. Wobb	1048	$20 \cdot 5$	13.9	$2 \cdot 25$	1.8	
June 13..	C. K. B.	1927	$16 \cdot 0$	$12 \cdot 6$	4.28	$2 \cdot 2$	$54 \cdot 0$
"1 21.	Ci. K. 13.	1927	16.0	11.4	1.01	$2 \cdot 2$	$43 \cdot \mathrm{~s}$
" 29.	J. A. 1,.	1909	15.0	12.1	3.77	1.4	$45 \cdot 6$
Aug. 12	J. A. H........	1609	15.0	$8 \cdot 35$	$2 \cdot 33$	1.5	21.2
Hepl. 3.	J. A. E, and C. E, H.	1097	17.0	14.7	0.87	1.38	12.9
Oct. 28.	J. A. E. j $^{\text {J }}$ -	1009 1909	14.5 15.0	6.72 4.85	3.13	1.05	91.0
Nov. 21.	J. A. E., O.J. B.	1900	15.0	9. 85	2-8']	1-8	2s 7

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Nakusp Creek River near Nakusp, for 1914.

Dix.	March.		April.		May.		June.	
	Gauge Height	Discharge.	Gauge Height	Discharge.	Bauge Height	Discharge.	Gauge Height.	Discharge.
	Feet.	Sec. ft	Feet.	See.-ft	Feet.	Sec.-ft	Feet.	Sec. ft .
1.				29.4		69.0	$2 \cdot 3$	55.3
2.			1.8	30.0 30.7 31		$77 \cdot 0$ 85.4		$53 \cdot 0$ $51 \cdot 0$
3.				$30 \cdot 7$ 31.4	2.8	$85 \cdot 4$ $82 \cdot 0$	$2 \cdot 2$	$51 \cdot 0$ 49
5.			$1 \cdot 85$	32.2		79.0		$49 \cdot 9$
6.				$35 \cdot 3$		$76 \cdot 0$		49.9
7.				38.4	$2 \cdot 6$	73.0	$2 \cdot 2$	$49 \cdot 9$ 49.9
8.				$41 \cdot 5$		75.0 77.0		$49 \cdot 9$ $49 \cdot 9$
9.			$2 \cdot 1$	$44 \cdot 5$ 49.9	$2 \cdot 7$	77.0 79.0		$49 \cdot 9$ $49 \cdot 9$
11.				$49 \cdot 9$		77.0	$2 \cdot 2$	$49 \cdot 9$
12.			$2 \cdot 3$	$55 \cdot 3$		$75 \cdot 0$		$49 \cdot 9$
13.			$57 \cdot 6$	$2 \cdot 6$	73.0		$49 \cdot 9$
14.				59.0		71.0	$2 \cdot 2$	$49 \cdot 9$
15.			$2 \cdot 4$	61.0		$70 \cdot 0$		$48 \cdot 5$
16.				69.0		68.0 67.0		47.0
17.				77.0	$2 \cdot 5$	$67 \cdot 0$		$46 \cdot 0$
18.				84.5		$64 \cdot 0$	$2 \cdot 1$	$44 \cdot 5$
19.			$2 \div 9$	91.9		$61 \cdot 0$		$47 \cdot 0$
20.	$1 \cdot 8$	$30 \cdot 0$		89.8		$58 \cdot 0$		$48 \cdot 5$
21.		$30 \cdot 0$		87.6	$2 \cdot 3$	$55 \cdot 3$	$2 \cdot 2$	$49 \cdot 9$
22.		$30 \cdot 0$	2.8	85.4		$55 \cdot 3$		48.0
23.		$30 \cdot 0$		82.0		$55 \cdot 3$		$47 \cdot 0$
24.	1.8	$30 \cdot 0$		79.0	$2 \cdot 3$	$55 \cdot 3$		$46 \cdot 0$
25.		29.4		$76 \cdot 0$		$57 \cdot 0$	1.9	$34 \cdot 5$
26.		28.5	$2 \cdot 6$	73.0		58.0		$34 \cdot 5$
27.	1.75	27.8		70.0		59.0		$34 \cdot 5$
28.		27.8		67.0	$2 \cdot 4$	61.0	1.9	$34 \cdot 5$
29.	1.75	$27+8$		$64 \cdot 0$		59.0	$1 \cdot 9$	$34 \cdot 5$
30.		28.3	$2 \cdot 4$	$61 \cdot 0$		58.0	$1 \cdot 9$	$34 \cdot 5$
31.		$28 \cdot 8$				57.0		

SESSIONAL PAPER No. 25e

Daily Gauge Height and Discharge of Nakusp Creek River near Nakusp, for 1914.

Day.	July		August.		September.		October.		November.		December.	
	Gauge Height	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge charge.	DisHeight.	Gauge Height	Discharge.	Gauge Height.	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec. ft	Feet.	Sec. ft .	Feet.	See. ft .	Feet.	Sec. -ft .
1.		$34 \cdot 5$		21.2		14.9 14.1		27.0		30.0 30.0		30.0 30.0
2.	1.9	$34 \cdot 5$ $34 \cdot 5$	$1 \cdot 6$	21.2 21.2		$14 \cdot 1$ $13 \cdot 4$	1.60	$24 \cdot 1$ 21.2	1.8	$30 \cdot 0$ 30.0	1.8	$30 \cdot 0$ 28.9
4.		34.5		21.2	1-38	$12 \cdot 7$		22.6	1.8	30.0		$27 \cdot 7$
5	1.9	$34 \cdot 5$	$1 \cdot 6$	21.2		$15 \cdot 5$		$22 \cdot 6$		$30 \cdot 0$		$26 \cdot 6$
6.		34.5		21.2		18.4	1.70	25.5		30.0	1.7	$25 \cdot 5$
7.		34.5	$1 \cdot 6$	21.2	$1 \cdot 6$	21.2		24.4	1.8	$30 \cdot 0$		$25 \cdot 5$
8.		$34 \cdot 5$	$1 \cdot 6$	21.2		22.1		23.4		$30 \cdot 0$		$25 \cdot 5$
9.	1.9	34.5		20.2		22.9		$22 \cdot 3$		$33 \cdot 1$		$25 \cdot 5$
10.		$34 \cdot 5$		$19 \cdot 1$		23.8	$1 \cdot 60$	21.2		$36 \cdot 3$	$1 \cdot 7$	$25 \cdot 5$
11.		$34 \cdot 5$		18.1		$24 \cdot 6$		$22 \cdot 3$	$2 \cdot 0$	39.4		$25 \cdot 0$
12.		$34 \cdot 5$	$1 \cdot 5$	$17 \cdot 1$	$1 \cdot 7$	25.5		$23 \cdot 4$		39.4		25.0
13.	1.9	34.5		16.5	$1 \cdot 7$	$25 \cdot 5$		24.4		39.4	$2 \cdot 4$	25.0
14.		33.0		$16 \cdot 0$		25.5	1.7	$25 \cdot 5$		39.4		24.0
15.		$32 \cdot 0$		$15 \cdot 5$		$25 \cdot 5$		24.4	$2 \cdot 0$	$39 \cdot 4$		24.0
16.		31.0		$15 \cdot 0$	1.7	25.5		23.4		$36 \cdot 3$		$23 \cdot 0$
17.	1.8	$30 \cdot 0$		$14 \cdot 5$	1.75	27.8		$22 \cdot 3$		$33 \cdot 1$	$2 \cdot 2$	23.0
18.		28.0		14.0		28.0	$1 \cdot 6$	21.2	1.8	30.0		$24 \cdot 0$
19.		27.0	$1 \cdot 4$	13.4		$29 \cdot 0$		$22 \cdot 3$		30.0	$2 \cdot 0$	24.0
20.	1.7	$25 \cdot 5$		$13 \cdot 4$		$30 \cdot 0$		$23 \cdot 4$		$30 \cdot 0$		$25 \cdot 0$
21.		23.4		13.4	1.8	$30 \cdot 0$		24.4	1.8	$30 \cdot 0$		25.0
22.	$1 \cdot 6$	21.2	1.4	13.4		$27 \cdot 0$	1.7	25.5		30.0		$25 \cdot 0$
23.		21.2		$13 \cdot 9$		24.1		25.5		30.0	$1 \cdot 7$	$25 \cdot 5$
24.		21.2		$14 \cdot 3$	$1 \cdot 60$	21.2		25.5		$30 \cdot 0$		26.0
25.		$21 \cdot 2$		$14 \cdot 7$		$19 \cdot 2$	1.7	$25 \cdot 5$	1.8	30.0		27.0
26.	1.6	21.2	1.45	$15 \cdot 2$	1.50	$17 \cdot 1$		$25 \cdot 5$		$30 \cdot 0$		28.0
7.		21.2		$15 \cdot 8$		$20 \cdot 0$	1.7	25.5		$30 \cdot 0$		29.0
28.		21.2		16.5		23.0		26.0		$30 \cdot 0$	1.8	$30 \cdot 0$
29.	$1 \cdot 6$	21.2	$1 \cdot 5$	17.1		$26 \cdot 0$		27.0	1.8	$30 \cdot 0$		$30 \cdot 0$
30.		21.2		16.4	$1 \cdot 80$	$30 \cdot 0$		28.0		$30 \cdot 0$		$30 \cdot 0$
31.		21.2		$15 \cdot 6$				$29 \cdot 0$				$30 \cdot 0$

Monthly Discharge of Nakusp Creek near Nakusp for 1914.
(Drainage area, 40 square miles.)

	Dischamge in		Second-Feet.		ReN-OFr.	
	Maximum.	Minimum	Mean.	$\begin{aligned} & \text { Per } \\ & \text { supare } \\ & \text { nite. } \end{aligned}$	Depth in inches on Drainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$
April.	91-9	29.4	60.1	$1 \cdot 50$	1.67	3.5500
May	85.4	$55 \cdot 3$	$67 \cdot 3$	1.68	1.94	4.143
June.	$55 \cdot 3$	34.5	48.3	1. 16	1.29	
July	$34 \cdot 5$	21.2	28.7	(1).72	(1).83	1,761
August	21.2	13.4	17.1	0.43	0.511	1,050
Heptember	$310 \cdot 0$	12.7	$22-8$	0. 57	$0 \cdot 64$	1,363
October.	211.0	21.2	24.3	().61	$0 \cdot 711$	1, 4, 2)
November...	$31) \cdot 4$	$30 \cdot 0$	32.2	(). 81	$0 \cdot 01$	1 1020
Deremher.	3 3. 6	117... . .	$20 \cdot 4$	$0 \cdot 68$	$0 \cdot 76$	1,620

Pend D’Oreille River near Waneta (3017).

Location.-The gauging section is located 9 miles above the mouth at Waneta, near Mr. A. G. Lang's ranch.

Records Available.-May, 1913, to December, 1914.
Climatic Conditions.-The precipitation is light over practically the whole Pend d'Oreille drainage. At the mouth (Waneta), from December 1, 1913, to November 30, 1914, the precipitation was $27 \cdot 2$ inches. The summers are hot and fairly dry. The winters are mild, the temperature seldom going below zero. The river in Canada seldom freezes over, and frazil ice is not often a serious factor.

Gauge.-Staff gauges are used and read two or three times a week, except during high water, when they are read daily, by Mr. A. C. Lang.

Channel.-The Pend d'Oreille, during its course through Canada, is very torrentuous, and there is no favourable metering section. The section chosen is very fast in high water, satisfactory at low water stages, and appears to have a permanent control.

Discharge Measurements.-Five measurements were made in 1914, and twelve in 1912 and 1913.

Accuracy.-The gauge readings are somewhat infrequent; the stream is flashy during May and June. The measurements, except at low water, are only surface measurements. The results in May and June cannot be guaranteed closer than 15 per cent and, during the other months, 10 per cent.

Discharge Measurements of Pend D'Oreille River near Waneta B.C., for 1914.

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
June 11...	C. E. R., W. J. B	1048	440	12,400	$10 \cdot 37$	26.8	128,300
Nov. 6.	C. E. R., C. N. W	1048	260	3,350	$3 \cdot 32$	$3 \cdot 2$	11,260
(1914.							
April ${ }^{\text {June }}$ 3...	J. A. R., G. K. B...	11909	284 380	4,380 9,260	$4 \cdot 66$ $3 \cdot 52$	$6 \cdot 05$ 18.95	20,200
July $18 .$.	J. A. R., D. O'B. G	1909	310	6,350	$6 \cdot 08$	$10 \cdot 6$	38,600
Nov 12...	J. A. R.. G. K. B..	1909	285	4.860	$4 \cdot 63$	$5 \cdot 6$	22,500

[^82]SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Pend D'Oreille River near Waneta, for 1914.

Daily Gauge Height and Discharge of Pend D'Oreille River near Waneta, for 1914.-Concluded.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height	Discharge.	Gauge Height	Discharge.	Gauge Height	Discharge	Geuge Heigh*	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge.
	Feet.	Sec.-ft.	Feet.	sec.-rt.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1.		54,700	$7 \cdot 5$	25,600		12,800		11,300		16,000	6.0	20,600
2		54,000		24,000	$3 \cdot 1$	12, 600		11,430	$4 \cdot 8$	17,000		20,500
3.		53,300		24,490		12,300	$2 \cdot 6$	11,500		17,300		20,400
4	$14 \cdot 1$	52,600	$7 \cdot 0$	23,800		12,100	$2 \cdot 6$	11, 500		17,600	$5 \cdot 9$	20,300
5		51,000		23,300	2.8	11,900		11,500		18,000		20,000
6		49,500		22,800		11,800		11,500		18,400		19,700
7	$13 \cdot 1$	48,000		22,300		11,800	$2 \cdot 6$	11,500	$5 \cdot 4$	18,800	$5 \cdot 6$	19,400
8		47,000	$6 \cdot 4$	21,800	$2 \cdot 7$	11,700		11,500		18,900		19,200
9		46,000		21,100		11,500		11,600		19,000		19,000
10.		45,000		20,400		11,300	$2 \cdot 7$	11,700	$5 \cdot 5$	19,100	$5 \cdot 4$	18,800
11.	$12 \cdot 2$	44,000	$5 \cdot 7$	19,700		11, 100		11,800		19,200		17,900
12		43,000		19,100	$2 \cdot 3$	10,900		11,900		19,300		17,000
13.		42,100		18,600		10,900	$2 \cdot 9$	12, 100		19,500	$4 \cdot 5$	16,100
14	11.6	41,200		18, 100		11,000		12,100	$5 \cdot 7$	19,700		15,500
15		40,200	$5 \cdot 0$	17,600	$2 \cdot 4$	11, 100		12,200		20,000		14,900
16.		39,200		17,100		11,300		12,300		20,300		14,400
17.		38,200		16,600		11,500	$3 \cdot 0$	12,300		20,600	$3 \cdot 7$	13,900
18	$10 \cdot 6$	37, 200	$4 \cdot 5$	16,100		11,700		12,600	$6 \cdot 1$	20,900		13,700
19.		36,100		15,800	$2 \cdot 8$	11,900		13,000		21,100		13,500
20.		35,000		15,500		11,900	$3 \cdot 5$	13,400		21,300		13,300
21.	9.8	34,000		15,200		11,800		13,500	$6 \cdot 3$	21,500	$3 \cdot 4$	13,200
22		33,200	$4 \cdot 1$	15,000	$2 \cdot 7$	11,700		13,700		21,400		13, 100
23.		32,400		14,700		11,700	$3 \cdot 7$	13,900		21,300		13,000
24		31, 600		14,400		11, 600		14,100	$6 \cdot 2$	21,200		12,900
25.	$9 \cdot 0$	30,800		14,100		11,500		14,300		21,100	$5 \cdot 2$	12,800
26		29,900	$3 \cdot 7$	13,900	$2 \cdot 6$	11,500		14,500		21,000		12, 800
27		29,000		13, 600		11,500	$3 \cdot 9$	14,500	$6 \cdot 1$	20,900		12,700
28.	$8 \cdot 3$	28,100	$3 \cdot 5$	13,400		11,400		14,600		20,800		12,600
29.		27,400		13,300		11,300		14,700		20,700	$3 \cdot 1$	12, 600
30.		26,800	$3 \cdot 4$	13,200	$2 \cdot 5$	11,300		14,800		20,600		12,600
31		26,200		13,000			$4 \cdot 1$	15,000				12,600

Monthly Discharge of Pend D'Oreille River near Waneta, for 1914.
(Drainage area, 26,600 square miles.)

Month.	Discharge in Second-Feet.				Run-Off.	
	Maximum.	Minimum.	Mean.	Per Square Mile.	Depth in inches on Drainage Area.	Total in Acre-leet.
January	13,000	10,600	12,400	0.47	$0 \cdot 54$	762,000
February	11,900	9,800	11,000	0.41	0.43	611,000
March	18,800	12,100	15,100	$0 \cdot 57$	$0 \cdot 66$	928,000
April.	42,500	17,900	28,500	$1 \cdot 07$	1.19	1,700,000
May.	75,500	44,000	59,700	$2 \cdot 25$	$2 \cdot 59$	3,670,000
June	77,800	55,500	70,700	$2 \cdot 66$	$2 \cdot 97$	4, 210,000
July.	54,700	26,200	39,600	1.49	1.72	2,430,000
August....	25,600	13,000	18,000	$0 \cdot 68$	$0 \cdot 78$	1,110,000
September	12,800	10,900	11,600	0.44	0.49	690,000
October...	15,000	11,300	12,800	$0 \cdot 48$	$0 \cdot 55$	787,000
November.	21,500	16,000	19,800	0.74	0.83	1,180,000
December.	20,600	12,600	15,800	$0 \cdot 59$	0.68	972,000

SESSIONAL PAPER No. 25e

Sawmill Creek near New Denver (3025).
Location.-Station is at bridge at mouth. Nelson district.
Records Available.-April to December, 1914.
Climatic Conditions.-The summers are hot and fairly dry, though sometimes the precipitation is heavy. The winters are quite mild, the thermometer seldom going below zero. (Slightly colder than Nelson.) The creek freezes over for a week or so at a time during a cold spell.

Gauge.-Vertical staff enamel gauge, read daily from April to December, 1914, by Mr. G. R. Nicol, of the Steelite Powder Company, Ltd.

Channel.-Very rocky. Not liable to shift.
Discharge Measurements.-Six measurements were made in 1914.
Accuracy.-The 1914 results should be within 15 per cent.
General.-Saw-mill creek rises on the slopes of the Valhalla and Ruby Mountains, and flows eastward, emptying into Slocan lake at a point directly opposite New Denver. It drains a well-timbered area of about 21 square miles. It has been utilized for power for a saw-mill at its mouth, and may in future be used to generate power for the Steelite Powder Company's plant, situated at the mouth.

Discharge Measurements of Saw-mill Creek near Slocan Lake opposite New Denver, for 1914.

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity:	Gauge Height.	Discharge.
1914			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec. -ft .
April 16	C. E. W., D. O'B. G.	1,048	23.5	29.9	$2 \cdot 24$	0.93	67.0
May 13...	J. A. E., G. K. B	1,672	24.0	$37 \cdot 6$	$3 \cdot 68$	1.40	$135 \cdot 0$
June 16....	C. K.B ${ }^{\text {B }}$	1,927	24.0	$55 \cdot 8$	$5 \cdot 72$	2.05	319.0
July 8 ...	J. A. E., D. O'B. G	1,929	24.0	43.5	4.45	1.45	195.0
		1,929 1,909	24.0 24.0	$27 \cdot 4$ $18 \cdot 6$	1.67	0.6	45.9
Nov. 4	J. A. E., G. K. B	1.909	$24 \cdot 0$	$18 \cdot 6$	1.9	$0 \cdot 3$	$35 \cdot 4$

Daily Gauge Height and Discharge Saw-mill Creek, near New Denver, B.C., for 1914.

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge Saw-mill Creek, near New Denver, B.C., for 1914.

Day.	July.		August.		September.		October.		November.		December.	
	$\begin{aligned} & \text { Gauge } \\ & \text { Height. } \end{aligned}$	$\begin{aligned} & \text { Dis- } \\ & \text { charge. } \end{aligned}$	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge. } \end{aligned}$	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { eharge. } \end{gathered}$	Gauge Height	Discharge	Gauge Height.	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft
1.	1.7	229	0.92	73.6	0.34	25.4	$0 \cdot 60$	43.0	0.41	29.7	$0 \cdot 2$	17.0
3	1.77	248 279	0.87 0.86	68.0 67.0	$0 \cdot 32$ 0.33	24.2 24.8	0.57 0.54	40.9 38.8	0.42	$3 \mathrm{3C}. \cdot 4$	0.17	15.5
4.	1.88	26.5	0.86 0.89	67.0 70.0	${ }_{0}^{0.35}$	$24 \cdot 8$ 26.0	0.54 0.5	38.8 36.0	C.40 0.37	29.0 27.2	0.2 0.17	17.0 15.5
3.	1.78	251	0.78	59.0	$0 \cdot 32$	$24 \cdot 2$	$0 \cdot 45$	32.5	${ }_{0} \cdot 41$	29.7	${ }_{0.17}$	$15 \cdot 5$
6.	1.72	234	0.79	60.0	$0 \cdot 32$	$24 \cdot 2$	$0 \cdot 4$	$29 \cdot 0$	$0 \cdot 40$	29.0	$0 \cdot 16$	$15 \cdot 0$
7	1.62	207	0.83	$64 \cdot 0$	$0 \cdot 30$	$23 \cdot 0$	$0 \cdot 4$	$29 \cdot 0$	0.37	27.2	$0 \cdot 15$	14.5
8.	1.52	182	0.74	35.0	$0 \cdot 33$	24.8	$0 \cdot 4$	29.0	$0 \cdot 37$	27.2	$0 \cdot 10$	12.0
,	$1 \cdot 48$	172	$0 \cdot 62$	44.6	0.31	23.6	$0 \cdot 37$	27.2	$0 \cdot 35$	26.0	$0 \cdot 15$	14.5
10.	1-42	158	0.59	$42 \cdot 3$	$0 \cdot 35$	26.0	$0 \cdot 37$	27.2	$0 \cdot 35$	26.0	Frozen	13.0
11.	1.43	160	0.58	41.6	$0 \cdot 45$	32.5	$0 \cdot 35$	26.0	0.33	24.8		12.0
12	1.47	170	0.61	43.8	$0 \cdot 38$	27.8	$0 \cdot 33$	24.8	$0 \cdot 35$	26.0		11.0
13.	1.5	177	$0 \cdot 62$	44.6	$0 \cdot 33$	24.8	$0 \cdot 33$	24.8	$0 \cdot 35$	26.0		10.0
14.	$1 \cdot 49$	175	0.58	41.6	$0 \cdot 30$	23.0	$0 \cdot 3$	23.0	$0 \cdot 3$	23.0		10.0
15.	1.51	180	$0 \cdot 6$	43 -0	$0 \cdot 36$	26.6	$0 \cdot 3$	23.0	$0 \cdot 3$	23.0		10.0
16.	$1 \cdot 25$	125	0.58	41.6	0.30	23.0	6. 3	23.0	0.25	20.0		10.0
17.	$1 \cdot 22$	118	0. 62	44.6	$0 \cdot 34$	25.4	0-48	$34 \cdot 6$	0.27	21.2		10.0
18.	$1 \cdot 2$	114	$0 \cdot 58$	41.6	0.71	52.0	c. 5	36.0	$0 \cdot 27$	21.2		10.0
19.	$1 \cdot 17$	110	$0 \cdot 57$	40.9	0.83	$64 \cdot 0$	0.51	36.7	0.24	19.4		10.0
20.	1.20	114	0.55	39.5	$0 \cdot 62$	$44 \cdot 6$	$0 \cdot 5$	36.0	$0 \cdot 25$	$20 \cdot 0$		10.0
21.	1.12	102	0.57	49.0	0.56	40.2	0.45	32.5	0.23	18.8		10.0
22.	1.02	87	$0 \cdot 56$	40.2	$0 \cdot 54$	38.8	$0 \cdot 42$	30.4	0.2	19.0		$10 \cdot 0$
23.	1.02	87	$0 \cdot 53$	38.1	0.59	$42 \cdot 3$	0.38	27.8	$0 \cdot 2$	19.0		10.0
24.	1.02	87	$0 \cdot 48$	34.6	$0 \cdot 62$	$44 \cdot 6$	$0 \cdot 37$	27.2	0.2	19.0		10.0
25.	1.02	87	0.43	$31 \cdot 1$	0.64	46.2	$0 \cdot 35$	$25 \cdot 0$	0.2	19.0		10.0
26.	0.95	77.5	$0 \cdot 43$	31.1	0.80	61.0	$0-34$	$25 \cdot 4$		18.8		
${ }_{20}^{27}$	0.9	71	$0 \cdot 43$	31.1	0.91	$72 \cdot 3$	0.33	24.8	$0 \cdot 2$	19.0		$10 \cdot 0$
28.	0.87		c. 44	31.8	0.76	57.0	$0 \cdot 30$	23.0	$0 \cdot 23$	18.8		10.0
29.	0.92	73.6	$0 \cdot 44$	31.8	$0 \cdot 68$	49.4	0.30	23.0	0.23	18.8		10-0
30.	0.85	66	$0 \cdot 43$	31.1	0. 62	44.6	$0 \cdot 36$	26.6	$0 \cdot 20$	17.0		10.0
31.	0.9	71	0.39	28.4			$0 \cdot 37$	27.2				10.0

Monthly Discharge of Saw-mill Creek, near New Denver, for 1914.
(Drainage area, 21 square miles.)

Month.	Discharge in Second-Feet.				Ren-Orf.		Accuracy.
	Maximum.	Minimum	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	Total is acre-feet.	
May.	256	99	168	$8 \cdot 0$	9.22		$1)$
June............-	482	118	226	10.8	12.0	13, 410	$1)$
Julyry hiv	279	66	147	6.96	8.02	9,140 3,770	1)
	73.6	28.4	45	2.14	2.47	2.770	!
September.	72.3	23.0	$36 \cdot 2$	1.72	1.92	2,150	$!$
October	43.0	23.0	29.5	1.40	1.61	1, 1.10	i
November.	$30 \cdot 4$ 17	$17 \cdot 0$	22.8 11.7	1.108	1.20	1.360	©
Docember.	$17 \cdot 0$	cremilis	$11 \cdot 7$	0.56	0.65	719	

Slocan River near Chescent Valley (3017).
Location.-In Slocan Junction precinet, Nelson Water district, about 1 mile from the mouth on the highway bridge near C'reseent Valley.

Records Available.-1913 and 1914.

6 GEORGE V, A. 1916
Climatic Conditions.-Similar to Nelson. (See Kootenay river, near Nelson.)
Gauge.-Vertical staff gauge fastened to the bridge cribbing and read daily by Mr. Paul Peterson of Crescent Valley.

Channel.-Straight above and below the section and inclined to shift. One side of the channel is generally filled with logs during the summer. The control is not satisfactory.

Discharge Measurements.-Seven measurements were made in 1913 and five in 1914.

Accuracy.-The results during medium and low stages should be within 10 per cent or 15 per cent, but the high water results cannot be guaranteed.

General.-By subtracting the discharge of Slocan river from the discharge of Kootenay river near Glade, the discharge of Kootenay river at Bonnington pool and Bonnington falls is obtained. By subtracting 1 per cent of the discharges at Bonnington pool or Bonnington falls the discharge of Kootenay river near Nelson is obtained.

Discharge Measurements of Slocan River, near Crescent Valley, for 1914.

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity	Gauge Height.	Discharge.
1913.			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
Nov.	C. E. W., C. E. R	1048	237	652	$2 \cdot 47$	$4 \cdot 4$	1,600
Mar.	C. E. R., A. J. V	1672	210	470	1.91	$3 \cdot 45$	897
May. 30.	J. A. E.	1909	219	1,470	5-43	$8 \cdot 10$	7,980
Aug. 13.	C. E. R., G. K. B	1928	224	845	$3 \cdot 01$	$5 \cdot 1$ $4 \cdot 8$	2,540
Nov. 10.	J. A. E... ${ }^{\text {G B }}$	1969	132	579 468	$4 \cdot 11$	4.82 3.95	2,380
Dec.	J. A. E., G. K. B	1929	128	468	$2 \cdot 62$	$3 \cdot 95$	1,230

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Slocan River near Crescent Valley, for 1914.

Day.	January.		February.		March.		April.		May.		June.	
	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Dis. charge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec. ft .	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1.	$3 \cdot 4$	850	3.8	1,100	$3 \cdot 6$	970	4.1	1,340	6.4	3,980	$9 \cdot 05$	7. 290
2.	$3 \cdot 5$	900	$3 \cdot 8$	1,100	$3 \cdot 6$	970	$4 \cdot 1$	1,340	$7 \cdot 2$	4,950	$9 \cdot 40$	7,770
3.	3.5	960	$4 \cdot 0$	1,240	$3 \cdot 6$	970	$4 \cdot 1$	1,340	$7 \cdot 7$	5,570	11.40	10,800
4.	$3 \cdot 6$	970	$3 \cdot 9$	1,170	$3 \cdot 5$	900	$4 \cdot 1$	1,340	$7 \cdot 6$	5,450	11.85	11,700
5.	$3 \cdot 7$	1,040	3.8	1,100	$3 \cdot 5$	900	$4 \cdot 2$	1,440	$7 \cdot 3$	5,070	$11 \cdot 00$	10,100
6	$4 \cdot 0$	1,240	3.9	1,170	$3 \cdot 5$	900	$4 \cdot 3$	1,550	7.05	4,760	$10 \cdot 20$	8,900
7	$4 \cdot 8$	2,090	$3 \cdot 9$	1,170	$3 \cdot 5$	900	$5 \cdot 1$	2,440	$7 \cdot 0$	4.700	$10 \cdot 00$	8,600
8.	$4 \cdot 7$	1,980	$3 \cdot 9$	1,170	$3 \cdot 2$	750	$5 \cdot 2$	2,550	$7 \cdot 2$	4.950	9.7	8,190
9.	$4 \cdot 5$	1,750	$3 \cdot 9$	1,170	$3 \cdot 2$	750	$5 \cdot 2$	2, 550	$7 \cdot 6$	5,450	$9 \cdot 25$	7,570
10.	$4 \cdot 4$	1,650	$3 \cdot 9$	1,170	$3 \cdot 2$	750	$5 \cdot 3$	2,670	$8 \cdot 1$	6,080	$9 \cdot 40$	7,770
11.	$4 \cdot 3$	1,550	$3 \cdot 8$	1,100	$3 \cdot 2$	750	$5 \cdot 3$	2,570	$7 \cdot 75$	5,630	$9 \cdot 15$	-7,430
12.	$4 \cdot 2$	1,440	$3 \cdot 7$	1,040	$3 \cdot 3$	800	$5 \cdot 4$	2,780	$7 \cdot 8$	5.670	$9 \cdot 10$	7. 500
13.	$4 \cdot 1$	1,340	$3 \cdot 6$	970	$3 \cdot 3$	800	$6 \cdot 0$	3,500	$8 \cdot 1$	6,080	9.25	7,570
14.	$4 \cdot 1$	1,340	$3 \cdot 6$	970	$3 \cdot 3$	800	$6 \cdot 2$	3,740	$8 \cdot 3$	6,330	$9 \cdot 65$	8.120
15.	$4 \cdot 1$	1,340	$3 \cdot 6$	970	$3 \cdot 3$	800	6.70	4,340	$8 \cdot 65$	6,770	$10 \cdot 00$	8.600
16.	$4 \cdot 0$	1,240	$3 \cdot 6$	970	$3 \cdot 4$	850	$7 \cdot 2$	4,950	$9 \cdot 3$	7.630	$10 \cdot 35$	9.110
17.	$4 \cdot 0$	1,240	$3 \cdot 7$	1,040	$3 \cdot 4$	850	$7 \cdot 05$	4,760	$9 \cdot 3$	7.630	$10 \cdot 7$	9,640
18.	$4 \cdot 0$	1,240	$3 \cdot 6$	970	$4 \cdot 0$	1,240	6.70	4,340	$9 \cdot 1$	7.360	$10 \cdot 55$	9,410
19.	$4 \cdot 0$	1,240	$3 \cdot 6$	970	$4 \cdot 0$	1,240	$7 \cdot 1$	4,820	$9 \cdot 1$	7,360	$10 \cdot 5$	9,340
20.	$4 \cdot 0$	1,240	$3 \cdot 6$	970	$4 \cdot 0$	1,240	$7 \cdot 2$	4,950	$9 \cdot 0$	7,220	$10 \cdot 0$	\$,600
21.	$4 \cdot 0$	1,240	$3 \cdot 6$	970	$4 \cdot 0$	1,240	$7 \cdot 0$	4,700	$9 \cdot 0$	7,220	$9 \cdot 7$	8, 190
22.	$4 \cdot 0$	1,240	$3 \cdot 6$	970	$4 \cdot 0$	1,240	$6 \cdot 4$	3,980	$9 \cdot 1$	7.360	$9 \cdot 25$	7. 560
23.	$3 \cdot 9$	1,170	$3 \cdot 7$	1,040	$4 \cdot 0$	1,240	$6 \cdot 3$	3,860	$9 \cdot 1$	7.360	$9 \cdot 0$	7.220
24.	$3 \cdot 7$	1,040	$3 \cdot 6$	970	$4 \cdot 1$	1,340	$6 \cdot 3$	3,860	$9 \cdot 2$	7.510	$8 \cdot 7$	6.840
25.	$3 \cdot 8$	1,100	$3 \cdot 6$	970	$4 \cdot 1$	1,340	$6 \cdot 3$	3,860	$9 \cdot 65$	8.120	$8 \cdot 35$	6,390
26.	3.9	1,170	$3 \cdot 6$	970	$4 \cdot 0$	1,240	$6 \cdot 3$	3,560	$9 \cdot 2$	7. 500	5.75	6.900
27.	$3 \cdot 9$	1,170	$3 \cdot 6$	970	$4 \cdot 0$	1,240	$6 \cdot 3$	3,360	$9 \cdot 1$	7.360	8.75	6,900
28.	$3 \cdot 8$	1,170	$3 \cdot 6$	970	$4 \cdot 0$	1,240	$6 \cdot 2$	3,760	8.75	6,900	$8 \cdot 75$	6.900
29.	$3 \cdot 6$	970			$4 \cdot 1$	1,340	$6 \cdot 1$	3,620	$8 \cdot 2$	6,200	8.8	6. 960
30.	$3 \cdot 7$	1,040			$4 \cdot 1$	1,340	$6 \cdot 2$	3,740	$8 \cdot 2$	6,200	$9 \cdot 1$	7,360
31.	3.8	1,100			$4 \cdot 1$	1,340			8. 6	6,710		

Daily Gauge Height and Discharge of Slocan River near Crescent Valley, for 1914.-Concluded.

Day.	July.		August.		September.		October.		November.		December.	
	GaugeHeight.	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Fischarge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.
	Feet.	Sec.-ft.										
,	$9 \cdot 15$	7,420	$5 \cdot 4$	2,780	$4 \cdot 1$	1,340	$4 \cdot 4$	1,650	$5 \cdot 0$	2,320	$4 \cdot 2$	1,440
2.	$9 \cdot 20$	7,500	$5 \cdot 4$	2,780	$4 \cdot 1$	1,340	$4 \cdot 4$	1,650	$5 \cdot 2$	2,550	$4 \cdot 2$	1,440
3	$9 \cdot 55$	7,980	$5 \cdot 4$	2,780	$4 \cdot 0$	1,240	$4 \cdot 4$	1,650	$5 \cdot 1$	2,440	$4 \cdot 2$	1,440
4	9.65	8,120	$5 \cdot 3$	2,670	$4 \cdot 0$	1,240	$4 \cdot 4$	1,650	$5 \cdot 1$	2,440	$4 \cdot 1$	1,340
5	$9 \cdot 65$	8,120	$5 \cdot 3$	2,670	$4 \cdot 0$	1,240	$4 \cdot 3$	1,550	$5 \cdot 1$	2,440	$4 \cdot 1$	1,340
6.	$9 \cdot 65$	8,120	$5 \cdot 3$	2,670	$4 \cdot 0$	1,240	$4 \cdot 3$	1,550	$5 \cdot 1$	2,440	$4 \cdot 1$	1,340
7.	$9 \cdot 65$	8,120	$5 \cdot 2$	2,550	$4 \cdot 0$	1,240	$4 \cdot 3$	1,550	$5 \cdot 1$	2,440	$4 \cdot 0$	1,240
8.	9.6	8,050	$5 \cdot 4$	2,780	$4 \cdot 0$	1,240	$4 \cdot 2$	1,440	$5 \cdot 0$	2,320	$4 \cdot 0$	1,240
9	$9 \cdot 3$	7,630	$5 \cdot 3$	2,670	$4 \cdot 0$	1,240	$4 \cdot 2$	1,440	$5 \cdot 0$	2,320	$4 \cdot 0$	1,240
10.	$9 \cdot 3$	7,630	$5 \cdot 3$	2,670	$4 \cdot 0$	1,240	$4 \cdot 2$	1,440	$5 \cdot 0$	2,320	$4 \cdot 0$	1,240
11.	$9 \cdot 3$	7,630	$5 \cdot 2$	2,550	$4 \cdot 0$	1,240	$4 \cdot 2$	1,440	$4 \cdot 4$	1,650	$4 \cdot 0$	1,240
12	$9 \cdot 3$	7,630	$5 \cdot 2$	2,550	$4 \cdot 0$	1,240	$4 \cdot 2$	1,440	$4 \cdot 4$	1,650	$4 \cdot 0$	1,240
13	$9 \cdot 3$	7,630	$5 \cdot 2$	2,550	$4 \cdot 0$	1,240	$4 \cdot 2$	1,440	$5 \cdot 0$	2,320	$3 \cdot 4$	850
14.	$9 \cdot 2$	7,500	$5 \cdot 1$	2,440	$4 \cdot 0$	1,240	$4 \cdot 2$	1,440	$4 \cdot 4$	1,650	$3 \cdot 4$	850
15.	$9 \cdot 2$	7,500	$5 \cdot 0$	2,320	$4 \cdot 0$	1,240	$4 \cdot 2$	1,440	$4 \cdot 4$	1,650	$3 \cdot 3$	800
16	$8 \cdot 7$	6, 840	$4 \cdot 4$	1,650	$4 \cdot 0$	1,240	$4 \cdot 2$	1,440	$4 \cdot 4$	1,650	$3 \cdot 3$	800
17.	8.25	6, 260	$4 \cdot 4$	1,650	$4 \cdot 0$	1,240	$4 \cdot 2$	1,440	$4 \cdot 3$	1,550	$3 \cdot 3$	800
18	$8 \cdot 15$	6,140	$4 \cdot 4$	1,650	$4 \cdot 1$	1,340	$4 \cdot 3$	1,550	$4 \cdot 3$	1,550	$3 \cdot 2$	750
19	8.05	6,010	$4 \cdot 4$	1,650	$4 \cdot 25$	1,490	$4 \cdot 4$	1,650	$4 \cdot 3$	1,550	$3 \cdot 2$	750
20.	$7 \cdot 35$	5,130	$4 \cdot 3$	1,550	$4 \cdot 3$	1,550	$5 \cdot 0$	2,320	$4 \cdot 3$	1,550	$3 \cdot 2$	750
21.	$7 \cdot 15$	4,880	$4 \cdot 3$	1,550	$4 \cdot 3$	1,550	$5 \cdot 0$	2,320	$4 \cdot 3$	1,550	$3 \cdot 2$	750
22.	$7 \cdot 05$	4,700	$4 \cdot 3$	1,550	$4 \cdot 3$	1,550	$4 \cdot 4$	1,650	$4 \cdot 2$	1,440	$3 \cdot 2$	750
23.	6.7	4,349	$4 \cdot 3$	1,550	$4 \cdot 3$	1,550	$4 \cdot 4$	1,650	$4 \cdot 2$	1,440	$3 \cdot 2$	750
24.	6.7	4,340	$4 \cdot 2$	1,440	$4 \cdot 3$	1,550	$4 \cdot 3$	1,550	$4 \cdot 2$	1,440	$3 \cdot 2$	750
25.	$6 \cdot 3$	3,860	$4 \cdot 2$	1,440	$4 \cdot 3$	1,550	$4 \cdot 3$	1,550	$4 \cdot 2$	1,440	$3 \cdot 2$	750
26.	$6 \cdot 2$	3,740	$4 \cdot 2$	1,440	$4 \cdot 3$	1,550	$4 \cdot 3$	1,550	$4 \cdot 2$	1,440	$3 \cdot 3$	800
27.	$6 \cdot 1$	3,620	$4 \cdot 2$	1,440	$4 \cdot 4$	1,650	$4 \cdot 3$	1,550	$4 \cdot 2$	1,440	3-3	800
28	$6 \cdot 0$	3,500	$4 \cdot 2$	1,440	$4 \cdot 4$	1,650	$4 \cdot 3$	1,550	$4 \cdot 2$	1,440	$3 \cdot 3$	800
29.	$6 \cdot 05$	3,500	$4 \cdot 2$	1,440	$4 \cdot 4$	1,650	$4 \cdot 3$	1,550	$4 \cdot 2$	1,440	$3 \cdot 3$	800
30.	$6 \cdot 1$	3,620	$4 \cdot 1$	1,340	$4 \cdot 4$	1,650	$4 \cdot 4$	1,650	$4 \cdot 2$	1,440	$3 \cdot 3$	800
31.	$5 \cdot 75$	3,500	4.1	1,340			$4 \cdot 4$	1,650			$3 \cdot 3$	800

Monthly Discharge of Slocan River near Crescent Valley, for 1914.
(Drainage area, 1,300 square miles.)

Month.	Discharge in Second-Feet.				Run-Off.		Accuracy.
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	Total in acre-feet.	
January	2,090	850	1,260	0.97	1.12	77,500	C
February.	1,240	970	1,050	$0 \cdot 81$	0.84	58,300	C
March...	1,340	750	1,040	$0 \cdot 80$	0.92	64,000	C
April.,	4,950	1,340	3,280	$2 \cdot 52$	$2 \cdot 81$	195,000	D
May...	8,120	3,980	6,360	$4 \cdot 89$	5.64	391,000
June..	11,700	3,390	8,170	6.29	7.02	486,000	
July....	8,120	3,500	6,150	$4 \cdot 73$	5.45	378,000	
August.	2,780	1,340	2,050	1.58	1.82	126,000	
September.	1,650	1,240	1,390	1.07	1-19	82,700	B
October....	2,320	1,440	1,549	$1 \cdot 22$	1.41	97,800	B
November	2,550	1,440	1,840	1.42	1.58	109,000	B
December..	1,440	750	989	$0 \cdot 76$	$0 \cdot 88$	60,800	C

Akolkolex River near Wigwam (3000).
Location.-Section 35, township 21, range 1, west 6th, about 1 mile from Wigwam, where the wagon road crosses the river just above the falls. Revelstoke District.

Records Available.-From May 1, 1913, to December 31, 1914.
Climatic Conditions.-Summers hot and moderately dry. Heary snomfall during winters. Thermometer rarely goes below zero. Stream at section seldom freezes except for a day or two. Anchor ice seldom forms for more than one or two days at a time.

Gauge.-Chain gauge is used, referred to three bench-marks. From May to October inclusive, gauge readings are taken three times a week; during the rest of the year once a week, by J. A. Lewis, Wigwam.

Channel.-Straight for one hundred yards above and below section. Water is swift, and flows through a rock box canyon, for 150 yards above and below the section. The control is rock and appears very permanent.

Discharge Measurements.-Measurements are made from the upstream side of the wagon bridge. It is difficult to obtain accurate soundings in high water. In 1913 ten well-distributed measurements were made, and in 1914 seven measurements were made.

Accuracy.-Apparently accurate measurements were made, but due to the infrequency of readings, the mean monthly discharge cannot be guaranteed to within 10 per cent or 15 per cent. December gauge readings were at times affected by ice. Discharges below height $2 \cdot 0$ cannot be guaranteed.

Discharge Measurements of Akolkolex River near Wigwam, B.C.., 1914.

Date.	Hydrographer.	Meter	Width.	Area of section.	Mean Velocity.	Gauge Height.	Discharge.
			Feet.	Sq. ft .	Ft. per see	Feet.	Sec.-ft
Mar 18	C. E. Webb..	1.048	30	121	1.48	1.35	179
May 19	1. A. Elliott..	1.672	36	275	4.95	5.30	1,3641)
June 26..	. ${ }^{\text {a }}$	1. 9199	37	312	$5 \cdot 34$	6. 10	1,670
July 24	"	1,909	35	239	3.85	4.30	929
Aug. 10	1 F \& CHER	1.909	37	191	2. N 2	$3 \cdot 10$	337
Fept. 6	1. A. F. \& C. E. R	1,927	40	171	2.18	2. 411	373
Oct. 10..	- ${ }^{\text {- }}$	1,909	37		$2 \cdot 15$	$2 \cdot 20$	329

6 GEORGE V, A. 1916
Daily Galge Height and Discharge of Akolkolex River near Wigwam, B.C., for 1914.

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Akolkolex River near Wigwam, B.C., for 1914.-Concluded.

Day.	July.		August		September		October.		November.		December.	
	Gauge Height	Discharge	Gauge Height.	Discharge.	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height.	Discharge
	Feet.	See.-ft	Feet.	Se.c-ft.	Feet.	Sec.-ft.	Feet.	Sec. -ft .	Feet.	See.-ft.	Feet.	Sec.-ft.
1.	$7 \cdot 0$	2,270	$5 \cdot 03$	1,265	2.35	360	2.9	485	$3 \cdot 1$	540	$2 \cdot 0$	290
2.	$7 \cdot 45$	2,520	$5 \cdot 01$	1.255	$2 \cdot 4$	370	$2 \cdot 85$	472	$3 \cdot 1$	540	1.95	282
3.	7.9	2,780	$5 \cdot 0$	1,250	2.75	447	$2 \cdot 8$	460	$3 \cdot 0$	512	1.9	274
4	7.85	2,750	$4 \cdot 75$	1.150	$3 \cdot 1$	540	$2 \cdot 68$	430	$3 \cdot 0$	512	1.85	266
5.	$7 \cdot 8$	2,720	$4 \cdot 5$	1,040	$2 \cdot 75$	447	$2 \cdot 56$	403	2.9	485	$1 \cdot 8$	25 S
6.	7.5	2.550	$3 \cdot 6$	700	2.4	370	2. 45	380	$2 \cdot 8$	460	1.75	250
7.	$7 \cdot 2$	2,380	$3 \cdot 5$	665	2.59	410	2.39	368	$2 \cdot 6$	412	$1 \cdot 6$	226
8	$6 \cdot 89$	2,204	$3 \cdot 4$	632	2.78	455	$2 \cdot 33$	356	$2 \cdot 6$	412	$1 \cdot 5$	210
9.	$7 \cdot 17$	2,362	$3 \cdot 3$	600	2.78	455	2.27	344	$2 \cdot 55$	401	$1 \cdot 4$	193
10.	$7 \cdot 45$	2,520	$3 \cdot 1$	540	$2 \cdot 8$	460	$2 \cdot 2$	330	$2 \cdot 55$	401	1.2	162
11.	$7 \cdot 37$	2,472	$3 \cdot 55$	682	$2 \cdot 8$	460	$2 \cdot 17$	324	$2 \cdot 5$	390	$1 \cdot 2$	162
12.	73	2,430	$4 \cdot 0$	845	$2 \cdot 6$	412	$2 \cdot 14$	318	$2 \cdot 45$	380	$1 \cdot 1$	150
13.	7.05	2,295	$4 \cdot 1$	885	$2 \cdot 4$	370	2.1	310	$2 \cdot 4$	370	1.1	150
14	6.8	2,150	$4 \cdot 2$	925	$2 \cdot 1$	310	$2 \cdot 3$	350	$2 \cdot 3$	350	$1 \cdot 2$	162
15.	$6 \cdot 56$	2,030	3.9	805	$2 \cdot 0$	290	$2 \cdot 5$	390	$2 \cdot 2$	330	$1 \cdot 3$	177
16.	6.03	1,755	$3 \cdot 6$	700	1.9	274	$2 \cdot 7$	435	$2 \cdot 1$	310		150
17.	$5 \cdot 5$	1,490	$3 \cdot 3$	600	$2 \cdot 28$	346	$2 \cdot 9$	485	$2 \cdot 0$	290		150
18.	$5 \cdot 55$	1,515	$3 \cdot 3$	600	$2 \cdot 67$	428	$2 \cdot 8$	460	$2 \cdot 0$	290		150
19.	$5 \cdot 6$	1,540	$3 \cdot 3$	600	2.58	407	$2 \cdot 7$	435	$2 \cdot 0$	290		150
20.	$5 \cdot 33$	1,405	$3 \cdot 6$	700	$2 \cdot 49$	388	$2 \cdot 6$	412	$2 \cdot 0$	290		150
21.	$5 \cdot 06$	1,280	$3 \cdot 9$	805	$2 \cdot 4$	370	$2 \cdot 51$	392	$2 \cdot 0$	290		150
22.	4.78	1,162	$3 \cdot 6$	700	2.45	380	$2 \cdot 42$	374	2.0	290		150
23.	$4 \cdot 54$	1,056	$3 \cdot 3$	600	$2 \cdot 5$	390	$2 \cdot 33$	356	2.0	290		150
24.	$4 \cdot 3$	-963	$2 \cdot 9$	485	$2 \cdot 6$	412	$2 \cdot 25$	340	1.95	282		150
25.	$4 \cdot 3$	963	$3 \cdot 0$	512	$2 \cdot 7$	435	$2 \cdot 2$	330	1.95	282		150
26.	4.2	925	$3 \cdot 1$	540	$2 \cdot 8$	460	$2 \cdot 17$	324	$2 \cdot 0$	290		150
27.	$4 \cdot 2$	925	$3 \cdot 44$	645	$2 \cdot 95$	498	$2 \cdot 14$	318	2.05	300		150
28	$4 \cdot 16$	909	$3 \cdot 78$	763	$3 \cdot 1$	540	$2 \cdot 1$	310	$2 \cdot 1$	310		150
29.	$4 \cdot 12$	893	3.29	597	$2 \cdot 8$	460	$2 \cdot 3$	350	2.05	300		150
30.	$4 \cdot 58$	1,072	2.8	460	$2 \cdot 95$	498	2.5	390	$2 \cdot 0$	290		150
31.	$5 \cdot 05$	1,275	$2 \cdot 3$	350			$2 \cdot 8$	460		x4		150

Monthly Discharge of Akolkolex River near Wigwam, B.C., for 1914.
(Drainage area, 105 square miles.)

Month.	Jincharge in Second-Fezt.				Rus-Ofy.		I ceuracy
	Maximum.	Miminum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { sciunre } \\ & \text { mile. } \end{aligned}$	Depth in inches on Đrainage nres.	$\begin{gathered} \text { Totat } \\ \text { in } \\ \text { nere-feet } \end{gathered}$	
							1)
February	177	150	161	1.53	$\text { 1. } 50$	8.9411	1)
March	210	150	178			$10,961$	$1)$
April	770	168	[151	1.5k	5.11	25.6i4)	\because
	1,890	1,0104	1, 434	$13 \cdot 6$	15.7	रi, mh	i
Junc ${ }^{\text {Jun }}$	2, 0511	1,3(4)	1,1170	is. A	210	$117 \text { inci }$	
July	2,780)	843	1.7114	17.0	15.11	$110,0(4)$	C
	1,260	3511	7311	7.14	S.12	45, 414)	1
Sieptomber	540	271	$+15$	$3 \cdot 105$	4.11	2- 760	13
Getoher	1×5	310	3 3 1	$3 \cdot 66$	+120	38, 38×1	11
November.	511	$2 \mathrm{2kJ}$	$3 \mathbf{4 3}$	$3 \cdot+11$	$3 \cdot 26$	$21, \text { eky }$	
Devernber			\|81			11.101	

Beayer River near Six-mile Creek (3001).

Location.-Township 29, range 25, west 5th, mer. 4 miles from mouth, about 150 yards from the railway station at Six-mile creek, on downstream side of the lumber company's bridge. Revelstoke district.

Records Available.-May 24 to November 1, 1913; April 1 to December 31, 1914.

Climatic Conditions.-Summers hot and fairly dry. Winters severe ($30^{\circ} \mathrm{F}$.) with heavy snowfall. Ice conditions exist generally from the end of November till the end of March. Frazil ice is to be contended with.

Gauge.-Chain gauge used is referred to three bench-marks. Mr. Wm. McCreary reads the gauge daily at 5 p.m., at which time during the summer freshet, the river is considered to be at a mean height for the day.

Channel.-Straight for 100 yards above and below the section. The river is very swift during high water, and accurate soundings can only be made at low water. During the freshet in June, July, and August, water flows through two or three small side channels. The control is not very permanent.

Discharge Measurements.-Measurements are made from the downstream side of the bridge. In 1913 ten discharge measurements were made, one of which was made under ice conditions on December 3, giving a discharge of 330 c.f.s.

Accuracy.-The gauge-height-discharge curve shows a fairly close accuracy, though the section does not appear to be good. The fact that during the summer the river varies greatly on a warm day depreciates the accuracy of the gauge reading. The 1914 data are guaranteed to be within 20 per cent only, with the exception of December, which are not guaranteed at all.

Discharge Measurements of Beaver River at Six-Mile Creek, for 1914.

	Date.	Hydrographer.	$\begin{gathered} \text { Meter } \\ \text { No. } \end{gathered}$	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
				Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.ft.
June	${ }_{10}^{22}$	J. A. E.	1.909 1.909	140 140	${ }_{489}^{390}$	6.30 5.87	3.21 3.35	2.440 2.870
tept.	8	"	1,927	140	373	5.62	2.70	2,100
Oct	24.	"	1.909	51	157	$4 \cdot 26$	1.0	670

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Beaver River near Six-mile, Creek, for 1914.

Daily Gauge Height and Discharge of Beaver River near Six-mile Creek, for 1914-Concluded.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { chare } \end{aligned}$	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge. } \end{gathered}$	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge. } \end{aligned}$	Gauge Height	Dis- charge	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge. } \end{aligned}$	Gauge Height	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.ft.	Feet.	Sec.-ft.
${ }_{2}$	$5 \cdot 1$ $5 \cdot 2$	6,710 6,980	4.5	5,140 6,710	2.90 2.80	2,290 2,160	2.0	1,370	$1 \cdot 1$	735	0.9	615
3.	$5 \cdot 5$	7,860	+19	6.160	${ }_{3} \cdot 3 \cdot 80$	${ }_{2} .1840$	1.8	1,200	1.2	785	0.9	615
4.	$5 \cdot 3$	7,280	$4 \cdot 4$	4,920	$3 \cdot 00$	2,420	1.5	${ }^{1} 985$	$1 \cdot 1$	735	0.8	${ }_{5} 50$
5.	$5 \cdot 2$	6,980	$4 \cdot 1$	4,260	$3 \cdot 10$	2,560	$1 \cdot 2$	785	1.0	670	0.8	550
6	$5 \cdot 1$	6,710	$4 \cdot 0$	4,050	3.00	2.420	$1 \cdot 3$	860	1.0	670	0.8	550
7	$4 \cdot 9$	6.160	$3 \cdot 6$	3,330	$2 \cdot 90$	2,290	$1 \cdot 2$	785	$1 \cdot 1$	735	0.8	550
8	$4 \cdot 8$	5,880	$3 \cdot 3$	2,840	2.90	2,290	$1 \cdot 25$	823	1.0	670	$0 \cdot 9$	615
9	$4 \cdot 8$	5,880	$3 \cdot 8$	3, 680	$2 \cdot 20$	1.550	$1 \cdot 3$	860	$1 \cdot 1$	735	0.9	615
10.	$5 \cdot 0$	6.430	$3 \cdot 4$	2,990	$2 \cdot 30$	1,640	$1 \cdot 2$	785	$1 \cdot 2$	785	$0 \cdot 9$	615
11.	$5 \cdot 2$	6,980	$3 \cdot 3$	2,840	$2 \cdot 70$	1,740	$1 \cdot 3$	860	$1 \cdot 1$	735	0.9	615
12.	$5 \cdot 3$	7,280	$3 \cdot 4$	2,990	$2 \cdot 20$	1,550	1.2	785	1.2	785	$0 \cdot 9$	615
13.	$5 \cdot 4$	7,560	$3 \cdot 5$	3,160	$2 \cdot 40$	1,740	$1 \cdot 1$	735	$1 \cdot 1$	735	1.0	670
14.	$5 \cdot 2$	6,980	$3 \cdot 3$	2,840	$2 \cdot 30$	1,640	$1 \cdot 2$	785	$1 \cdot 1$	735	1.1	735
15.	$4 \cdot 8$	5,880	$3 \cdot 4$	2,990	$2 \cdot 20$	1,550	$1 \cdot 2$	785	1.1	735	0.9	615
16.	3.9	3,860	3-7	3,500	2.00	1,370	1.4	920	1.0	670	0.9	615
17.	$4 \cdot 5$	5,140	$3 \cdot 7$	3,500		1,460	1.5		$1 \cdot 1$	735	$0 \cdot 9$	615
18.	5.0	6,430	$3 \cdot 9$	3,860	$2 \cdot 20$	1,550	$1 \cdot 3$	860	$1 \cdot 1$	735	0.8	550
19.	$5 \cdot 3$	7,280	3.8	3,680	$2 \cdot 20$	1,550	1.0	670	$1 \cdot 0$	670	$0 \cdot 8$	550
20.	$4 \cdot 7$	5,640	4.0	4,050	$2 \cdot 40$	1,740	$1 \cdot 1$	735	$1 \cdot 1$	735	0.8	550
21.	3.7	3,500	$3 \cdot 6$	3,330	$2 \cdot 10$	1,460	1.0	670	$1 \cdot 1$	735	$0 \cdot 8$	550
22.	$3 \cdot 5$	3,160	$3 \cdot 7$	3,500	$1 \cdot 90$	1,280	1.1	735	$1 \cdot 1$	735	0.8	550
23.	$3 \cdot 7$	3,500	3.8	3,680	$1 \cdot 70$	1,136	1.1	735	$1 \cdot 1$	735	$1 \cdot 1$	735
24.	3.8	3,680	$3 \cdot 5$	3,160	$1 \cdot 60$	1,060	1.0	670	$1 \cdot 1$	735	1.4	920
25	$3 \cdot 6$	3,330	$3 \cdot 6$	3,330	$1 \cdot 80$	1,200	1.0	670	1.0	670	$0 \cdot 9$	615
26.	$3 \cdot 7$	3,500	$3 \cdot 4$	2,990	$2 \cdot 30$	1,640	0.95	643	1.0	670	0.8	550
27.	$3 \cdot 5$	3,160	$3 \cdot 3$	${ }_{2}^{2,840}$	${ }^{2} \cdot 40$	1,740	1.0	670	1.0	670	$0 \cdot 8$	550
28	3.3	2,840 3,500	${ }_{3}^{3-2}$	${ }_{2}^{2,700}$	$2 \cdot 20$ 2.30	1,550 1,640 1,50	0.9 1.0	615 670	1.0 0.9		0.8 0.9	550 615
$\begin{aligned} & 29 . \\ & 30 . \end{aligned}$	$3 \cdot 7$ $4 \cdot 3$	3,500 4,680	3.25 3.20	2,700 2,700	$2 \cdot 30$ $2 \cdot 10$	1,610 1,460	$1 \cdot 0$ $1 \cdot 1$	670 735	0.9 0.9	615	0.9 0.8	615 550
31.	$4 \cdot 0$	4,050	$2 \cdot 80$	2,160			$1 \cdot 0$	670			0.8	550

Monthly Discharge of Beaver River near Six-mile Creek, for 1914.
Drainage area 400 square miles.

Month.	Discharge in Second-Feet.				Run-Off.	
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	$\begin{gathered} \text { Depth } \\ \text { in inches } \\ \text { on } \\ \text { Drainage } \\ \text { area. } \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$
April.	1,460		993	$2 \cdot 48$	$2 \cdot 86$	61,100
May.	3,500	1,790	2,520	6-30	7.26	155,000
June.	6,980 7,860	2,700 2,840	4,390 5,450	11.0 13.6	15.3	261,000 335000
August	7,860 6,710	2,840 2,160	5,450 3,570	13.6 8.92	$15 \cdot 7$ $10 \cdot 3$	335,000 220000
September	2,840	1,060	1,750	$4 \cdot 38$	4.89	104,000
October..	1,370	615	810	$2 \cdot 02$	$2 \cdot 33$	49,800
November.	785 920	615 500	712	1.78	1.99	42,400
December	920	550	604	1.51	1.74	37,100

Accuracy "D."

Blaeberry River near Moberly (3002).
Location.-SW. $\frac{1}{4}$ section 29, township 28, range 22, west 5 th, 11 miles north of Golden, about one mile from mouth, on downstream side of C. P. R. bridge.

Records Available.-April 15, 1912, to November 14, 1912; June 1, 1913, to November 30, 1913; April 1, 1914, to November 30, 1914.

Climatic Conditions.-Summers hot and dry, with occasional heary rains, causing large discharge. Winters severe (as low as $-50^{\circ} \mathrm{F}$), with light snowfall. Ice conditions exist generally from the middle of November to the 1st of April. Frazil ice.

Gauge.-Vertical staff gauge, used and read three times a week by Mr. R. M. Cooper, during the open season.

Channel.-Channel is straight for about 50 yards above and below the station. The water is swift and controlled by a sandbar about 100 yards downstream. This bar probably shifts. Exceedingly high water on the Columbia may affect the gauge readings.

Discharge Measurements.-Measurements are made from downstream side of the railway bridge. In 1912 eight meterings were made, one of which was made on the 21st of February under ice conditions, the discharge was 53 c.f.s. In 1913, nine meterings were made, which formed a gauge-height-discharge curve varying considerably from that of 1912 . A new curve was plotted from five measurements made in 1914, due to shift of bar.

Accuracy.-Due to the infrequency of gauge readings and the apparent non-permanency of the control the results are considered only to be within 15 per cent.

Discharge Measurements of Blaeberry River near Blaeberry, C.P.R. Bridge, 1914.

6. GEORGE V, A. 1916

Daily Gauge Height and Discharge of Blaeberry River near Golden, for 1914.

SESSIONAL PAPER No. 25e
Dally Gauge Height and Discharge of Blaeberry River near Golden for 1914-Concluded.

Monthly Discharge of Blaeberry River near Colden, for 1914.
(Drainage area 325 square miles.)

Montil.	Discharge in Aecond-Fezt.				RYN-()FF.		Securacy
	Maximum.	Minimun.	Mean.	$\begin{aligned} & \text { l'er } \\ & \text { squire } \\ & \text { nite. } \end{aligned}$	Wepth in inelies on 1) rainage arest.	$\begin{aligned} & \text { Total } \\ & \text { in } \\ & \text { were-feet. } \end{aligned}$	
March.	600	35.5	42 s	1-32	$1-47$	25, 5 (4)	1)
April.	1,310	(160)	4145	2.74	$3 \cdot 20$	55, then	(
May	3,120	1,2(6)	2,211)	\$. St	759	13\%, ther	1
Junc	$3,256)$	1,366)	2,340	$7 \cdot 20$	- 30	144, (14n)	0
July .	2,766	880	1, 520	1-188	$5 \cdot 46$	18, 50h1	(V)
Augast	1, (1080)	125	6818	1-:7	$2 \cdot(19$	$36,2 m 4$	(
	(1)51)	250	129	1-36	$15 t$	25, then	${ }^{*}$
(letober .	324	236	27 N	(1).26	(1). 110	10, 4 (1)	(

Begaboo Creek (3003).
Location.-About 3 miles southwest of Spillimacheen Landing, 40 miles south of Golden, on downstream side of highway bridge 1 mile from mouth. Revelstoke district.

Records Available.-June to October, 1912; June to November, 1913; April 1 to December 15, 1914.

Climatic Conditions.-Summers hot and dry. Winters severe as low as $40^{\circ} \mathrm{F}$. with light snowfall. The creek usually freezes over in November and does not open again till April. Frazil ice.

Gauge.-Vertical staff gauge, fastened to pier of bridge, and read daily during the open season by Mr. Jas. Montgomery.

Channel. Straight for 100 feet above and below the gauge, the water is swift during freshet, there is one channel in low water and there are two at high stages.

Discharge Measurements.-Meterings are taken from the downstream side of the bridge, four being taken in 1912, eight in 1913, and three in 1914. A new curve was plotted in 1914, using 1912, 1913, and 1914 measurements.

Accuracy.-The control is apparently permanent. Daily gauge readings are obtained, and the 1914 curve appears reliable. Above a gauge height of 1.4 the results should be within 10 per cent and below $1 \cdot 4,15$ per cent and 20 per cent.

Discharge Measurements of Bugaboo Creek near Spillimacheen Landing, for 1914.

Date.	Hydrographer.	$\begin{gathered} \text { Meter } \\ \text { No. } \end{gathered}$	Width	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
June 17 July 31	J. A. Elliott	1,909 1,909	60 60	${ }_{151}^{187}$	10.21 6.40	3.00 2.35	1,910
Oct. 23.	"	1.909	34	96	1.71	$1 \cdot 10$	164

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Bugaboo Creek near Spillimacheen, for 1914.

Day.	April.		May.		June.	
	$\begin{aligned} & \text { Gauge } \\ & \text { Height. } \end{aligned}$	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height	Dis- charge	$\begin{aligned} & \text { Gauge } \\ & \text { Height } \end{aligned}$	$\begin{gathered} \text { Dis } \\ \text { charge } \end{gathered}$
	Feet.	Sec.-ft.	Feet.	Sec.ft.	Feet.	Sec.-ft.
	0.45 0.45		${ }_{1}^{1.5}$	310 415	${ }_{2}^{2 \cdot 1}$	690 915
3.	0.5	60	1.95	560	$2 \cdot 9$	1,760
4.	0.52	62	1.72	415	3.0	1,910
5.	0.6	72	1.63	370	$2 \cdot 45$	1,105
6.	0.7	86	1.52	319		856
7	0.8	100	1.5	310	$2 \cdot 12$	712
9	${ }_{0}^{0.72}$	89 96	1. 32	319	${ }_{2}^{2.1}$	690 615
10	0.7% 0.72	96 89	1.75	430 455	2.02 2.05	615 600
11.	${ }_{0}^{0.73}$	${ }_{100}^{91}$	1.9	520	${ }_{2}^{2.15}$	745
12.	0.8	100	1.87	300 165	$2 \cdot 3$	1, 915
13.	0.9 1.0	120	1.82 1.85	${ }_{4}^{465}$	$\frac{2}{2} \cdot \frac{4}{4}$	1,040
15.	1.0	140	${ }_{2 \cdot 1}^{1 \cdot 85}$	690	3.0	1,910
16.	1.1	170	$2 \cdot 2$	800	3.25	2,285
17.	$1 \cdot 1$	170	$2 \cdot 15$	745	$3 \cdot 1$	2.060
18.	1.05	155	2.05	645	$3 \cdot 4$	2.510
19.	1.07	161	1.95	560	$3 \cdot 05$	1,985
20.	1.2	200	1.9	520	$2 \cdot 75$	1,535
21.	$1 \cdot 13$	179	1.9	520	$2 \cdot 6$	1,315
22.	$1 \cdot 15$	185	1.92	536	$2 \cdot 32$	938
23.	$1 \cdot 15$	185	2.05	645	$2 \cdot 2$	800
24.	$1 \cdot 17$	191	$2 \cdot 2$	800	$2 \cdot 12$	712
25.	$1 \cdot 22$	206	$2 \cdot 25$	856	$2 \cdot 23$	834
26.	$1 \cdot 17$					
27.	1.2	200	1.95	560	2.38	1,015
28.	$1 \cdot 2$	200	1.87	500	$2 \cdot 42$	1.066
29.	$1 \cdot 23$	209	$1 \cdot 77$	440	2.5	1,170
30.	$1 \cdot 3$	230	1.72	415	2.6	1,315
31.			1.85	487		

Daily Gauge Height and Discharge of Bugaboo Creek near Spillimacheen, for 1914-Concluded.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height	Discharge.	Gauge Height	Discharge.	Gauge Height	Discharge.	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height.	Discharge.
	Feet.	Sec-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	See.-ft.	Feet.	Sec.-ft.
1.	$2 \cdot 75$	1,540	2.5	1,170	1.80	455 430	1.55 1.50	333 310	1.27	221	1.05	155
2.	$3 \cdot 0$ $3 \cdot 45$	1,910 2	$2 \cdot 5$ 2.42	1,170 1,066	1.75 1.80 1.80	430 455	1.50 1.50	310 310	1.35 1.25	250 215	$1 \cdot 1$ 1.0	170 140
3.	$3 \cdot 15$ $3 \cdot 1$	2,580 2,060	$2 \cdot 42$ $2 \cdot 4$	1,066 1.040	1.80 $1 \cdot 80$	455 455	1.50 $1 \cdot 40$	310 270	1.25 1.2	215 200	1.0 0.95	140 130
5	$3 \cdot 1$ $3 \cdot 1$	2,060 2,060	$2 \cdot 4$ $2 \cdot 25$	1.040 856	1.80 1.85	455	1.40 1.40	270 270	$1 \cdot 2$	200 200	1.95 1.05	130 155
6.	$3 \cdot 25$	2,280	$2 \cdot 25$	856	1.70	405	1.55	250	$1 \cdot 1$	170	$1 \cdot 15$	185
7.	$3 \cdot 1$	2,060	$2 \cdot 4$	1,040	1.70	405	1.38	262	$1 \cdot 1$	170	$1 \cdot 2$	200
8.	2.95	1,840	$2 \cdot 1$	690	1.80	455	1.38	262	1.07	161	$1 \cdot 3$	230
9.	$2 \cdot 9$	1,760	$2 \cdot 0$	600	1.70	405	$1 \cdot 35$	250	1.07	161	1.25	215
10.	$2 \cdot 77$	1,560	1.95	560	1.60	355	$1 \cdot 30$	230	$1 \cdot 1$	170	$1 \cdot 15$	185
11.	$2 \cdot 85$	1,680	$1 \cdot 9$	520	1.70	405	1.30	230	$1 \cdot 1$	170	0.95	130
12.	$3 \cdot 1$	2,060	$2 \cdot 05$	645	1.55	333	1.30	230	$1 \cdot 1$	170	0.95	130
13.	$3 \cdot 0$	1,910	$2 \cdot 1$	690	1.40	270	1.30	230	$1 \cdot 0$	140	0.85	110
14	$3 \cdot 15$	2,140	$2 \cdot 1$.	690	1.40	270	1.30	230	$0 \cdot 9$	120	0.75	93
15.	$2 \cdot 9$	1,760	$2 \cdot 15$	745	$1 \cdot 40$	270	1.27	221	0.9	120	0.7	86
16.	$2 \cdot 67$	1,410	$2 \cdot 05$	645	1. 30	230	$1 \cdot 25$	215	$0 \cdot 8$	100	Fro	zen.
17.	$2 \cdot 47$	1,130	$2 \cdot 15$	745	1.30	230	1.25	215	0.75	93		
18.	$2 \cdot 6$	1,320	$2 \cdot 0$	600	1.50	310	1.35	250	$0 \cdot 65$	79		
19.	$2 \cdot 72$	1,490	1.95	560	$2 \cdot 00$	600	$1 \cdot 32$	238	0.75	93		
20.	$2 \cdot 70$	1,460	$2 \cdot 05$	645	1.65	380	1-3	230	$1 \cdot 0$	140		
21.	$2 \cdot 40$	1,040	$2 \cdot 1$	690	$1 \cdot 50$	310	$1 \cdot 22$	206	$1 \cdot 05$	155		
22.	$2 \cdot 20$	- 800	$2 \cdot 1$	690	1.40	270	$1 \cdot 15$	185	$1 \cdot 0$	140		
23.	$2 \cdot 20$	800	1.95	560	1.50	310	$1 \cdot 1$	170	$1 \cdot 0$	140		
24.	$2 \cdot 30$	915	1.85	488	1.50	310	$1 \cdot 1$	170	1.1	170		
25.	$2 \cdot 40$	1,040	1.82	468	1.55	333	$1 \cdot 0$	140	$1 \cdot 15$	185		
26.	$2 \cdot 3$	910	1.85	488	1.85	488	$1 \cdot 1$	170	1.0	140		
27.	$2 \cdot 2$	800	2.00	600	1.95	560	$1 \cdot 1$	170	0.95	130		
28.	$2 \cdot 3$	920	$2 \cdot 00$	600	1.75	430	$1 \cdot 1$	170	$1 \cdot 0$	140		
29.	$2 \cdot 2$	800	1.90	520	1.60	355 310	1.1	170	1.0 1.15	140		
30.	$2 \cdot 3$	920	1.95	560	1.50	310	$1 \cdot 15$	185	$1 \cdot 15$	185		
31.	$2 \cdot 45$	1,100	1.85	488			$1 \cdot 35$	250				

Monthly Discharge of Bugaboo Creek near Spillimacheen, for 1914.
(Drainage area, 190 square miles.)

Mosth,	Discharge in Second-Feet.				Rus-Off.		Accuracy
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { Square } \\ & \text { Hile. } \end{aligned}$	Depth in inches on Drainage Area.	Total in Acre-feet.	
March	230	58	$139 \cdot 8$	$0 \cdot 736$	$0 \cdot 82$	8,320	D.
April.	856	310	525	$2 \cdot 76$	$3 \cdot 18$	32,300	B.
May..	2,510	600	1,217	$6 \cdot 40$	$7 \cdot 14$	72,400	B.
June..	2,585	800	1,486	$7 \cdot 82$	$9 \cdot 02$	91,400	B.
July	1,170	468	700	$3 \cdot 68$	$4 \cdot 24$	43,000	B.
	560	230	375	1.97	$2 \cdot 20$	22,300	B.
Sieptember	333	140	226	1.19	1.37	13,900	B.
Oetober...	250	79	156	0.82	$0 \cdot 92$	9,300	1.

Canyon Creek (3051).
Location.-Township 26, range 22, west 5th, mer. about one-half mile from Columbia river, and 6 miles from Golden. The spillways and the sluice of Columbia River Lumber Company's dam are used as weirs. Revelstoke district.

SESSIONAL PAPER No. 25e
Records Available.-June 15 to December 30, 1914.
Climatic Conditions.-Summers hot and little rainfall. Winters severe, as low as -50° F., with 10 to 15 feet of snow. (See Columbia River, Golden.)

Note.-It was intended to publish the "Records Available" in this result but, through an oversight, this is impossible. The results however, will be available at this office after April 1, 1915.

Columbia River, Golden (3005.)

Location.-SW. $\frac{1}{4}$ sec. 12, township 27, range 22, west 5th, mer. above mouth of Kicking Horse river, one mile from Golden, B.C., 100 yards below the Columbia River Lumber Company's mill.

Records Available.-During the open season from 1903-14. Gauge heights from 1903-11 were obtained through the courtesy of the Columbia River Lumber Company. One ice measurement made in February, 1912, gave a discharge of 795 c.f.s., and one made in February, 1914, gave a discharge of 894 c.f.s.

Climatic Conditions.-In 1914 the precipitation amounted to $14 \cdot 19$ inches of which about 3 or 4 feet was snow. The summers are warm and fairly dry. The winters are very severe, as low as $50^{\circ} \mathrm{F}$., during some winters, with a fairly heavy snowfall. Ice conditions generally exist from the middle of November till the end of March. Frazil ice may be expected.

Gauge.-Yertical staff gauge, referred to three bench-marks, and read daily by Mr. Jas. T. Wood during the open season.

Channel.-The section is located in the middle of a straight stretch of river of 1,500 feet. At low water there is a pronounced riffle 300 yards below the gauge, but at high water this riffle disappears.

Discharge Measurements.-Measurements are made from boat held by temporary cable about 100 yards below mill. Eight discharge measurements were made in 1912, five in 1913, and three in 1914.

Accuracy.-The gauge readings are good. Great difficulty is encountered in metering river at high water, and during June and July accuracy is not guaranteed to within 20 per cent, but in the remaining months it is probably within 15 per cent.

Discharge Meastrements of Columbia River at Colden, B.C., 1914.

[^83]6. GEORGE V, A. 1916

Daily Gauge Height and Discharge of Columbia River near Golden, B.C. for 1914.

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Columbia River near Golden, B.C., for 1914-Concluded.

Dar.	July.		August.		September		October.		November.	
	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height.	Discharge	Gauge Height	Discharge	Gauge Height.	Discharge.
	Feet.	See.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	See. -ft .	Feet.	See.-ft.
1.	9-45	14,600	7.80	9,920	$5 \cdot 30$	5.840	$3 \cdot 8$	3. 500	${ }_{2}$-1	1.920
2. . \quad,	9.40	14,400	7.70	9,730	$5 \cdot 25$	5,770	3.7	3.680	$\stackrel{2}{2} \cdot$	2. 120
3... ${ }^{\text {a }}$ -	9.48	14.720	7.70	9,730	$5 \cdot 25$	5,770	$3 \cdot 6$	3.560	$2 \cdot 4$	2. 200
4.	9.25	13,800	$7 \cdot 65$	9.640	5.10	5. 560	$3 \cdot 17$	3,400	$2 \cdot 4$	2.200
5.	$9 \cdot 32$	14.080	$7 \cdot 65$	9,640	$4 \cdot 95$	5.350	$3 \cdot 35$	3,260	$2 \cdot 4$	2,209
6.	$9 \cdot 52$	14,880	7.65	9,64¢	4.80	5.147	3.0	2,840	$2 \cdot 3$	$\frac{2}{2} .100$
7.	$9 \cdot 65$	15.400	7.65	$9,64)$	$4 \cdot 70$	5.000	3.0	2.840	$2 \cdot 25$	2.050
8.	10.25	18,050	$7 \cdot 60$	9,540	$4 \cdot 65$	4.930	$2 \cdot 9$	$\cdots .73 \mathrm{C}$	$2 \cdot 2$	2.000
9.	10.42	18,900	7.55	9,440	$4 \cdot 60$	4, 860	$2 \cdot 85$	2.670	$2 \cdot 15$	1.960
	$10 \cdot 63$	19, 800	$7 \cdot 40$	9,160	$4 \cdot 55$	4,790	$2 \cdot 8$	2.620	$2 \cdot 10$	1.920
11	$10 \cdot 65$	19,959	$7 \cdot 20$	8,800	$4 \cdot 55$	4.790	$2 \cdot 8$	2,620	$2 \cdot 1$	1,920
12.	$10 \cdot 60$	19,890	$7 \cdot 25$	8,890	4.45	4,660	$2 \cdot 7$	2,510	2.05	1.880
	$10 \cdot 50$	19,300	$7 \cdot 0$	8,470	4. 10	4,199	$2 \cdot 6$	$\stackrel{2}{2}, 400$	$2 \cdot 0$	1.840
14....	10.50	19.300	6.80	8.150	3.70	3,689	$2 \cdot 5$	2,300	1.90	1.760
15.	$10 \cdot 60$	19,800	$6 \cdot 65$	7,910	$3 \cdot 30$	3,200	$2 \cdot 4$	2,200	1.90	1,260
16.	$10 \cdot 50$	19,300	$6 \cdot 45$	7,590	3.00	2,840	$2 \cdot 4$	2.250	1.90	1.760
17.	10-50	19,300	$6 \cdot 30$	7,350	3.00	2, 840	$2 \cdot 35$	2.150	Frozen.	1,790
18	$10 \cdot 55$	19,550	$6 \cdot 30$	7,350	$3 \cdot 10$	2.960	$2 \cdot 3$	2,100		1,700
19.	$10 \cdot 10$	17,300	$6 \cdot 25$	7,270	$3 \cdot 20$	3,080	$2 \cdot 3$	2,100		1,600
$20 \ldots \ldots$ - . . - -	9.90	16,400	$6 \cdot 25$	7,270	$3 \cdot 70$	3,680	$2 \cdot 27$	2,070		1,600
21	9.70	15,600	$6 \cdot 26$	7,270	$3 \cdot 80$	3,800	$2 \cdot 25$	2.050		1,600
22.	9.50	14,800	$6 \cdot 25$	7,270	$3 \cdot 60$	3,560	$2 \cdot 25$	2,050		1,600
23.	$9 \cdot 30$	14,00e	$6 \cdot 20$	7,190	$3 \cdot 50$	3,440	$2 \cdot 2$	$\stackrel{2}{2}, 000$		1,600
24.	$9 \cdot 1 \mathrm{C}$	13,300	$6 \cdot 00$	6.890	$3 \cdot 50$	3,440	$2 \cdot 2$	2,000		1,600
25.	8.80	12,300	$5 \cdot 85$	6,67C	$3 \cdot 32$	3,220	$2 \cdot 2$	2,060		1.600
26.	$8 \cdot 65$	11,850	$5 \cdot 80$	6,590	$3 \cdot 20$	3,080	$2 \cdot 15$	1,960		1,600
$27 . \ldots . . .$.	$8 \cdot 45$	11,320	$5 \cdot 75$	6,510	$3 \cdot 50$	3,440	$2 \cdot 15$	1,960		1. 600
$28 . \ldots . .$.	$8 \cdot 20$	10,700	$5 \cdot 60$	6,290	$3 \cdot 80$	3, 800	$2 \cdot 15$	1,960		1,70e
29.	8.05	10,400	$5 \cdot 40$	5,990		3,800	$2 \cdot 1$	1.920		1. 700
30.	$7 \cdot 90$	10,110	$4 \cdot 40$	5,990		3,800	$2 \cdot 1$	1,920		1.760
$31 .$.	$7 \cdot 85$	10,020	$5 \cdot 35$	5,920			2+1	1,920		

Monthly Discharge of Columbia River at Golden, B.C., for 1914.
(Drainage area, 2,500 square miles.)

Month.	Dinchathe in Second-Feet.						Aecuracy
	Maximum.	Minimura.	Mean.	Per square nule.	Deptli in inches on Drainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-fect } \end{gathered}$	
Ipril	3,700	1,000	2,731	1002	1.215	$15.2+40$	i
	8,230	3,02:1	6.014	$\cdots \cdot 405$	$2 \cdot 773$	369,144	$1)$
	15,8(4)	7.120	11, 1504	1.612	5.174	(ty) 3 2 4×1	I
July rat	19, 0501	[0, 020	15.5×2	(6).233	7 1ati	$0.5 .10 .(06)$	(1)
August	9, $0: 3$	5,920	7,991	3.196	3. (ix 5	494604	$1)$
	5, 8. 810	2,846	4.141	1.166	1.85	$2(6),(6 x)$	1
	3,806 3,200	1, 420	2.440	10.45 11.13	1.13 11.51		(
November tar	2,200		1,820		(1).si	16s, (19x)	

Columbia River near Trall (3008).

Location.-Fifteen miles above international boundary, above mouth of Pend d'Oreille river, below mouth of Kootenay, at the highway bridge near Trail, B.C., Nelson district.

Records Available.-May, 1913, to December, 1914.
Climatic Conditions.-The climate at Trail is similar to Nelson, but a little more extreme, i.e., a little hotter in summer and colder in winter. The total precipitation is about the same. See Kootenay river near Nelson.

Gauge.-A chain gauge, 60.8 feet long, is read daily by Mr. C. A. Broderick.
Channel.-The river winds from the left (looking downstream), about 100 yards above the bridge; below, the river is straight for 400 yards. The control, a pronounced riffle 100 yards below the bridge, appears permanent.

Discharge Measurements.-Measurements are made from the upstream side of the traffic bridge. Eighteen well-distributed measurements have been made.

Accuracy. - Daily gauge readings have been obtained. Reliable measurements were made throughout the year. The gauge-height-discharge curve appears to be very good. The results should be within 10 per cent.

Nelson District (I)-Highway Bridge on Columbia river near Trail, showing metering section on upstream side of bridge.

Discharge Measurements of Columbia River near Trail, B.C., for 1914.

SESSIONAL PAPER No. 25e
Dally Gauge Height and Discharge of Columbia River near Trail, B.C., for 1914.

Diy.	January.		February		March.		April.		May.		June.	
	Gauge Height.	$\begin{gathered} \text { Dis- } \\ \text { charge. } \end{gathered}$	Gauge Height	Discharge	Gauge Height	Dis-	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height	Discharge.
	Feat.	Sec.-ft.	Feet.	Sec.ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1	9.7	22,000	8.9	18,600	8.0	15,500	10.2	24, 250	17.9	71,300	$2 \mathrm{~S} \cdot 4$	163,500
$\frac{2}{3}$	$9 \cdot 6$ 9.6	21,500 21,500	8.9 8.8	18,600 18,300	8.0 8.0	15,500 15,500	10.1 10.2	${ }_{2}^{23,750}$	18.3 18.8	74,400	28.3 28.5	163,000
4	$9 \cdot 6$	21,500	8.8	18,300	8.0	${ }_{15}{ }^{15} 500$	10.3	24,250 24,750	18.8 19.4	78,200	28.5 28.9	165,000 169,000
5.	9.5	21,000	8.7	17,900	8.0	15,500	10.4	25, 250	19.8	86,400	29.4	174,000
6.	9.5	21,000	8.7	17,900	8.0	15,500	10.5	25,750	$20 \cdot 3$	90,400	29.8	175,000
7	$9 \cdot 5$	21,000	8.6	17,600	8.0	15,500	10.7	26,800	$20 \cdot 6$	92,800	30.1	182,000
8	${ }_{9}^{9 \cdot 5}$	21,000	$8 \cdot 6$	17,600	8.1	15,800	$10 \cdot 9$	27, 800	21.1	96,800	$30 \cdot 4$	181,500
	${ }_{9 \cdot 5}^{9.4}$	20,600	$8 \cdot 5$	17,200	$8 \cdot 2$	16,200	11.3	20,300	21.5	100,000	$30 \cdot 4$	185.000
10	$9 \cdot 5$	21,000	8.5	17,200	$8 \cdot 2$	16,200	11.5	30,500	21.9	104,000	30.2	183,000
11.	9.5	21,000	8.4	16,900	8.2	16,200	11.7	31,550	22.1	104.000	30.0	181,000
12	9.5	21,000	8.4	16,900	$8 \cdot 2$	16,200	11.9	32,600	22.4	107,000	29.9	179,000
13	$9 \cdot 6$	${ }^{21,500}$	$8 \cdot 4$	16,900	$8 \cdot 2$	16,200	12.3	${ }^{34,750}$	22.8	110,000	29.8	178,000
14	9.6	21,500	$8 \cdot 3$	16,500	$8 \cdot 3$	16,500	12.7	36,950	$23 \cdot 4$	115,500	30.0	181,000
15	$9 \cdot 6$	21,500	$8 \cdot 3$	16,500	$8 \cdot 3$	16,500	13.2	40,200	23.9	120,300	$30 \cdot 5$	186,000
16.	9.5	21,000	$8 \cdot 2$	16,200	$8 \cdot 3$	16,500	13.8	43,500	$24 \cdot 6$	126,000	$30 \cdot 9$	190,000
17.	9.5	${ }_{21,000}^{21,000}$	8.2	16,200	8.3	16,500	14.1	45, 6100	25.2	132,000	31.3	195,000
18	9.5	21,000	8.2	16,200	$8 \cdot 4$	16,900	14.5	47, 850	25.7	137,000	32.1	204,000
19	9.4 9.4	20,600 20,600	8.2	16,200 16,200	8.6 8.5	17,600	15.0	51,500	26.4	144,000	32.7	210,000
20	$9 \cdot 4$	20,600	8.2	16,200	8.5	17,200	15.5	54, 800	26.7	146, 500	33.4	218,000
21.	$9 \cdot 4$	20,600	$8 \cdot 2$	16,200	$8 \cdot 7$	17,900	15.8	56,700		149,000		
22	$9 \cdot 3$	20,200	8.1	15,800	8.8	18,300	16.1	58,806	27.2	152,000	33.6	220,000
23	$9 \cdot 3$	20,200	8.1	15,800	8.9	18,600 19	16.3	60,000	27.4	153, 5100	33.4	218,000
24	$9 \cdot 3$	20,200	8.1	15,800	$9 \cdot 1$	19,400	$16 \cdot 6$	62, 100	27.7	157,000	32.7	210,000
25.	$9 \cdot 2$	19,800	8.1	15,800	$9 \cdot 3$	20,200	16.8	63,400	28.0	160,000	31.0	192,000
26.	$9 \cdot 2$	19,800	$8 \cdot 1$	15,800	9.5	21,000	17.0	64, 800	28.2	162,000	31.8	200,000
${ }_{28}^{27 .}$	9.2	19,800	8.0 8.0	15,500	9.7 9.9	${ }^{22,000}$	17.2	66,200	28.4	164,000	31.7	199,000
28	$9 \cdot 1$	19,400	$8 \cdot 0$	15,500	$9 \cdot 9$	23,000	17.4	67,600	28.6	166,000	31.6	197,500
29	$9 \cdot 1$	19,400			10.0	23,500	17.5	68, 410	2 s .7	167,000	31.4	195,500
	$9 \cdot 0$	19,000			$10 \cdot 1$	24,000	17.6	69,100	$28 \cdot 6$	166, c00	31.3	194,510
31.	9.0	19,000			$10 \cdot 2$	24,500			28.5	165,000		

Daily Gauge Height and Discharge of Columbia River, near Trail, B.C., for 1914-Concluded.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height.	Dis charge.	Gauge Height.	Discharge.	Gauge Height.	Discharge	Gauge Height.	Discharge	Gauge Height.	Discharge	Gauge Height	Dis. charge
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	See.-ft.	Feet.	Sec.-1t.	Feet.	See.-ft.	Feet.	Sec.-ft.
1.	31.3	195,000	26.0	140,500	$19 \cdot 7$	85,200	15.2	52,500	13.8	43,800	13.0	39,000
2	31.4	196,000	25.8	138,000	$19 \cdot 5$	84,000	15.2	52,800	13.7	43,200	$12 \cdot 9$	38,400
3	31.6	197,500	$25 \cdot 7$	137,000	$19 \cdot 3$	82,000	$15 \cdot 3$	53, 400	13.8	43,800	$12 \cdot 9$	38,400
4	$32 \cdot 1$	203,500	$25 \cdot 0$	135,500	$19 \cdot 1$	80,400	$15 \cdot 3$	53,400	13.9	44,400	$12 \cdot 8$	37, 800
5	32.7	209,500	$25 \cdot 5$	134,500	18.9	78,800	$15 \cdot 4$	54, 100	$14 \cdot 0$	45,000	$12 \cdot 8$	37,800
6	$33 \cdot 1$	215,000	25.4	133,500	18.7	77,200	$15 \cdot 3$	53,400	14.2	46, 200	$12 \cdot 7$	37,200
7	33.7	220,500	$25 \cdot 2$	132,000	18.5	15,600	$15 \cdot 2$	52,800	14.4	47,500	$12 \cdot 7$	37, 200
8	33.7	221,000	$25 \cdot 1$	130,500	$18 \cdot 3$	74,000	$15 \cdot 2$	52,800	14.7	49,400	$12 \cdot 6$	36,700
9	$33 \cdot 6$	220,000	24.9	128,500	18.1	72,400	$15 \cdot 1$	52,200	14.9	50,800	12.5	36,200
10	33.7	220,500	$24 \cdot 5$	125,000	$17 \cdot 9$	71,650	$15 \cdot 0$	51,500	$15 \cdot 0$	51,500	$12 \cdot 4$	35,600
11.	33.7	221,000	24.0	121,000	$17 \cdot 9$	70,950	$15 \cdot 0$	51,500	14.9	50,800	$12 \cdot 2$	34,500
12	$33 \cdot 6$	219,500	$23 \cdot 6$	117,000	17.7	69,450	14.9	50,800	14.8	50, 100	$12 \cdot 1$	34,000
13	33.6	220,000	23.2	114,000	$17 \cdot 5$	68,000	$14 \cdot 9$	50,800	14.8	50,100	11.9	32,960
14	33.7	221,000	$22 \cdot 9$	111,000	$17 \cdot 3$	66,550	14.8	50,100	$14 \cdot 8$	50,100	11.7	31,800
15.	$33 \cdot 7$	221,500	$22 \cdot 6$	109,000	$17 \cdot 1$	65,500	$14 \cdot 7$	49,400	$14 \cdot 7$	49,400	11.5	30,800
16	33.8	222,000	$22 \cdot 4$	105,500	16.9	63,750	14.5	48,200	14.6	48,800	$11 \cdot 3$	29,600
17	$33 \cdot 7$	221,000	22.2	104,500	$16 \cdot 7$	62,400	14.4	47,500	14.6	48,800	$11 \cdot 1$	28,500
18	33.6	220,000	21.9	104,000	$16 \cdot 5$	61,050	$14 \cdot 3$	46,800	14.5	48,200	$10 \cdot 9$	27,600
19.	$33 \cdot 3$	217,000	21.8	102,500	$16 \cdot 3$	59,700	$14 \cdot 3$	46,800	14.4	47,500	$10 \cdot 6$	27,200
20.	$33 \cdot 0$	214,000	21.6	101,000	$16 \cdot 1$	58,450	$14 \cdot 4$	47,500	$14 \cdot 3$	46,800	$10 \cdot 6$	26,400
21	32.5	207,500	21.5	100,000	15.9	57,050	14.4	47,150	$14 \cdot 1$	45,600	$10 \cdot 5$	26,000
22.	31.9	200,500	21.4	99,200	15.8	56,350	$14 \cdot 3$	46,800	13.9	44, 400	$10 \cdot 4$	25,500
23	$31 \cdot 2$	194,000	$21 \cdot 3$	98,400	$15 \cdot 7$	55,700	$14 \cdot 3$	46,800	13.7	43,200	$10 \cdot 4$	25,500
24	$30 \cdot 5$	186,000	21.2	97,600	$15 \cdot 6$	55, 100	14.4	47,500	$13 \cdot 6$	42,600	$10 \cdot 3$	25,000
25.	29.9	180,000	$21 \cdot 1$	96,800	$15 \cdot 5$	54,450	$14 \cdot 4$	47,500	$13 \cdot 5$	42,000	$10 \cdot 3$	25,000
26	$29 \cdot 4$	173,500	20.9	94, 800	15.4	53,750	$14 \cdot 3$	46,800	$13 \cdot 4$	41,400	$10 \cdot 2$	24,500
27	28.7	167,000	$20 \cdot 7$	93,200	$15 \cdot 3$	53,400	$14 \cdot 3$	46,800	$13 \cdot 3$	40,800	$10 \cdot 2$	24,500
28	28.2	161,500	$20 \cdot 5$	91,600	$15 \cdot 2$	52,800	14.2	46,200	$13 \cdot 2$	40,200	$10 \cdot 1$	24,000
29	27.6	155,500	$20 \cdot 3$	90,000	$15 \cdot 2$	52,800	14.1	45,600	$13 \cdot 1$	39,600	$10 \cdot 0$	23,500
30.	$26 \cdot 9$	149,000	$20 \cdot 1$	88,400	$15 \cdot 1$	52,200	$14 \cdot 0$	45,000	$13 \cdot 1$	39,600	$9 \cdot 9$	23.000
31	26.4	144,000	19.9	87,200			13.9	44,400			9.8	22,500

Monthly Discharge of Columbia River, near Trail, for 1914.
(Drainage area, 34,000 square miles.)

Month.	Discharge in Second-Feet.				Run-Off.	
	Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on Drainage area.	Total in acre-feet.
January.	22,000	19,000	20,700	0.61	$0 \cdot 70$	1,270,000
February	18,600	15,500	16,800	0.49	0.51	933,000
March.	24,500	15,500	17,800	$0 \cdot 52$	$0 \cdot 60$	1,090,000
April	69,100	23,700	43,900	1.24	1.38	2,610,000
May.	167,000	71,300	125,000	$3 \cdot 68$	$4 \cdot 24$	7,690,000
June.	220,000	163,000	190,000	$5 \cdot 60$	$6 \cdot 25$	11,300,000
July	222,000	144,000	200,000	5.89	6.79	12,300,000
August	140,000	87,200	112,000	$3 \cdot 29$	3.79	6,890,000
September	85, 200	52,200	65,700	1.93	2.15	3, 910,000
October....	54, 100	44,400	46,300	1.36	1.57	2,850,000
November.	51,500	39, 600	45,900	1.35	1.51	2,730,000
December.	39,000	22,500	30,500	0.89	$1 \cdot 03$	1,880,000

Accuracy " B ".

Dutch Creek, near Fatrmont Springe (3035).

Location.-At highway bridge of Golden to Cranbrook road, half a mile from the mouth, which is almost at the outlet of Columbia lake. Revelstoke district.

Records Available.-April to August, 1914.
Climatic Conditions.-Summers, hot days, generally cool at nights, with very little rain. Winters, severe, as low as- $40^{\circ} \mathrm{F}$., with a light snowfall. Frazil ice. The precipitation at the mouth is similar to that at Athalmer, q.v. Toby creek.

Gauge.-Vertical staff gauges were used throughout 1914. Gauge was changed owing to shifts in channel. Gauge was read by Mr. W. Magurn, an engineer on construction, Kootenay Central railway.

Channel.-The channel is wide, sandy, and shifting.
Discharge Measurements.-Measurements are made from highway bridge at mouth. In 1914, seven measurements were made.

Co-operation.-The station was maintained in 1914 by co-operation with the Water Rights Branch (Provincial).

Accuracy.-Owing to a large shift, due to high water in June, results after May are not guaranteed.

General.-Dutch creek rises on the easterly slope of the Selkirk range, and drains an area of about 250 square miles. It empties into Columbia lake, just above the outlet, and is the first large tributary of the Columbia river.

At present there is no development of power on Dutch creek, and the probable use of the water will be irrigation.

Discharge Measurements of Dutch Creek, near Fairmont Springs, for 1914.

Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of section.	$\begin{aligned} & \text { Mean } \\ & \text { Velocity. } \end{aligned}$	Gauce Height.	Discharge.
1914.			Feet.	Sq. ft.	Ft . persec.	Feet.	Sec.-ft.
May 8	D. OB. G	1,048	42.5	120	2.54	1.20	305
April 10.	O. J. B. (Prov.)..	1.04 x 1.045		122	$0 \cdot 26$ 3.36	0. 1.71	-14
May June 19 $18 .$.	J. A. Elliott..	1.048 1,919	93	214 3×6 1	3.36 7.16	1.70 3.00	- 719
Aug. 1		1,909	70	146	3. 60	1.5 s	2.760 -825
Sept. 22	O. J. B. (Prov.)..			91	2.4	0.95	217
Oct. 20..	J. A. E..		34	(M) 6	2.14	0.95	41

Daily Gauge Height and Discharge of Dutch Creek near Fairmont Springs' B.C., for 1914.

Day.	April.		May.		June.		July.		August.	
	Gauge Height	charge.	Gauge Height.	$\begin{aligned} & \text { Dis- } \\ & \text { charge } \end{aligned}$	Gauge Height	Discharge	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height	Discharge
	Feet.	Sec.-ft.								
1.	0.2	85	0.98	220	1.95	1,020	${ }_{2}^{2 \cdot 65}$	${ }_{2}^{2,050}$	1.48	499
3	${ }_{0}^{0.2}$	85 85	${ }_{1}^{1.25}$	340 435	2.05 $2 \cdot 45$	1,160 1,790	${ }_{2}^{2 \cdot 65}$	2,140 2,490	1.38	421 638
4	$0 \cdot 3$	95	1.3	365	2.7	2,220	2.8	2,400	1.33	${ }_{386}$
5.	$0 \cdot 3$	95	$1 \cdot 3$	365	$2 \cdot 7$	2,220	2.53	1,940	1.28	355
6	$0 \cdot 3$	95	$1 \cdot 2$	315	2.4	1,700	1.93	991	1.08	249
7.	$0 \cdot 35$	100	$1 \cdot 1$	265	$2 \cdot 0$	1,080	2:13	1,280	1.08	249
8	$0 \cdot 4$	105	$1 \cdot 1$	265	1.7	715	2.08	1,210	1.08	249
9	$0 \cdot 4$	105	$1 \cdot 3$	365	1.6	605	2.23	1,430	1.08	249
10.	$0 \cdot 45$	110	$1 \cdot 35$	400	$1 \cdot 6$	605		1,350	1.03	234
11	0.5	115	$1 \cdot 4$	435	$1 \cdot 6$	605		1,300	1.08	249
12	0.53	118	1.4	435	1.7	715		1,200	1.18	305
13.	0.53	118	1.45	475	2.0	1,080		1,150	1.33	386
14.	0.55	120	1.5	515	$2 \cdot 35$	1,620		1,100	1.28	355
15.	0.58	122	1.7	715	$2 \cdot 7$	2,220		1,050	1.23	330
16.	0.58	122	1.8	825	$2 \cdot 85$	2,490		1,000	1.33	386
17.	0.58	122	$1 \cdot 85$	887	$2 \cdot 9$	2,580	1.88	925	1.28	355
18.	0.58	122	1.7	715	3.05	2,850	1.93	991	1.38	421
19	0.63	133	1.7	715	$3 \cdot 1$	2,940	1.98	1,060	1.33	386
20.	$0 \cdot 64$	135	1.75	770	$3 \cdot 1$	2,940	1.93	991	1.38	421
21.	${ }^{0.63}$	133	1.75	770	2.7	2,220	1.78	803	1.18	305
22.	0.68	145	1.8	825	$2 \cdot 25$	1,460	$1 \cdot 83$	863	0.98	220
23.	$0 \cdot 68$	145	1.78	803	$2 \cdot 0$	1,080	1.78	803	0.88	195
24.	0.7	150	1.7	715	$2 \cdot 05$	1,160	$1 \cdot 43$	459		175
25.	0.75	162	1.75	770	$2 \cdot 25$	1,460	1.58	587		160
26.	0.7	150	1.80	825	$2 \cdot 2$	1,380	1.48	499		160
27.	0.7	150	1.75	770	$2 \cdot 3$	1,540	$1 \cdot 43$	459		150
28	0.7	150	$1 \cdot 55$	560	$2 \cdot 3$	1,540	1.53	542		150
29	0.7	150	1.5	515	$2 \cdot 35$	1,620	1.53	542		130
30.	0.8	175	1.75	770	$2 \cdot 4$	1,700	1.53	542		130
31.			1.9	950			1.48	499		120

Monthly Discharge of Dutch Creek near Fairmont Springs, B.C., for 1914.
(Drainage area, 250 square miles.)

	Момтн.	Discharge in Second-Feet.				Run-Off.	
		Maximum.	Minimum.	Mean.	$\begin{gathered} \text { Per } \\ \text { square } \\ \text { mile. } \end{gathered}$	$\begin{aligned} & \text { Depth } \\ & \text { in inches } \\ & \text { on } \\ & \text { Drainage } \\ & \text { area. } \end{aligned}$	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$
Abril.		175	85	123.0	$0 \cdot 49$	0.55	
May...		950	220	584.0	$2 \cdot 34$	2.70	36,000
Sune ...		2,940		$1,610 \cdot 0$	6.45	7.20	95, 800
July.		2,490		1,120.0	${ }_{4}^{4} \cdot 48$	$5 \cdot 16$	68,900
August..		638		$291 \cdot 0$		1.34	17,900

Accuracy "C".
Field Springs, 1, 2, and 3 (3062, 3063, and 3064).
Location.-In township 28-18-5, about one-quarter mile east of the C.P.R. hotel at Field. Revelstoke district.

Records Available.-October 16 to December 31, 1914.
Climatic Conditions.-Summers: the days are generally hot and the nights cool; June is generally a wet month, but some years July and August are

SESSIONAL PAPER No. 25e

very dry, and at the end of August the springs may be very low. Winters: snow generally falls in October or November and remains till April, but the snowfall is not nearly as great as at Glacier; the temperature however, at times goes very low ($-50^{\circ} \mathrm{F}$.).

Discharge Measurements.-Discharges are obtained on the two largest springs and a little creek (carrying pratically all the water which comes to the surface) by means of weirs. Weir No. 1 is on a small creek immediately beyond the springs (starting from the hotel). This weir is located near the foot of a 25 -foot fall on this creek. Weir No. 3 is on the smaller of the two springs gauged, as it shows that during extreme cold weather this spring ceases to flow. Weir No. 2 is immediately below the confluence of two or three small springs. Weir No. 2 is a rectangular weir 1.6 feet wide. Weirs Nos. 1 and 3 are triangle weirs, with $a 90^{\circ}$.

These weirs were established to determine if there was sufficient water for a water supply for Field and also for the C.P.R. shops at Field.

Daily Gauge Height and Discharge Weir No. 1, of Field Springs near Field, B.C., for 1914.

Monthly Discharge of Field Springs at No. 1 Weir, Field, B.C., for 1914.

	Montre.	Discharge in Gallons.			
		Maximum daily flow.	Minimum daily flow.	Mean.	Mean daily flow:
October		64,600 47	47,400 23,700	- 101	
November		47,400 23,700	23,700 2,690	.066 .020	35,530 10,770

Daily Gauge Height and Discharge, Weir No. 2, Field Springs, near Field, B.C., for 1914.

Monthly Discharge of Field Springs, No. 2 Weir, Field, B.C., for 1914.

	Month.	Discharge in Gallons.			
		Maximum daily flow.	Minimum daily flow.	Mean.	Mean daily flow
November December		218,000 183,000	135,000 135,000	0.297 0.302	$\begin{aligned} & \begin{array}{l} 159,900 \\ 163,000 \end{array} \end{aligned}$

SESSIONAL PAPER No. 25e
Daily Gatge Height and Discharge Weir No. 3, Field Springs near Field, B.C., for 1914.

Monthly Discharge of Field Springs at No. 3 Weir. Field, B.C., for 1914.

Monthly Discharge of Field springs River near Field for Total Discharge. from three weirs.

Monsh		Gitlu) mith m!
		Ne n
Oetaber		2, 8 \%
November		310
Deceumber		E\%14.

Weir No. 2 not incluelent
6. GEORGE V, A. 1916 Findlay Creek near Canal Flats (3036).

Location.-At highway bridge, on Findlay creek road, about 15 miles from mouth and 7 miles from Thunder Hill, B.C. Revelstoke district.

Records Available.-April 1 to December 31, 1914.
Climatic Conditions.-Precipitation at section similar to Invermere. (See Toby Creek.) Summers hot and dry. Winters severe, as low as- $40^{\circ} \mathrm{F}$., with light snowfall. Frazil ice.

Gauge.-Vertical staff gauge, near Mason's cabin, about $11 / 2$ miles below measuring section. Gauge is read by Mr. Octave Mason.

Channel.-Rocky above and below section. Not liable to shift.
Discharge Measurements.-Six measurements, one of which was high water, were made from the highway bridge in 1914.

Co-operation.-This station was maintained in 1914 by co-operation between the British Columbia Hydrographic Survey and the Provincial Water Rights Branch.

Accuracy.-The result should be within 20 per cent.
General.-Findlay creek rises on the easterly slope of the Selkirk mountains, and flows into Kootenay river about 3 miles south of Canal Flats. Findlay creek drains an area of about 320 square miles. Up to the present this creek has been used for lumbering and placer mining.

Discharge Measurements of Findlay Creek at Canal Flats, for 1914.

Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
1913			Feet.	Sq. ft .	Ft, per see.	Feet.	Sec.-ft.
Oct. 24.	O. J. B. (Prov.)			104.0	2.81	0.80	$294 \cdot 0$
1914							
April 13... June 18	O. J. B. (Prov.)			$84 \cdot 9$ $374 \cdot 8$	$2 \cdot 56$ 10.52	0.72 6.20	211.0 $3,940.0$
June 18. Aug. di.	J. A. Elliott.....	1909 1909	59 49	374.8 $184 \cdot 0$	10.52	6.20 2.70	$3,940 \cdot 0$ $1,060 \cdot 0$
Sept. 23.	O. J. B. (Prov.)			107.4	2.90	1.09	-314.0
Oct. 20..	J. A. E...	1909	41	$105 \cdot 3$	$3 \cdot 11$	0.9	$327 \cdot 0$

SESSIONAL PAPER No. 25 e

Daily Gavge Height and Discharge of Findlay Creek near Canal Flats, B.C., for 1914.

Daily Gauge Height and Discharge of Findlay Creek near Canal Flats, B.C., for 1914.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge	Gauge Height.	Discharge.	Gauge Height	Discharge	Gauge Height.	Discharge
	Feet.	Sec.-ft.	Feet.	See. ft .	Feet.	Sec.-ft.	Feet.	See.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1.	$5 \cdot 6$	3,360	2-8	1,120	1-2	400	$0 \cdot 9$	325	0.9	325	$0 \cdot 5$	252
2.	$4 \cdot 6$	2.430		1,080	$1 \cdot 4$	460	0.9	325	0.7	288	$0 \cdot 5$	25.
3.	$5 \cdot 0$	2,790		1.040	$1 \cdot 3$	430	$0 \cdot 9$	325	$0 \cdot 7$	288	$0 \cdot 5$	252
4	$4 \cdot 8$	2,610		1,000	$1 \cdot 4$	460	0.9	325	$0 \cdot 7$	288	$0 \cdot 5$	252
5.	$5 \cdot 4$	3,160		970	1.2	400	0.8	306	$0 \cdot 7$	288	$0 \cdot 5$	252
6.	$5 \cdot 0$	2,790		940		390	0.9	325	$0 \cdot 8$	306	$0 \cdot 5$	252
7.	4.7	2,520		900		380	0.9	32.5	0.8	306	$0 \cdot 5$	252
8	$4 \cdot 2$	2,100		860	...	370	0.9	325	$0 \cdot 6$	270	$0 \cdot 5$	252
9.	$4 \cdot 4$	2,260		830		360	0.9	325	$0 \cdot 6$	270	$0 \cdot 5$	252
10......... , -	$4 \cdot 1$	2.010		800		350	$0 \cdot 9$	325	$0 \cdot 6$	270	$0 \cdot 5$	252
11	$3 \cdot 9$	1,850		770		340	$0 \cdot 8$	3 C 6	$0 \cdot 7$	288	$0 \cdot 5$	252
12.	$4 \cdot 4$	2,260		740	$0 \cdot 9$	325	$0 \cdot 8$	306	$0 \cdot 6$	270	$0 \cdot 5$	252
13.	$4 \cdot 3$	2,180		710	0.8	306	$0 \cdot 8$	306	$0 \cdot 5$	252	$0 \cdot 5$	252
14.	$4 \cdot 8$	2, 610		680	0.7	288	0.5	306	$0 \cdot 5$	252	$0 \cdot 5$	252
15.	$4 \cdot 7$	2,520		650	0.8	306	0.8	306	$0 \cdot 6$	270	$0 \cdot 5$	252
16.	$3 \cdot 7$	1,719	1.5	620	$0 \cdot 8$	306	$0 \cdot 8$	306	$0 \cdot 6$	270	$0 \cdot 5$	252
17.	$3 \cdot 3$	1,440	1.9	660	1.2	400	0.9	325	$0 \cdot 7$	288	$0 \cdot 4$	238
18	$3 \cdot 3$	1,440	1.4	460	$2 \cdot 0$	710	$0 \cdot 9$	325	$0 \cdot 6$	270	$0 \cdot 4$	238
19.	$3 \cdot 4$	1.510	$1 \cdot 7$	580	1.8	620	0.9	325	$0 \cdot 6$	270	$0 \cdot 4$	238
20.	$3 \cdot 8$	1,770		620	$1 \cdot 4$	460	0.7	288	$0 \cdot 6$	270	$0 \cdot 4$	238
21.	$3 \cdot 2$	1,370	1.9	669	$1 \cdot 2$	409	$0 \cdot 7$	288	$0 \cdot 6$	270	$0 \cdot 4$	238
22	$2 \cdot 4$	910	1.7	580	1.0	348	$0 \cdot 7$	288	$0 \cdot 6$	270	$0 \cdot 4$	238
23	$2 \cdot 4$	910	$1 \cdot 4$	46.	0.9	325	$0 \cdot 6$	27.	$0 \cdot 6$	270	$0 \cdot 4$	248
24	$2 \cdot 7$	1,060	1.4	460	$1 \cdot 1$	372	$0 \cdot 6$	270	$0 \cdot 6$	270	0.4	238
25.	$2 \cdot 6$	1,010	$1 \cdot 2$	400	$1 \cdot 0$	348	$0 \cdot 6$	270	0.6	270	$0 \cdot 4$	238
26.	$2 \cdot 6$	1,010	$1 \cdot 0$	348		374	$0 \cdot 6$	270	6.7	288	$0 \cdot 4$	238
27.	$2 \cdot 5$. 960	1.4	460	1.2	400	C. 6	270	$0 \cdot 5$	252	$0 \cdot 6$	238
28	$2 \cdot 6$	1.010	$1 \cdot 4$	460	1.2	40 C	$0 \cdot 6$	270	$0 \cdot 5$	252	$0 \cdot 4$	238
29.	$2 \cdot 6$	1,010	$1 \cdot 5$	500	$1 \cdot 1$	372	$0 \cdot 6$	270	$0 \cdot 5$	252	$0 \cdot 4$	238
30.	$2 \cdot 4$	910	$1 \cdot 6$	540	$1 \cdot 0$	348	0.8	306	$0 \cdot 5$	252	$0 \cdot 4$	238
31.	2.6	1.010	$1 \cdot 4$	460			0.7	288			$0 \cdot 4$	238

Monthly Discharge of Findlay Creek at Canal Flats, for 1914.
Drainage Area, 320 square miles).

	Mosth.	Discharge in Second-Feet.				Res-off.	
		Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on Drainage area.	Total in acre-feet.
April.		860	288	461	1.44	1.61	27,400
May ${ }^{\text {June. }}$	-	1,770 3,950	+ 509	$\stackrel{1,030}{2,000}$	3.22 6.25	3.71 6.97	63,360 119,000
July .		3,950 3,360	1,120	2,000 1,520	$6 \cdot 25$ $5 \cdot 68$	6.97 6.55	119,000 112,400
August..		1,120	400	688	$2 \cdot 15$	2.48	42,300
Septernber.		710	288	392	1.23	1.37	23.300
Oetober...		325 325	270	303	0.95 0.86	1.10	18, 600
November.		325 25	252	${ }_{2}^{275}$	0.86	0.96 0.89	16.400
Deccmber		252		245	(.77	0.89	15, 100

[^84]Horsethief Creek near Wilmer (3008).
Location.- On the east slope of the Selkirk mountains, on traffic bridge, 4 miles from Wilmer, and 1 mile from the mouth. Revelstoke district.

Records Available.-Open season, 1912-13-14; ice measurements, November, 1913, 147 c.f.s.

Climatic Conditions.-The precipitation at the mouth is similar to Wilmer, which, from December 1, 1913, to November 30, 1914, was 15.5 inches, of which about 3 feet was snow. The summers generally are hot in the days and cool in nights. The winters are severe, as low as $-40^{\circ} \mathrm{F}$., some seasons. Frazil ice is evident.

Gauge.-Vertical staff gauge, referred to three bench-marks, nailed to one bridge abutment. Capt. Ch. de Crespigny reads the gauge three times a week.

Channel.-The measuring section is not a desirable one. The control does not appear permanent, and there may be a backwater effect from the Columbia. Accurate measurements may not be obtained.

Discharge Measurements.-Meterings are taken from the bridge. Four measurements were made in 1912, and nine in 1913, and four in 1914.

Accuracy.-A big shift occurred in the early part of July, which made it impossible to publish results after July 15 . The results before July 15 cannot be guaranteed.

Discharge Measurements of Horsethief Creek near Wilmer, B.C., for 1914.
Drainage Area, 170 square miles.)

Jate.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section.	$\begin{aligned} & \text { Mean } \\ & \text { Velocity. } \end{aligned}$	Gauge Height.	Discharge.
				Sq. ft .	Ft. per sec.	Feet.	Sec.-ft.
May 4	D. O'B. G.	1048	85	166	2.17	1.55	$361{ }^{1}$
June 19...	J. A. E.	1909	101	335	7.47	$\cdots \cdot 65$	2. 3 ($)^{1}$
Aug ${ }^{\text {Oct }} 21$	"	1969 1909	89 62	$\stackrel{285}{51.1}$	6.41 +4.49	1.25 0.9	1, 210^{11}

[^85]6. GEORGE V, A. 1916

Daily Gauge Height and Discharge of Horsethief Crcek near Wilmer, B.C., for 1914.

Monthly Discharge of Horsethief Creek near Wilmer, B.C., for 1914.
(Drainage area 170 square miles.)

Hospital Creek (Weir) (3053).
Location.-At dam above intake of old smelter flume, $11 / 2$ miles from Golden. Revelstoke district.

Records Available. October to November, 1914. See miscellaneous measurments.

Climatic Conditions.-Similar to Golden. See Columbia river near Golden.
Weir.-Ten-foot Cippoletti weir.
Accuracy.-Readings are only made once a week by Mr. K. C. Robertson. Accuracy, 20 per cent.

SESSIONAL PAPER No. 25e

Co-operation.-The weir was established by Mr. O. J. Bergoust, Provincial Water Rights Branch. Mr. Bergoust kindly sends us copies of gauge readings.

General.-Hospital creek is a small stream flowing into Columbia river, a mile below Golden. Its only importance is in relation to its being a possible source of a water supply for Golden.

Daily Gauge Height and Discharge of Hospital Creek, near Golden, for 1914.

Monthly Discharge of Hospital Creek, at Golden, B.C., for 1914.
(Drainage area, 18 square miles.)

Illecillewaet River, near Glacier (3010.)

Location.-In township 26, range 26, west 5, at the foot-bridge immediately above the railway bridge, 200 yards from C.P.R. hotel, Glacier. Revelstoke district.

Records Available.-June to December, 1913; open season, 1914.
Climatic Conditions.-The precipitation from December 1, 1913 to November 30,1914 , was $56 \cdot 2$ inches. The snowfall during that period was about 30 feet. The maximum snowfall since 1880 , as recorded by the C.P.R., occurred in the winter of 1912-13, when 45 feet 1 inch of snow fell. The winters are not very severe, being slightly colder than Revelstoke. Frazil ice is to be contended with. The summers are short and the thermometer seldom goes over $85^{\circ} \mathrm{F}$.

Gauge.-Vertical staff, marked in feet and inches, was used till November, when it was replaced by an enamel gauge marked in feet and tenths.

Channel.-The bed is rocky, and, during freshet, the water is very swift. The control appears permanent.

Discharge Measurements.-Twelve were made in 1913, and five in 1914, from foot-bridge near hotel.

Accuracy.-These results, though probably within 20 per cent, are not guaranteed.

Discharge Measurements of Illecillewaet River near Glacier, B.C., for 1914.

Date.	Hydrographer.	$\begin{gathered} \text { Meter } \\ \text { No. } \end{gathered}$	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
June 10.	J. A. E.	1909	36	35	4.29 4.39	0.85	150
July 25.	do	1909	34 34	$52 \cdot 2$ $35 \cdot 2$	$4 \cdot 39$ $3 \cdot 50$ 1	1.20 0.97	229
Sept. Oct. Of	do	1909	34 29	$35 \cdot 2$ 19.95	1.75	$0 \cdot 49$	35
Nov. 19.	do	1909	16	$10 \cdot 5$	$2 \cdot 64$	$0 \cdot 3$	$27 \cdot{ }^{1}$

[^86]SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Illecillewaet River, near Glacier, for 1914

6. GEORGE V, A. 1916

Daily Gauge Height and Discharge of Illecillewaet River, near Glacier, for 1914.-Concluded.

Day.	July.		August.		Scptember.		October.		November.		December.	
	Gauge Height	Discharge	Gauge Height.	Discharge	Gauge Height.	Discharge	Gauge Height.	Discharge.	Gauge Height.	Discharge	Gauge Height.	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec. ft .	Fect.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1.	1.89	37.3	2.48	649	$1 \cdot 64$	285	$0 \cdot 64$	65		48	$0 \cdot 26$	29
2.	$2 \cdot 06$	443	2.48	649	1.56	260	$0 \cdot 56$	56		48	$0 \cdot 26$	29
3	$2 \cdot 31$	560	2-31	560	$1 \cdot 64$	285	$0 \cdot 39$	39		48	$0 \cdot 26$	29
4	$2 \cdot 23$	520	2.06	443	$1 \cdot 56$	260	$0 \cdot 64$	65		47	$0 \cdot 26$	29
5.	$2 \cdot 23$	520	$2 \cdot 31$	560	$1 \cdot 23$	168	$0 \cdot 56$	56		46	$0 \cdot 26$	29
6.	$2 \cdot 31$	560	$2 \cdot 23$	520	$1 \cdot 48$	235	$0 \cdot 56$	56		45	$0 \cdot 26$	29
7.	$2 \cdot \mathrm{C6}$	443	$2 \cdot 06$	443	1.64	285	$0 \cdot 64$	65		44	$0 \cdot 26$	29
8	1.98	409	1.48	235	$1 \cdot 23$	168	$0 \cdot 64$	65		43	$0 \cdot 26$	29
9.	$2 \cdot 06$	443	1.48	235	0.98	117	$0 \cdot 56$	56		42		29
10.	$2 \cdot 31$	560	1.56	260	0.98	117	$0 \cdot 56$	56		41		29
11.	$2 \cdot 39$	602	$1 \cdot 56$	260	0.98	117	$0 \cdot 48$	48		40		29
12.	$2 \cdot 39$	602	$1 \cdot 39$	210	$1 \cdot 06$	132	$0 \cdot 36$	56		40		29
13.	$2 \cdot 39$	602	$1 \cdot 23$	168	0.73	77	$0 \cdot 56$	56		39		29
14.	$2 \cdot 23$	520	1.48	235	0.73	77	$0 \cdot 64$	65		39		29
15.	1.59	373	1.64	285	$0 \cdot 64$	65	0.81	89	$0 \cdot 39$	39		29
16.	1.48	235	1.64	285	$0 \cdot 56$	56	0.73	77	0.39	39		29
17.	1.73	315	1.73	315	0.73	77	$0 \cdot 64$	65	$0 \cdot 39$	39		29
18.	$2 \cdot 23$	520	1.73	315	1.06	132	$0 \cdot 64$	65	$0 \cdot 39$	39		29
19.	2.06	443	1.64	285	0.81	89	$0 \cdot 56$	56	$0 \cdot 36$	37		29
20.	1.73	315	1.64	285	$0 \cdot 56$	56	0.56	56	0.36	37		29
21.	$1 \cdot 48$	235	$1 \cdot 73$	315	$0 \cdot 36$	56	$0 \cdot 39$	39	$0 \cdot 36$	37	$0 \cdot 26$	29
22.	1.48	235	1.56	260	$0 \cdot 64$	65	$0 \cdot 39$	39	0.36	37	$0 \cdot 26$	29
23.	1-48	235	1.56	260	$0 \cdot 64$	65	$0 \cdot 39$	39	$0 \cdot 36$	37	$0 \cdot 21$	26
24	$1 \cdot 39$ $1 \cdot 39$	210 210	1.64 1.73	285 315	0.98 1.06	117 132	0.39 0.39	39 39	$0 \cdot 36$ $0 \cdot 36$	37 37	0.26 0.21	29 26
26.	1.31	188	$1 \cdot 56$	260	$0 \cdot 89$	101	C. 39	39	$0 \cdot 36$	37	0.26	29
27.	1.31	188	$1 \cdot 56$	260	0.89	101	0.48	48	$0 \cdot 31$	33	$0 \cdot 26$	29
28.	1.89	373	1.64	285	$0 \cdot 56$	56	$0 \cdot 48$	48	$0 \cdot 31$	33	$0 \cdot 21$	26
29.	1.89	373	1.64	285	$0 \cdot 56$	56	0.39	39	0.31	33	$0 \cdot 21$	26
30.	$2 \cdot 31$	560	$1 \cdot 64$	285	$0 \cdot 64$	65	$0 \cdot 39$	39	0.26	29	$0 \cdot 16$	23
31.	2.48	649	$1 \cdot 64$	285			$0 \cdot 48$	48			$0 \cdot 16$	23

Monthly Discharge of Illecillewaet River, near Glacier, for 1914.

Month.	Discharge in Second-Feet.		
	Maximum.	Minimum.	Mean.
May..	373	132	262
	693	101	238
July.... -	649	188	413
August	649	168	332
September	285	56	130
	89	39	53.8 35.3
	48	29 23	$3 \mathrm{~S} \cdot 3$ 28.2
Dccember... ${ }^{\text {a }}$ -	29	23	28.2

Ifleecillewaet River near Revelstoke (3009).
Location.-This station is located within 1 mile of the city of Revelstoke, and 1 mile from the mouth of the river; the gauge is located on traffic bridge in SW. $\frac{1}{4}$ section 26, township 23, range 2 , west 6 th ; the measuring section is located on traffic bridge in NE. $\frac{1}{4}$ section 22 , township 23 , range 2, west 6 th.

SESSIONAL PAPER No. 25e

Records Available.-October to December, 1911; May to December, 1912; April to November, 1913; March to November, 1914; Ice measurement, on February 27 th, 1912, gave discharge of 197 c.f.s.; on January, 7 th, 1914, gave 500 c.f.s.

Gauge.-A chain gauge, referred to two bench-marks, is used and read by Miss S. Moran of Revelstoke.

Channel.-Measuring section is half a mile below gauge. The section at the gauge is very fast in high water, and at the measuring section there is a possibility of backwater from the Columbia during high water. The control at the gauge appears permanent.

Discharge Measurements.-Fourteen measurements were made in 1914, and a new curve was plotted.

Accuracy.-All measurements made this year are less than 10 per cent off the curve. Daily gauge readings are obtained but the chain gauge gives some trouble to the reader. The results should be within 15 per cent.

Climatic Conditions.-At Revelstoke the precipitation from December 1, 1913, to November 30, 1914, was approximately $40 \cdot 5$ inches. The snowfall was approximately 10 feet (C.P.R. records), and the precipitation during the months December to March was 18 inches, practically all of which would be snow at higher altitudes. The winters are not very severe, seldom below $10^{\circ} \mathrm{F}$. Frazil ice may be expected. The summers are very hot, sometimes 95° and $100^{\circ} \mathrm{F}$.

Discharge Measurements of Illecillewaet River, near Revelstoke, B.C., for 1914.

[^87]Daily Gauge Height and Discharge of Illecillewaet River, near Revelstoke, for 1914.

SESSIONAL PAPER No. 25e

Daily Gayge Height and Discharge of Illecillewaet River, near Revelstoke, for 1914.

Monthly Discharge of Illecillewaet River, near Revelatoke, for 1914.
(Drainage area, 480 square miles.

Incomappleux River near Beaton (also called Fish Creek) (3030).

Location.-Immediately outside the southern limit of the Railway Belt, 2 miles from the mouth, near Beaton, on the northeast arm, Arrow lakes, Revelstoke district.

Records Available.-May to December, 1914.
Climatic Conditions.- The precipitation is similar at the mouth to that of Revelstoke. The snowfall is very heavy in the hills. The river is glacial fed. The winters are not very severe, as low as $10^{\circ} \mathrm{F}$. Frazil ice may be expected. The summers are hot.

Gauge.-A chain gauge located near his ranch is read daily by Mr. Jas. Burbridge.

Channel.-At the gauge the water is fast, the control has not been studied. The measuring section is satisfactory.

Discharge Measurements.-Six well-distributed measurements were made in 1914.

Accuracy. - The measurements should be fairly accurate, the gauge readings are daily but the gauge is not very reliable.

General.-The Incomappleux river is a stream about 42 miles long. It has its source in the Selkirks behind Glacier, from mountains 8,000 to 10,000 feet high. It flows through a heavily timbered country in which extensive limits are held by the Arrow Lake Lumber Company and the Dominion Saw-mills. There is practically no agricultural land in the whole valley. There are several mining claims, particularly around Cambourne, about 5 miles from the mouth. The stream is swift, from 50 to 100 feet wide, and from 3 feet to 10 feet in depth. The river is not navigable, but is suitable for logging purposes.

Incomappleux River.

General Power Possibilities.-There is a canyon on this river about 22 miles from the mouth. This canyon is about 3,000 feet long, and in it there is a fall of 100 feet. The width varies from 60 to 100 feet at the bottom, and the walls, which are of a broken rock formation, are high and steep.

There is very little natural storage, so, for a large development, artificial storage is required. By installing a very high dam (200 to 400 ft .) at a point in the canyon where the desired rock formation may be obtained, water could be penned back over a large flat on which lies the old townsite of Camborne. With a head of 300 feet and this storage, a probable 24-hour, 12 -months development of $30,000 \mathrm{H} . \mathrm{P}$. could be obtained. This would be an expensive instathation.
small summer industrial power of from 100 to $300 \mathrm{H} . \mathrm{P}$. may be obtained on the following tributaries:-

> Sable creek
> Pool creek
> Lexington ereek
> Boyd creek

The flow in each case is small but high heads may be obtained.

SESSIONAL PAPER No. 25e

Discharge Measurements of Incomappleux River, near Beaton, B.C., for 1914.

Fol. 847

Daily Gauge Height and Discharge of Incomappleux River, near Beaton, for 1914.

Daily Gauge Height and Discharge of Incomappleux, River near Beaton, for 1914-Concluded.

Day.	July.		August.		September.		October		November.		December.	
	Gauge Height	Discharge.	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height.	Discharge	Gauge Height	Discharge.
	Feet.	Sce.-ft !	Feet.	Sec--ft.	Feet.	Sec-ft.	Feet.	Sec.-ft.	Fcet.	Sec.-ft.	Feet.	Sec.-ft.
1.	6.4	6.420	$5 \cdot 8$	5,340	3.80 3.85	2,190	3.85 3.75	2,260	$3 \cdot 35$ $3 \cdot 45$	1,620	$2 \cdot 5$	690
2	$6 \cdot 95$ $7 \cdot 45$	7.460 $8.43 ¢$	$5 \cdot 75$ $5 \cdot 75$	5, 250 5, 250	$3 \cdot 85$ $4 \cdot 10$	2.260 2,610	$3 \cdot 75$ $3 \cdot 50$	2.120 1.800	$3 \cdot 45$ $3 \cdot 3$	1,740 1,560	$2 \cdot 5$ $2 \cdot 4$	690 595
4	7.45	8.430 8,430	5. 3.5	S, 250 4.460	$4 \cdot 10$ $4 \cdot 35$	2,610 2,960	$3 \cdot 50$ $3 \cdot 35$	1,800 1,620	$3 \cdot 3$ $3 \cdot 3$	1,560 1,560	$2 \cdot 4$ $2 \cdot 4$	595
5.	$7 \cdot 55$	8,630	$4 \cdot 95$	3,870	3.95	2,400	$3 \cdot 25$	1,500	$3 \cdot 25$	1,500	$2 \cdot 4$	595
6.	$7 \cdot 25$	8.030	5-35	4,540	$3 \cdot 65$	2,000	$3 \cdot 20$	1,440	$3 \cdot 15$	1,380	$2 \cdot 3$	510
7	$6 \cdot 9$	7,360	$5 \cdot 15$	4,200	$3 \cdot 85$	2,260	$3 \cdot 20$	1,440	$3 \cdot 1$	1,320	$2 \cdot 2$	435
8	$6 \cdot 55$	6,690	$4 \cdot 35$	2,960	$4 \cdot 15$	2,680	$3 \cdot 20$	1,440	$3 \cdot 1$	1,320	$2 \cdot 2$	435
9.	$6 \cdot 35$	6,330	$4 \cdot 0$	2,470	$3 \cdot 65$	2,000	$3+15$	1,380	$3 \cdot 05$	1,260	$2 \cdot 1$	375
10.	$6 \cdot 55$	6,690	$4 \cdot 35$	2,966	$3 \cdot 40$	1,680	$3 \cdot 05$	1,260	$3 \cdot 0$	1,200	$2 \cdot 1$	375
11.	$6 \cdot 75$	7,070	$4 \cdot 14$	2,680	3-75	2,120	$3 \cdot 05$	1,26¢	$3 \cdot 6$	1,200	$2 \cdot 0$	325
12.	$7 \cdot 35$	8,230	$4 \cdot 45$	3,100	$3 \cdot 35$	1,620	$3 \cdot 0$	1,200	$2 \cdot 9$	1,090	$2 \cdot 0$	325
13.	$7 \cdot 25$	8,030	$4 \cdot 65$	3,390	$3 \cdot 15$	1,380	$2 \cdot 95$	1,140	$2 \cdot 9$	1.090	$1 \cdot 9$	320
14	$7 \cdot 10$	7.750	$4 \cdot 85$	3,710	$3 \cdot 1 \mathrm{C}$	1,320	$2 \cdot 85$	1,640	$\stackrel{2}{2} 8$	990	$2 \cdot 1$	320
15.	$7 \cdot 55$	8,630	$4 \cdot 9$	3.790	$3 \cdot 05$	1,260	$2 \cdot 9$	1,090	$2 \cdot 8$	990	Frozen.	320
16.	5-80	5, 340	$4 \cdot 75$	3,550	$2 \cdot 95$	1,140	3.05	1,260	$2 \cdot 6$	790		320
17.	$5 \cdot 35$	4,540	$4 \cdot 8$	3,630	$2 \cdot 90$	1,090	$3 \cdot 5$	1.800	2. 6	790		320
18	$5 \cdot 75$	5,250	$4 \cdot 55$	3,240	$3 \cdot 4 C$	1,680	$3 \cdot 4$	1,680	$2 \cdot 6$	790		320
19.	$6 \cdot 15$	5,970	$4 \cdot 65$	3,390	3.90	2,330	$3 \cdot 35$	1,620	$2 \cdot 6$	790		320
20.	$6 \cdot 15$	5,970	$5 \cdot 05$	4,030	$3 \cdot 40$	1,680	$3 \cdot 25$	1,500	$2 \cdot 6$	790		320
21.	$5 \cdot 05$	4,030	$4 \cdot 9$	3,790	$3 \cdot 25$	1.500	3.05	1,260	$2 \cdot 6$	790		320
22.	$4 \cdot 5$	3,170	$4 \cdot 8$	3,630	$3 \cdot 10$	1,320	$2 \cdot 9$	1,090	$2 \cdot 6$	790		320
23.	$4 \cdot 45$	3, 100	$4 \cdot 10$	2,610	$3 \cdot 15$	1,380	$2 \cdot 9$	1.690	$2 \cdot 6$	790		320
24.	$4 \cdot 9$	3,790	$4 \cdot 10$	2,610	$3 \cdot 35$	1,620	$2 \cdot 85$	1.040	$2 \cdot 6$	790		320
25.	$4 \cdot 85$	3,710	$4 \cdot 10$	2,610	$3 \cdot 45$	1,740	$2 \cdot 8$	990	$2 \cdot 6$	790		320
26.	$4 \cdot 5$	3,170	$4 \cdot 20$	2,750	$3 \cdot 70$	2,060	$2 \cdot 8$	990	$2 \cdot 7$	890		320
27.	$4 \cdot 4$	3,030	$4 \cdot 30$	2,890	$4 \cdot 35$	2,960	$2 \cdot 8$	990	$2 \cdot 7$	890		320
28.	$4 \cdot 65$	3,390	$4 \cdot 40$	3,030	3-65	2,000	$2 \cdot 75$	940	$2 \cdot 7$	890		320
29.	$4 \cdot 55$	3,240	$4 \cdot 20$	2,750	$3 \cdot 45$	1,740	$2+7$	890	$2 \cdot 6$	790		320
30.	$5 \cdot 1$	4.120	$4 \cdot 20$	2,750	$3 \cdot 45$	1,740	$3 \cdot 15$	1,380	$2 \cdot 6$	790		320
31.	$5 \cdot 65$	5,070	$3 \cdot 85$	2,260			$3+25$	1,500				320

Monthly Discharge of Incomappleux River, near Beaton, for 1914.

- Drainage area 460 square miles.)

Month.	Discharge in Second-Feet.				Run-Off.		
	Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on Drainage area.	Total in acre-fect.	Accuracy
May..	4,710				8.72		
June	7,560	3,100	5,040	10.9	$12 \cdot 2$	$300,000$	C
July	8,630	3,030	5,840	$12 \cdot 7$	$14 \cdot 6$	$359,000$	C
August	5,340	2,260	3,470	$7 \cdot 54$	$8 \cdot 69$	213.000	B
Scptember	2,960	1,090	1,890	$4 \cdot 10$	$4 \cdot 57$	112.000	B
October.	2,260	890	1,360	2.96	$3 \cdot 41$	83,600	B
November.	1.740	790	1,060	$2 \cdot 30$	2.57	$63,100$	
December... ...	690		400	0-87	1.00	24,600	

Kícking Horse River near Golden (3011).
Location.-In NE. 1/4, section 12, township 27, range 22, west 5 th, on traffic bridge, in the town of Golden, Revelstoke district.

Records Available.-Open season, 1912, 1913, and 1914. Metering under ice conditions, February 22, 1912, 172 c.f.s. Metering under ice conditions February 28, 1914, 276 c.f.s.

SESSIONAL PAPER No. 25e
Climatic Conditions.-The precipitation at Golden, from December 1, 1913, to November 30, 1914, amounted to about 14 inches. This may be considered lighter than usual. The snowfall was 3 or 4 feet. The summers are hot and quite dry, while the winters are very severe, the temperature, some seasons, going down to $-50^{\circ} \mathrm{F}$. for a night. Frazil ice will be found in the Kicking Horse at this point, as well as practically up to its source.

Gauge.-A vertical staff gauge is used, and read two or three times daily by Mr. W. Wenman, of Golden.

Channel.-Straight for 200 yards above and below the station. Control is a sand bar about 100 yards down stream from section.

Discharge Measurements. - Ten were made in 1911-12, five in 1913, and six in 1914.

Accuracy.-The channel has shifted slightly since 1913, and a new curve was plotted for 1914. The measurements are accurate, the curve only fair, and the gauge readings are very reliable. The results should be within 10 per cent.

Discharge Measurements of Kicking Horse River, near Golden, B.C., for 1914.

Date.	Hydrographer.	$\begin{gathered} \text { Meter } \\ \text { No. } \end{gathered}$	Width.	Area of Section.	Mean Velocity:	Gauge Height	Discharge.
			Feet.	Sq. ft .	Ft. per sec.	Feet.	Sec.-ft.
Feb. 28.	C. E. Webb	1,048	126	283.6	0.98		${ }_{3}^{2.7801}$
June 11	J. A.E.	1,909	180	$644 \cdot 0$	5.51	4.25	3,550
July 28		1.909	155	605.0 692.0	5.12	4.10	3.100
Aug. 6.	"	1,909	155	692.0	5.94	4.50	4.110
Sept. 11		1.927	88	391.0	$\begin{array}{r}3.30 \\ \hline 2.77\end{array}$	$\stackrel{2.9}{2}$	1. 290
Oct. 14	C. E. R	1,929	81	$329 \cdot 0$	2.77	$2 \cdot 32$	912

[^88]6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Kicking Horse River, near Golden, for 1914.

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Kicking Horse River, near Golden, for 1914-Concluded.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height	Discharge	Gauge Height.	Discharge.	Gauge Height.	Discharge	Gauge Height	Discharge	Gauge Height.	Discharge.	Gauge Height	Discharge.
	Feet.	Sec.-ft.										
1	5-3	6. 120	4-61	4.410	$3 \cdot 65$	2,369	3.08	1,520	$2 \cdot 0$	615	1.69	370
2	$5 \cdot 67$	7.070	$4 \cdot 61$	4.410	$3 \cdot 70$	2,440	3.05	1,480	$2 \cdot 05$	617	1.60	370
3.	$5 \cdot 8$	7,430	$4 \cdot 75$	4.750	$3 \cdot 70$	2,440	$2 \cdot 90$	1,330	$2 \cdot 0$	615	1.80	4.5
4	$5 \cdot 97$	7,910	$4 \cdot 55$	4,270	$3 \cdot 80$	2,630	2.90	1,330	$2 \cdot 0$	615	1.68	418
5.	5.9	7,710	$4 \cdot 35$	3.800	3.60	2,270	2.79	1,230	$2 \cdot 0$	615	1.52	330
6	$5 \cdot 9$	7.710	$4 \cdot 5$	4,150	$3 \cdot 20$	1,660	$2 \cdot 60$	1.060	1.95	582	1.62	382
7.	$5 \cdot 7$	7,150	$4 \cdot 55$	4,270	$3 \cdot 37$	1,900	$2 \cdot 69$	1.060	1.9	550	$1 \cdot 56$	350
8	$5 \cdot 4$	6,370	3.97	2,970	$3 \cdot 51$	2,120	2.50	980	1.87	530	1.4	280
9	$5 \cdot 3$	6,120	$3 \cdot 75$	2,540	$3 \cdot 15$	1,600	$2 \cdot 75$	1.200	1.9	530	Ice.	250
10.	$5 \cdot 2$	5,860	$3 \cdot 57$	2,220	$2 \cdot 80$	1,240	$2 \cdot 70$	1,150	1.85	517		230
11	$5 \cdot 35$	6,240	$3 \cdot 6$	2,270	2. 80	1,240	$2 \cdot 5$	980	1.85	517		210
12	$5 \cdot 35$	6,240	$3 \cdot 82$	2,670	2.77	1,210	$2 \cdot 52$	996	1.35	517		200
13.	$5 \cdot 75$	7.290	$4 \cdot 02$	3,070	$2 \cdot 57$	1,040	$2 \cdot 4$	900	1.8	4×5		200
14	5.67	7.070	4-2	3,460	$2 \cdot 50$	980	$2 \cdot 35$	865	1.72	441		200
15.	5-65	7,020	3.9	2,820	$2 \cdot 45$	940	$2 \cdot 35$	865	1-45	300		200
16	$5 \cdot 07$	5,520	3.94	2,900	$2 \cdot 40$	900	$2 \cdot 35$	865	1.14	185		200
17	4-85	4,990	$3 \cdot 96$	2,950	$2 \cdot 30$	830	$2 \cdot 35$	865	1.35	260		200
18.	4.95	5,230	$3 \cdot 9$	2,820	2.45	940	$2 \cdot 35$	865	1.5	320		200
19.	$4 \cdot 89$	5,090	$3 \cdot 8$	2,630	$3 \cdot 35$	1,880	$2 \cdot 35$	865	1.5	320		200
20.	$5-2$	5,860	$4 \cdot 1$	3,240	$2 \cdot 85$	1,280	$2 \cdot 35$	865	1.5	320		200
21.	4.78	4,820	$4 \cdot 14$	3,330	$2 \cdot 45$	940	$2 \cdot 31$	837	$1 \cdot 6$	370		200
22	$4 \cdot 27$	3,610	$4 \cdot 27$	3,610	$2 \cdot 50$	950	$2 \cdot 10$	680	1.75	458		200
23.	$4 \cdot 05$	3,140	4.00	3,030	2.50	980	$2 \cdot 10$	680	1.75	45.		200
24	$4 \cdot 25$	3,570	3.75	2,540	2. 52	996	$2 \cdot 07$	660	1.75	458		200
25.	$4 \cdot 27$	3,610	3. 50	2,100	$2 \cdot 70$	1,150	$2 \cdot 02$	623	$1 \cdot 67$	412		200
26	$4 \cdot 1$	3,240	3.75	2.540	$3 \cdot 05$	1,480	$2 \cdot 0$	615	$1 \cdot 65$	400		200
27	$4 \cdot 02$	3,070	$3 \cdot 94$	2,910	$3 \cdot 60$	2,270	$2 \cdot 0$	615	1.65	400		200
28	$4 \cdot 02$	3,070	$3 \cdot 88$	2,780	$3-25$	1,730	1.95	582	1.65	400		210
29	$4 \cdot 27$	3,610	4.00	3,030	3.20	1,660	1.94	576	1.62	3×2		2017
30.	$4 \cdot 25$	3,570	3.88	2,780	$2 \cdot 95$	1,380	1.92	563	$1 \cdot 62$	382		200
31	4.46	4,110	$3 \cdot 75$	2,540			$2 \cdot 0$	615				2(6)

Monthly Discharge of Kicking Horse River, near Golden, for 1914.
(Draingae area, 700 square miles.)

Month.	Discharor in second-Fert.				Rt'selff.	
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { Mile } \end{aligned}$	Depth in inches on Drainage Ares	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { Acre-feet } \end{gathered}$
	3, 31×1	1,040	2. 220	$3 \cdot 17$	$3 \cdot 66$	136, (4x)
June	8.5111	3,030	5,140	7-34	8. 19	3166 , (8x)
July	7.916	3,070	5, 4ti4	7 ml	- 99	335 , t6es
August. 1	4.750	2, 100	3, \|til)	+-51	5-20	194. (44)
September	2,630	830		≥ 11	2.35	As. 10 kl
Getosher	1.53)	563	914	130	1) 50	36,264
Novemlar	647	185	45.4	0.65	0.72	97. (4x)
December	4 K 5		24.	0.35	(0.40	15, 20x1

[^89]Kicking Horse River, near Field (3012).
Location.-In township 28, range 18, west 5th, below the mouth of Yoho river, on the first traffic bridge, $31 / 4$ miles east of Field. Revelstoke district.

Records Available.-June to November, 1912 and 1913; June to December, 1914.

Climatic Conditions.-The precipitation at Field is considerably greater than at Golden, (see Kicking Horse, near Golden), but much less than at Glacier, (see Illecillewaet river, near Glacier). The summers are short, with some very hot days, and nights generally cool. The rainfall in the summer months varies greatly, but is generally much less in July and August than in June. The winters are cold, with occasional severe storms, as low as $50^{\circ} \mathrm{F}$. some seasons. The river near Field is generally frozen for three or four months, and frazil ice is always to be contended with.

Gauge.-A chain gauge is used, and read three times a week by Mr. Alex. Stuart, of Field.

Channel.-The channel is straight for 50 yards above and below the station, the water is very swift during freshet, the control is fairly permanent, but shifted slightly in 1914.

Discharge Measurements.-Eight well-distributed measurements in 1912, eight in 1913, and five in 1914, were made from the traffic bridge abovementioned.

Accuracy.-A slight shift in the channel was noted, but the 1912 curve was still used. The gauge is read only two or three times a week, and during the summer the data cannot be guaranteed within 20 per cent. Later in the fall the results should be within 15 per cent.

Discharge Measurements of Kicking Horse River, near Field, B.C., for 1914.

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
June 14	J. A. E.	1,909	72	218	6.41	5.6	1,410
Sept. 21.	C. E. R	1,927	55	116	$2 \cdot 35$	$4 \cdot 10$	272
Oct. 16...	J. A. E.	1,909	52	103	$1 \cdot 93$	$3 \cdot 65$	199
Sept. $12 \ldots$./	1,927	60 75	137	$2 \cdot 84$ 6.49	$4 \cdot 3$ $5 \cdot 5$	390 1.470
July 29	"	1,909	75	227	$6 \cdot 49$	$5 \cdot 5$	1,470

SESSIONAL PAPER No. 25e

Daily Gauge Height and Discharge of Kicking Horse River, near Field, for 1914.

	DAr.

6. GEORGE V, A. 1916

Daily Gauge Height and Discharge of Kicking Horse River, near Field, for 1914-(Con.)

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge.	Gauge Height.	Discharge	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge	Gauge Height.	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec. -ft .	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1.		1,860		2,530	$5 \cdot 50$	1,180		260	$3 \cdot 4$	140	$3 \cdot 1$	110
2	$6 \cdot 2$	2,260	$6 \cdot 45$	2,660	$5 \cdot 50$	1,180		245		135		110
3	$6 \cdot 55$	2,840	$6 \cdot 2$	2,260	$5 \cdot 55$	1,250		230	$3 \cdot 3$	130	$3 \cdot 1$	110
4	$6 \cdot 6$	2,920	$6 \cdot 3$	2,420	$5 \cdot 50$	1,180	$2 \cdot 90$	215		130		110
5.	$6 \cdot 45$	2,660		2,260		1,020	$3 \cdot 90$	215	$3 \cdot 3$	130		110
6	6. 5	2,750	$6 \cdot 1$	2,100	$5 \cdot 25$	862		215	$3 \cdot 3$	130		110
7	6.55	2,840	$5 \cdot 9$	1,780	$5 \cdot 45$	1,110	$3 \cdot 90$	215		130		110
8	$6 \cdot 25$	2,340		1,352		770	$4 \cdot 20$	275	$3 \cdot 3$	130		110
9	$6 \cdot 25$	2,340	$5 \cdot 3$, 925	$4 \cdot 65$	425	$4 \cdot 15$	265		130		110
10.	$6 \cdot 3$	2,420		1,050	4.45	345		240	$3 \cdot 3$	130		110
11		2,700	$5 \cdot 5$	1,180	$4 \cdot 40$	330		220		125		110
12.		2,980	$5 \cdot 6$	1,320		292	$3 \cdot 8$	200	3.2	120		110
13.	6.8	3,260		1,630	$4 \cdot 10$	255	$3 \cdot 75$	192	$3 \cdot 2$	120		110
14	$6 \cdot 8$	3,260	$6 \cdot 0$	1,940	$4 \cdot 55$	380		200		130		110
15	$6 \cdot 7$	3,090		1,700		298	$3 \cdot 85$	208		139		110
16		2,680	$5 \cdot 7$	1,470	$3 \cdot 90$	215	3.8	200	$3 \cdot 45$	148		110
17	$6 \cdot 2$	2, 260	$5 \cdot 7$	1,470	3.75 3.95	192		192		144		110
18		2,420	$5 \cdot 7$	1,470	3.95	225	$3 \cdot 7$	185	$3 \cdot 4$	140	110
19.	$6 \cdot 4$	2,580		1,660		220		178		135		110
20.	$6 \cdot 4$	2,580	$5 \cdot 95$	1,860		214	$3 \cdot 6$	170	$3 \cdot 3$	130		110
21		1,950	$5 \cdot 9$	1,780	$3 \cdot 85$	208		159		125	.	110
22	5-6	1,320		1,620	3.80 3.80	200	$3 \cdot 45$ 3.45	148	$3 \cdot 2$	120	110
23.	$5 \cdot 4$	1,050	5.7	1,470	3.80	200	$3 \cdot 45$	148		115	110
24	$5 \cdot 6$	1,320	$5 \cdot 45$	1,110	4.00	235		148	$3 \cdot 1$	110	.	110
25		1,250	$5 \cdot 55$	1,250	$4 \cdot 20$	275	$3 \cdot 45$	148		110		110
26.	$5 \cdot 5$	1,180		1,350		290	$3 \cdot 40$	140	$3 \cdot 1$	110	$3 \cdot 1$	110
27.	$5 \cdot 5$	1,180		1,450		300		135		110	$3 \cdot 0$	100
28	$5 \cdot 5$	1,180	$5 \cdot 75$	1,550	$4 \cdot 35$	315		130	$3 \cdot 1$	110		100
29	$5 \cdot 8$	1,620		1,450	$4 \cdot 30$	300	$3 \cdot 25$	125		110	$3 \cdot 0$	100
30.	$6 \cdot 2$	2,260		1,360	$4 \cdot 20$	275	$3 \cdot 35$	135		110		100
31.		2,400		1,270				138				100

Monthly Discharge of Kicking Horse River at Field, for 1914.
(Drainage area, 130 square miles.)

Month.	Discharge in Second-Feet.				Run-Off.		Accuract.
	Maximum.	Minimum.	Mean.	$\begin{gathered} \text { Per } \\ \text { square } \\ \text { mile. } \end{gathered}$	Depth in inches on Drainage area.	Total in acre-feet.	
June..	2,180	560	1,500	11.5	12.8	89,300	
July.....	3,260	1,050	2,250	17.3	19.9	138,000	D
August	2,660	-925	1,770	13.6	$15 \cdot 7$	109,000	C
September	1,250	192	- 485	3.73	4.16	28,900	C
October....	- 275	125	196	1.51	1.74	12,100	C
November.	148	110	126	0.97 0.83	1.08 0.96	7,500	C
December..	110	100	108	$0 \cdot 83$	0.96	6,640	

Kicking Horse River near No. 2 Tunnel (3013).
Location.-In township 28, range 18, west 5th, above mouth of Yoho river, immediately above C.P.R. bridge over the Kicking Horse between Nos. 1 and 2 tunnels, 5 miles east of Field. Revelstoke district.

Records Available.-July to October, 1912; April, 1913, to December, 1914.

SESSIONAL PAPER No. 25e

Climatic Conditions.-Similar to Field, with possibly a little more snow.
Gauge.-An enamel iron vertical staff gauge is used, and read twice daily by Mr. C. E. Hamilton, of Field. This gauge is situated immediately above C.P.R. bridge, between Nos. 1 and 2 tunnels.

Channel.-Channel is straight for 25 yards above and below the section. The control is not permanent.

Discharge Measurements.-Twelve measurements were made in 1912-13, and six in 1914. A shift occurred in 1914 and a new curve was plotted.

Accuracy. - The measuring section at high water is not very satisfactory. The control below the gauge is not permanent. The results, though probably within 20 to 25 per cent, are not guaranteed.

Discharge Measurements of Kicking Horse River, near No. 2 Tunnel, near Field, B.C., for 1914.

	Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity:	Gauge Height.	Discharge.
				Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
June	$14 .$.	J. A. E...	1.909	23	69	$5 \cdot 84$	3.40	${ }_{1}^{1403}$
July	29	"	1,909 1,909	20	51.1 57.8	$5 \cdot 16$ $5 \cdot 16$	1.95 2.15	1264 1300
Aug.		C. E. R.	1,909 1,927	18 57	57.8 39.2	$5 \cdot 16$ $2 \cdot 76$	2.15 1.20	1300 ${ }^{1} 108$
*.	12	J. A. E...	1,927	14	28.6	$3 \cdot 19$	1.20	191.4
Oct.	16...	"	1,909	14	$27 \cdot 2$	3.08	0.95	${ }^{153.8}$

[^90]${ }^{2}$ Wading, different section.

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Kicking Horse, River near No. 2 Tunnel, near Field, B.C., for 1914.

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Kicking Horse River, near No. 2 Tunnel, Field, B.C., for 1914-Concluded.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height	Discharge	Gauge Height.	Discharge.	Gauge Height.	Dis. charge	Gauge Height.	Discharge	Gauge Height	Discharge	Gauge Height.	Discharge
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feat.	See.-ft.	Feet.	see. -ft .
1.	3.05	3.56	$2 \cdot 25$	328	1.55	166	1.4 ?	138	0.7	40	$0 \cdot 6$	
2	$3 \cdot 3$	4.3	$2 \cdot 35$	356	1.45	147	1.40	138	0.7	40	$0 \cdot 6$	31
3.	$3 \cdot 5$	440	$2 \cdot 3.5$	356	$1 \cdot 45$	147	1.30	121	0.7	$4)$	c. 6	31
4.	3.5	440	$2 \cdot 4$	367	1.45	147	1.3C	121	$0 \cdot 7$	40	$0 \cdot 6$	31
5.	$3 \cdot 25$	394	$2 \cdot 1$	290	$1 \cdot 45$	147	1-20	105	0.7	40	$0 \cdot 6$	31
6.	$3 \cdot 2$	384	$2 \cdot 1$	290	$1 \cdot 30$	121	$1 \cdot 20$	105	$0 \cdot 7$	4)	0.6	31
7.	$3 \cdot 1$	365	$2 \cdot 15$	3 C 2	$1 \cdot 30$	121	$1 \cdot 15$	98	C. 6	31	$0 \cdot 6$	31
8	$2 \cdot 9$	329	1.95	254	$1 \cdot 3 \mathrm{C}$	121	$1 \cdot 25$	113	0.6	31	$0 \cdot 6$	31
9.	$2 \cdot 85$	320	1.7	197	1-30	121	$1 \cdot 30$	121	$0 \cdot 6$	31	0.6	31
10.	3.05	3.56	$1 \cdot 55$	166	1.20	105	$1 \cdot 25$	113	C. 6	31	$0 \cdot 6$	31
11.	$3 \cdot 05$	356	$1 \cdot 6$	176	$1 \cdot 25$	113	$1 \cdot 1$	90	$0 \cdot 6$	31	$0 \cdot 6$	31
12.	$3 \cdot 2$	384	1.6	176	1.20	105	$1+1$	90	$0 \cdot 6$	31	$0 \cdot 6$	31
13.	$3 \cdot 4$	421	1.7	197	$1 \cdot 10$	90	$1 \cdot 1$	931	$0 \cdot 6$	31	0.6	31
14	$3 \cdot 35$	412	1.8	219	$1 \cdot 10$	97	1.e	76	0.6	31	0.6	31
15.	$3 \cdot 35$	412	$1 \cdot 8$	219	1.00	76	1.0	76	C. 6	31	$0 \cdot 6$	31
16.	$2 \cdot 75$	362	1.75	208	1.00	76	1-0	76	$0 \cdot 6$	31	$0 \cdot 6$	
17.	$2 \cdot 45$	250	1.75	208	C. 90	63	1.0	76	$0 \cdot 6$	31	C. 6	31
18	$2 \cdot 45$	250	1.75	208	0.90	63	1.0	76	C. 6	31	0.6	31
19.	$2 \cdot 65$	284	1.75	208	1.20	105	1.0	76	0.6	31	$0 \cdot 6$	31
20.	3.00	347	1.85	230	1.25	113	0.9	63	$0 \cdot 6$	31	0.5	24
21.	$2 \cdot 40$	367	$1 \cdot 9$	242	$1 \cdot 25$	113	C. 9	63	$0 \cdot 6$	31	6-5	24
22.	$2 \cdot 05$	278	2,1	290	1.2 C	105	$0 \cdot 8$	51	C. 6	31	$0 \cdot 4$	19
23.	1.85	230	1.9	242	$1 \cdot 15$	98	0.8	51	$0 \cdot 6$	31	0.4	19
$24 \ldots$	1.90	242	1.75	208	1.30 1.30	121	$0 \cdot 8$	51	0.6	31	$0 \cdot 4$	19
$25 . \ldots$	2.00	265	1.7	197	1.30	121	$0 \cdot 8$	51	$0 \cdot 6$	31	$0 \cdot 4$	19
26.	1.95	254	1.7	197	$1 \cdot 45$	147	0.8	51	0.6	31	$0 \cdot 4$	19
27.	1.85	230	1.7	197	1.85	230	C. 8	51	0.6	31	6.4	19
28.	1.9	242	1.7	197	$1 \cdot 65$	186	0.7	40	$0 \cdot 6$	31	$0 \cdot 4$	19
29.	1.95	254	1.7	197	$1 \cdot 45$	147	$0 \cdot 7$	40	0.6	31	$0 \cdot 4$	19
30.	$1 \cdot 95$	254	1.70	197	1.41)	138	0.7	40	$0 \cdot 6$	31	(1)-4	19
31.	$2 \cdot 25$	328	1.65	186			0.7	40			$6 \cdot 4$	19

Monthly Discharge of Kicking Horse River, near Field, B.C., for 1914.
Drainage area, 50 square miles. No. 2 Tunnel.

Location.-No. 2 creek flows easterly into Columbia river from the Selkirk range, about 6 miles from Wilmer. The gauging station is located about 1 mile from the mouth, on the highway bridge on road from Wilmer to Forster's Landing.

Records Available.-June to October, 1912; May to October, 1913; April to November, 1914.

Climatic Conditions.-The precipitation at the mouth is similar to that at Wilmer, which from December 1, 1913, to November 30, 1914, was 15.5 inches. The summers are hot, cool nights, and very dry, almost semi-arid. The winters are about four and one-half months long, and, at times, very severe. In 1911 the temperature was as low as $-33^{\circ} \mathrm{F}$. Frazil ice is prevalent.

Gauge.-A staff gauge is used, and read by Mrs. Colin Mackay of Morinish Ranch, Wilmer.

Channel.-Not satisfactory. Water swift and broken. A new statiou has been established at the bridge on the upper road which will be used in 1915.

Discharge Measurements.-Four measurements were made in 1914, and thirteen in 1912 and 1913.

Accuracy.-Due to the poor section the measurements are not guarantecd.

Discharge Measurements of No. 2 Cree'k, near Forsters' Landing, for 1914.

| Date. |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

[^91]SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge at No. 2 Creek, near Forster's Landing, for 1914.

	Day.	April.		May.		June.	
		Gauge Height	Discharge	Gauge Height	Dis-	Gauge Height	Discharge
		Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.ft.
				0.0 0.1	216 252	0.8 1.0	
3.				${ }_{0} 3$	${ }_{328}^{252}$	1.6	620 967
4.				0.2	290	2.0	1,380
5.				$0 \cdot 2$	290	1.5	895
6.				$0 \cdot 1$	252		760
7.				$0 \cdot 2$	290	1.0	620
8.					252	. 9	574
9.				$0 \cdot 3$	328	. 8	530
10.				$0 \cdot 3$	328	. 9	574
11.				0.4	367	$1 \cdot 1$	
12.				0.4	367	$1 \cdot 1$	667
13.				0.5	407	$1 \cdot 3$	774
14				0.5	407	1.5	895
15.				0.7	488	1.9	1,260
16.				0.9	574	$2 \cdot 1$	1.520
17.		-0.2	145	0.8	530	$2 \cdot 4$	1.980
18.		-0.2	145	0.7	488	2.4	1.980
19.		-0.2	145	0.7	488	2.0	1,380
20.		-0.0	216	$0 \cdot 6$	447	1.8	1,160
21.		-0.1	180	0.6	447	$1 \cdot 6$	
22.		-0.1	180	0.7	488	$1 \cdot 3$	774
23.		-0.1	180	0.7	488	1.1	
24.		-0.1	180	$0 \cdot 9$	574	1.0	620
25.		-0.1	180	1.0	620	$1 \cdot 3$	774
26.		-0.1	180	0.9	574	1.3	774
27.		-0.1	180	0.7	488	1.3	774
28		-0.1	180	$0 \cdot 6$	447	1.5	895
29.		$0 \cdot 0$	216	0.5	407	1.6	967
30.	.	0.0	216	0.4	367	1.6	967
31.				$0 \cdot 6$	447		

6 GEORGE V, A. 1916
Daily Galge Height and Discharge at No. 2 Creek, near Foster's Landing, for 1914.-Concluded.

Monthly Discharge of No. 2 Creek, near Forster's Landing, for 1914.
(Drainage area, 120 square miles.)

Month.	Discharge in Second-Feet.				Res-Off.	
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	Total in acre-feet.
April.	216		151	$1 \cdot 26$	1.41	8,980
May.	620	216	411	$3 \cdot 42$	$3 \cdot 94$	25,300
June .	1,980	530	+930	$7 \cdot 75$	$8 \cdot 65$	55,300
July .	3,220	830	1,570	13.1	$15 \cdot 1$	96,500
August....	1,260	- 530	730	$6 \cdot 08$	7.01	44,900
September	- 574	290	412	$3 \cdot 43$	$3 \cdot 83$	24.500
October	328	252	277	$2 \cdot 31$	2.66 1.92	17,000 12,300
November. . . ${ }^{\text {a }}$ (tur	290		206	1.72	1.92	12,300

Location.-At highway bridge on Golden to Windermere road. About 1 mile from mouth. Revelstoke district.

Records Available.-July 20 to December 31, 1914.
Climatic Conditions.-Summer is hot, with cool nights. Slightly more precipitation than at Invermere. The winter is of about four and one-half month's duration. Minimum temperature is as low as $-40^{\circ} \mathrm{F}$. The creek seldom freezes over.

Gauge.-Vertical staff gauge, read by Mr. J. A. McCullough.
Channel.-Sandy and shifting. Several shifts occurred from April to July, 1914.

Discharge Measurements.-Eight measurements were made in 1914.
Co-operation.-This station was maintained in 1914 by co-operation between the British Columbia Hydrographic Survey and the Provincial Water Rights Branch.

Accuracy.-Owing to serious shifts in the channel the data cannot be guaranteed.

General.-Sinclair creek rises in the westerly slope of the Rockies and flows through Sinclair pass to Columbia river, into which it empties about 12 miles below Windermere lake. About $21 / 2$ miles above the mouth it receives the waters of the Sinclair Hot Springs, which have a warming influence upon it. The use of the water of Sinclair creek is practically confined to irrigation. The drainage area is 30 square miles.

Discharge Measurements of Sinclair Creek, near Sinclair, B.C., for 1914.

Date.	Hydrographer.	Meter	Width.	Area of Section.	Mean Velocity:	Gauge Height.	Discharge.
1914.			Feet.	siq. ft .	Ft . per sec.	Feet.	Sere.ft.
April 18	O. J. B. (Prov.)		16.0	16.90	1-72	1.02	29.60
May 5.	1). O, B. G	1048	$16 \cdot 0$	26.7	3-610	1.45	96.20
May. 25.	J. K. B. (Prov.)		16.0	27.54	4.93	1.71	135.80
June 25	J. A. F	19.9	18.0	34.0	$4 \cdot 21$	2.45	143.100
July 21	(). J. 13		$16 \cdot 0$	$21 \cdot 37$	$2 \cdot 42$	1.4	51.50
Aug. 3	J. A. E	19.9	16.0	18.90	$2 \cdot 07$	1.810	39) 30
Aug. 24	J. K. B. (Prov).		16.0	16.72	1.80	1.62	3) 10
Sept. 21.	(1) do do	-18\%	16.7	17.84	$2 \cdot 04$	1.74	$36 \cdot 40$
Sept 28.	O. J. B. (Prov.)		$16 \cdot 0$	17.77	$1 \cdot 311$	1.76	$32 \cdot 10$

[^92]6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Sinclair Creek, near Sinclair, for 1914.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge.						
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	See.ft.	Feet.	Sec.-ft.
1.			1.8	$40 \cdot 0$	$1 \cdot 6$	27.0	1.7	33.2	$1 \cdot 65$	$30 \cdot 1$	1.5	21.3
2			1.7	33.2	$1 \cdot 6$	$27 \cdot 0$	1.7	33.2	$1 \cdot 67$	31.5	1.5	$21 \cdot 3$
4			1.8 1.8	$40 \cdot 0$ $40 \cdot 0$	$1 \cdot 5$	$21 \cdot 3$	1.7 1.7	$33 \cdot 2$ $33 \cdot 2$	1.67 1.67 1	31.5 31.5	1.5	21.3 21.3
5.			1.8	40.0	1.5	21.3	1.7	$33 \cdot 2$	1.67	31.5	$1 \cdot 5$	21.3
6.			1.7	33.2	$1 \cdot 5$	21.3	1.7	$33 \cdot 2$	$1 \cdot 67$	31.5	$1 \cdot 5$	$21 \cdot 3$
7			1.8	$40 \cdot 0$	1.5	21.3	1.7	$33 \cdot 2$	1.67	31.5	$1 \cdot 5$	21.3
8.			1.8	$40 \cdot 0$	1.6 1.6	27.0	1.7	$33 \cdot 2$	$1 \cdot 67$	31.5	$1 \cdot 5$	$21 \cdot 3$
10.			1.7 1.7	$33 \cdot 2$ $33 \cdot 2$	1.6	$27 \cdot 0$ $21 \cdot 3$	$1 \cdot 7$ 1.7	$33 \cdot 2$ $33 \cdot 2$	$1 \cdot 67$ $1 \cdot 67$	31.5 31.5	$1 \cdot 5$ 1.5	$21 \cdot 3$ 21.3
11.			1.7	$33 \cdot 2$	$1 \cdot 5$	$21 \cdot 3$	1.7	$33 \cdot 2$	1.67	$31 \cdot 5$	$1 \cdot 5$	21.3
12.			1.7	$33 \cdot 2$	1.5	21.3	1.7	33.2	1.67	31.5	$1 \cdot 5$	$21 \cdot 3$
13			$1 \cdot 7$	$33 \cdot 2$	1.5	21.3	1.7	$33 \cdot 2$	1.67	31.5	$1 \cdot 5$	21.3
14.			1.7	33.2	$1 \cdot 5$	21.3	1.7	$33 \cdot 2$	1.65	$30 \cdot 1$	$1 \cdot 5$	21.3
15.			1.7	$33 \cdot 2$	$1 \cdot 5$	$21 \cdot 3$	1.7	$33 \cdot 2$	1.65	$30 \cdot 1$	1.5	$21 \cdot 3$
16.			1.7	33.2	$1 \cdot 6$	27.0	1.7	$33 \cdot 2$	$1 \cdot 65$	$30 \cdot 1$	$1 \cdot 5$	21.3
17.			$1 \cdot 6$	27.0	1.6	27.0	1.7	$33 \cdot 2$	$1 \cdot 65$	$30 \cdot 1$	1.5	21.3
18.			$1 \cdot 6$	$27 \cdot 0$	1.6	27.0	1.7	$33 \cdot 2$	1.65	$30 \cdot 1$	1.5	$21 \cdot 3$
19.	$2 \cdot 0$	55.8	$1 \cdot 6$	$27 \cdot 0$	$1 \cdot 6$	27.0	1.7	$33 \cdot 2$	$1 \cdot 60$	$27 \cdot 0$	1.4	$16 \cdot 6$
20.	$2 \cdot 0$	55.8	$1 \cdot 6$	$27 \cdot 0$	$1 \cdot 6$	$27 \cdot 0$	$1 \cdot 7$	$33 \cdot 2$	$1 \cdot 60$	27.0	$1 \cdot 4$	$16 \cdot 6$
21.	$2 \cdot 0$	$55 \cdot 8$	$1 \cdot 6$	$27 \cdot 0$	1.7	$33 \cdot 2$	1.7	$33 \cdot 2$	$1 \cdot 60$	27.0	$1 \cdot 4$	$16 \cdot 6$
22.	$2 \cdot 0$	$55 \cdot 8$	$1 \cdot 6$	$27 \cdot 0$	1.7	$33 \cdot 2$	1.7	$33 \cdot 2$	$1 \cdot 6$	$27 \cdot 0$	$1 \cdot 4$	$16 \cdot 6$
23.	$2 \cdot 0$ $2 \cdot 0$	$55 \cdot 8$	$1 \cdot 6$	27.0	1.7	$33 \cdot 2$	$1 \cdot 7$	$33 \cdot 2$	$1 \cdot 6$	27.0	1.4	$16 \cdot 6$
24.	$2 \cdot 0$	55.8	1.6	$27 \cdot 0$	$1 \cdot 7$	$33 \cdot 2$	1.65	$30 \cdot 1$	1.6	27.0	1.4	$16 \cdot 6$
25.	$2 \cdot 0$	$55 \cdot 8$	$1 \cdot 6$	$27 \cdot 0$	1.8	$40 \cdot 0$	$1 \cdot 65$	$30 \cdot 1$	$1 \cdot 6$	$27 \cdot 0$	$1 \cdot 4$	$16 \cdot 6$
26.	$1 \cdot 9$	$47 \cdot 5$	$1 \cdot 6$	$27 \cdot 0$	$1 \cdot 8$	$40 \cdot 0$	$1 \cdot 65$	$30 \cdot 1$	$1 \cdot 6$	27.0	$1 \cdot 4$	$16 \cdot 6$
27.	1.9	$47 \cdot 5$	$1 \cdot 6$	$27 \cdot 0$	1.8	$40 \cdot 0$	$1 \cdot 65$	$30 \cdot 1$	1.6	27.0	$1 \cdot 4$	$16 \cdot 6$
28.	1.8	$40 \cdot 0$	$1 \cdot 6$	$27 \cdot 0$	1.75	$36 \cdot 6$	1.65	$30 \cdot 1$	$1 \cdot 5$	$21 \cdot 3$	$1 \cdot 4$	$16 \cdot 6$
29.	1.8	$40 \cdot 0$	$1 \cdot 6$	27.0	$1 \cdot 7$	33.2	$1 \cdot 65$	$30 \cdot 1$	$1 \cdot 5$	21.3	1.4	$16 \cdot 6$
30.	1.8	$40 \cdot 0$	$1 \cdot 6$	$27 \cdot 0$	1.7	$33 \cdot 2$	1.65	$30 \cdot 1$	$1 \cdot 5$	$21 \cdot 3$	$1 \cdot 4$	$16 \cdot 6$
31.	1.8	$40 \cdot 0$	$1 \cdot 6$	$27 \cdot 0$			$1 \cdot 65$	$30 \cdot 1$			$1 \cdot 4$	$16 \cdot 6$

Monthly Discharge of Sinclair Creek, near Sinclair, for 1914.
(Drainage area, 30 square miles.)

Month.	Discharge in Second-Feet.				Ren-Off.	
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	Total in acre-feet.
August.	40	27	31.5	1.05	1.21	1,940
September.	40	$21 \cdot 3$	27.8	0.93	1.04	1,650
October....	$33 \cdot 2$	$30 \cdot 1$	32.4	1.08	$1+24$	1,990
November.	31.5	$21 \cdot 3$	$38 \cdot 8$	0.94	1.07	1,710
December...	$21 \cdot 3$	$16 \cdot 6$	$19 \cdot 3$	$0 \cdot 64$	$0 \cdot 74$	1,190

Spillimacheen River, near Spillimacheen (3019).
Location.-The station is located at highway bridge near mouth, about 4 miles from Spillimacheen. Revelstoke district.

Records Available.-June to October, 1912; June to November, 1913; April to December, 1914.

SESSIONAL PAPER No. 25e

Climatic Conditions.-The summer is generally hot and dry with cold nights. Winter is about four and a ralf months' duration, heavy snowfall and low temperatures ($-40^{\circ} \mathrm{F}$.). The river is generally frozen from November to April.

Gauge.-Vertical staff enamel gauge is used, and read two or three times a week by Mr. Jas. Montgomery.

Channel.-The channel is straight above and below the section for 50 yards. The control is a gravel bar, and there is a pronounced riffle at low water, 25 yards below the section.

Discharge Measurements.-Measurements are made from the downstream side of the highway bridge. In 1912, six measurements were made; in 1913, eight; and in 1914, three.

Accuracy.-Gauge readings are infrequent, the measuring section is good, there is a possibility of backwater from the Columbia at high water. These results should be within 10 per cent.

Discharge Measurements of Spillimacheen River near spillimacheen Landing, for 1914.

	Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No } \end{aligned}$	Width.	Area of Section	$\begin{aligned} & \text { Mean } \\ & \text { Velocity } \end{aligned}$	Gauge Height	Discharge.
	1914.	J. A. E.	$\begin{aligned} & 1909 \\ & 1909 \\ & 1909 \end{aligned}$	Feet.	sq. ft.	Ft. per sec.	Feet.	See.ft.
June	17.			$\begin{aligned} & 135 \\ & 124 \end{aligned}$	670 585 53	S.84	3.3 2.45	5.920 3.430
Oct.				114	374	$1 \cdot 28$	$0 \cdot 40$	+00

6. GEORGE V, A. 1916

Daily Gauge Height and Discharge of Spillimacheen River, near Spillimacheen, for 1914.

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Spillimacheen River, near Spillimacheen, for 1914-Concluded.

Monthly Discharge of Spillimacheen River at Spillimacheen. for 1914.
Drainage area, 580 square miles)

NoNTH.	1) The Ihathie is		SEtond-JEFt.		1 CL		Nocurnes
	Nisxinum.	Niminum.	Mean.	$\begin{aligned} & \text { Jer } \\ & \text { myuart } \\ & \text { nitile. } \end{aligned}$	Dojat! in incles on I)rainage hren.	$\begin{aligned} & \text { Tomal } \\ & \text { in } \\ & \text { anc-for, } \end{aligned}$	
April	95	200	$48 \mathrm{X} \cdot 11$	11) 81	(1).93)	27×3	1)
May	3.220	1,3401	2, 3111	4183	$48)$	$14 t=6$	13
Juni*	5, 5t\%	$\frac{2}{2},[1]$	3, 53t	11. 111	7 \%		13
July	5. $9: 11$		4. 1121	717	4.11		13
Auvant	3.4N5:	$170)$	2. 461	$4: 3$	4×9	131 1611	11
Fepatember	1.7 .81	(5) 11	1.2901	3 in	2-32	\%. 410	11
()etolar	1, (142)	435	115	1.149	129		$1)$
Nosemilaer	57.)	315	116	1) 72	(1). 11	24801	1)
1-vetiluer	375	1)	27	(1) 47	(1) 3.4	16. $\mathrm{th}^{1 /}$	

Toby Creek, near Athalmer (3020).
Location.-One and one-half miles from Athalmer, 1 mile from mouth, on highway bridge on road from Athalmer to Wilmer.

Records Available.-June to September, 1912; May to October, 1913; April to November, 1914.

Climatic Conditions.-The climatic conditions at the mouth of Toby creek are similar to Invermere. The precipitation at Invermere from December 1, 1913, to November 30, 1914, was 13 inches. The summer days are hot and the evenings cool. The winters are about four months long, and at times very severe. The thermometer has gone as low as $-40^{\circ} \mathrm{F}$. Chinook winds occasionally strike the locality and a great change in temperature results. Toby creek remains frozen for about four months, and frazil ice is prevalent.

Gauge.-Vertical staff gauge is used and read daily by Mr. H. H. Peters, Cyderdale Ranch, Wilmer.

Channel.-The channel is straight above the section, but widens out below. Two channels are formed by a central pier in the bridge. The water is not at right angles to the bridge, and is swift.

Discharge Measurements.-Five measurements were made in 1912, nine in 1913, and three in 1914, from the highway bridge.

Accuracy.-Gauge readings are good, the measurements are not reliable, due to a possibility of backwater from the Columbia. Accuracy, 20 per cent.

Discharge Measurements of Toby Creek, near Athalmer, B.C., for 1914.

	Date.	Hydrographer.	$\begin{gathered} \text { Meter } \\ \text { No. } \end{gathered}$	Width.	Area of section	$\begin{gathered} \text { Mean } \\ \text { Velocity. } \end{gathered}$	Gauge Height.	Discharge.
	1914.			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
May	5.	D. O'B. G	1048	160	316	2.00	1.20	631
Oct.			1909	185	159	1.87	0.6	3,000 298

SESSIONAL PAPER No. 25e

Daily Gauge Height and Discharge of Toby Creek, near Athalmer, for 1914.

Day.		April.		May.		June.	
		Gauge Height	Discharge.	Gauge Height	Discharge	Gauge Height	Discharge.
		Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	See.-ft.
1.				0.9 1.25	449	2.0 2.45	1.490
3.				1.25	915	3.4	2.060
4				1-20	649	2.9	$\stackrel{2.800}{2,670}$
5.	.. .-......			1-30	725	2.4	2,000
6		- 01		1.25	$68 ?$	$2 \cdot 2$	1.740
7.	¢-1....		-	1. 20	6.40	2.0	1. 190
8.				1.25	682	1.8	1,250
9.				1. 50	915	1.7	1.130
10.				1.55	968	1.7	1,130
11.				$1 \cdot 55$	968	1.8	1,250
12.				1.60	1.020	$2 \cdot 0$	1. 490
13.				1.60	1.020	$2 \cdot 2$	1.740
14.			-1\%	1.70	1.130	$2 \cdot 4$	2.000
15.				$2 \cdot 20$	1,740	2.9	2.670
16.		0.75	370	$2 \cdot 30$	1.870	$3 \cdot 2$	3.080
17.		0.75	370	$2 \cdot 10$	1.610	$3 \cdot 4$	3,363
18.		0.75	370	$2 \cdot 10$	1. 610	$3 \cdot 2$	3,080
19.		$0 \cdot 90$	44	1.95	1.430	$3 \cdot 0$	2.800
20.		0.9	440	1.90	1.370	2.8	2.530
21.		$0 \cdot 9$	440	1.99	1.370	2.4	2.003
22.		0.9	440	1.90	1.370	$2 \cdot 35$	1.940
23.	-.....	0.85	415	1.90	1,370	$\underline{2} \cdot 10$	1.610
24.		0.85	415	$2 \cdot 0 \mathrm{C}$	1.490	2.0	1,490
25.		0.75	370	$1 \cdot 90$	1,370	$2 \cdot 1$	1,610
26.	0.75	370	1.85	1,310	$2 \cdot 65$	1.550
27.		$0 \cdot 75$	37.	1.8	1,250	$2 \cdot 0$	1,490
28.		0.75	370	1.7	1.130	2.05	1,350
29.		0.75	370	$1 \cdot 6$	1.020	$2 \cdot 2$	1.740
30.		0.8	390	1.55	967	$2 \cdot 5$	2.130
		- 17.		1.7	1.130		.-.

6 GEORGE V，A． 1916
Daily Gauge Height and Discharge of Toby Creek，near Athalmer， for 1914－Concluded．

	Day．	July．		August．		September．		October．		November．	
		Gauge Height	Dis－ charge	Gauge Height	Dis－ charge．	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge. } \end{gathered}$
		Feet．	Sec．－ft．	Feet．	Sec．－ft．	Feet．	$\mathrm{Sec} . \mathrm{ft}$ ．	Feet．	Sec．－ft．	Feet．	Sec．－ft．
1		2.7 2.9	2,390 2,670	2.5	－ $\begin{aligned} & 2,130 \\ & 2,130\end{aligned}$	1.3 1.2	725 640	0.70 0.70	350 350	0.7 0.7	350 350
$\frac{2}{3}$		$3 \cdot 2$	3 3，080	$2 \cdot 2$	1，740	1.3	725	0.70	350	0.65	335
4		$3 \cdot 1$	2．949	$2 \cdot 25$	1.800	$1 \cdot 35$	772	0．70	350	0.60	320
5		3.25	3， 150	$2 \cdot 2$	1．74）	1.5	915	0.70	350	0．6）	329
6		$3 \cdot 2$	3.080	$2 \cdot 3$	1.870	1.35	772	0.70	350	$0 \cdot 60$	320
7		$3 \cdot 2$	3,080	$2 \cdot 4$	2.000	1．30	725	0.70	350	0．55	305
8		$3 \cdot 1$ $3 \cdot 0$	2.940 2.500	${ }_{1.5}^{1.7}$	1．130	${ }_{1}^{1.20} 1$	640 500	0.70 0.70	350 350 350	0.55	305
10		$2 \cdot 85$	2，630	1.4	820	0.90	440	0.70	350	0.55	305
11		$3 \cdot 15$	3，010	1.5	915	1.00	500	0.70	350	$0 \cdot 55$	305
12		$3 \cdot 3$	3,220	1.9	1，370	1.00	500	0.70	350	$0 \cdot 50$	290
13		$3 \cdot 4$	3，360	2.0	1.490	0.85	415	$0 \cdot 63$	335	0．50	290
14		$3 \cdot 3$	3，220	${ }_{1}^{2.0}$	1.490	0．80	390	0.70	350	0．50	290
15		2.9	2，670	1.95	1.430	0．70	350	0.70	350	Freeze	280
16		2.5	2，135	1.9	1.370	0． 80	390	0.70	350		270
17		$2 \cdot 5$	2，130	1.5	915	0.70	350	0． 65	335		260
18		$2 \cdot 7$	2．390	1.5	915	0． 80	590	$0 \cdot 65$	335		250
19		3.05	2，870	1.7	1，130	0． 70	350	$0 \cdot 65$	335		250
20		$2 \cdot 6$	2，260	1.5	915	0.70	350	$0 \cdot 65$	335		250
21		$2 \cdot 1$	1，610	1.7	1，130	0.70	350	0.60	320		240
22		1.9 1.9	1,370 1,370	1.5	${ }_{915}^{915}$	0.70 0.70	300 350	0.60 0.55	320 305		240 240
${ }_{24}^{23}$		1.9	1,370 1,376	${ }_{1}^{1.5}$	915 772	0.70 0.70	330 350 350	0.55 0.55	305 305		${ }_{240}^{240}$
24 25		1.9 1.9	1,370 1,370	${ }_{1}+5$	772 915	0.70 0.70	350 350	0.55 0.55	305 305		240 240
26		$2 \cdot 0$	1，490	1.45	867	0.70	350	0.55	305		230
27		$2 \cdot 1$	1.610	1.5	915	0.75	370	0.55	305		2,0
28		$2 \cdot 1$	1.610	1．35	772	0.70	350	0.60	320		230
29		1.9	1，370	1.35	772	0.70	350	0． 60	320		220
30		$2 \cdot 15$	1，680	$1 \cdot 3$	725	$0 \cdot 70$	350	$0 \cdot 70$	350		210
31		$2 \cdot 2$	1，740	1.3	725			0.70	350		

Monthly Discharge of Toby Creek near Athalmer for 1914.
（Drainage area， 180 square miles．）

	Month．	Discharge in Second－Feet．				Ren－Off．	
		Maximum．	Minimum．	Mean．	$\begin{aligned} & \text { Per } \\ & \text { iquare } \\ & \text { Mile. } \end{aligned}$	$\begin{aligned} & \text { Depth } \\ & \text { in inches } \\ & \text { on } \\ & \text { Drainage } \\ & \text { Area. } \end{aligned}$	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { ine-feet. } \end{gathered}$
June		1.870	440	1.120	6． 23	7.18	68，900
July．．．		3,360	1，130	1．960）	10.9	12.2	117，0160
August		3，360	1，370	2.340	13.0	15.0	144．0ヶ6
September．		2.130	725	1.210	6.72	7.75	74．410
$⿳ 亠 丷 厂 犬$		915 350	350 305	479 336	2.66 1.87	2.97 2.16	$2 \times .5100$ 20.700
November		350 350	305	336 276	1.87 1.53	${ }_{1}^{2.16}$	20，700
December．．		350		276	1.53	1.71	16．400

Accuracy＂C＂
North Vermilion Creek，near Edgewater（3032）．
Location．－The station is about 200 yards above the Golden－Windermere highway bridge．Revelstoke district．

Records Available．－April 15，to September 30， 1914.

SESSIONAL PAPER No. 25e
Climatic Conditions.-Similar to South Vermilion creek.
Gauge.-Vertical staff gauge at measuring section. Read during 1914 by Mrs. S. B. Harrison.

Channel.-Clean and gravelly. Not subject to shifts.
Discharge Measurements.-Seven measurements were made in 1914, by wading.

Co-operation.-The station was maintained in 1914 by co-operation between the British Columbia Hydrographic Survey and the Provincial Water Rights Branch.

Accuracy.-The data should be within 15 per cent.
General.-North Vermilion creek rises on the westerly slope of the Rocky mountains and,flows westward into the Columbia river. This creek drains an area of about 20 square miles. The water of North Vermilion creek is utilized by the Columbia Valley Orchards, Ltd., for irrigation.

Discharge Measurements of North Vermilion Creek, near Edgewater, for 1914.

Date.	Hydrographer.	$\begin{gathered} \text { Meter } \\ \text { No. } \end{gathered}$	Width	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
1914			Feet.	Sq. ft.	Ft . per sec.	Feet	Sec.-ft.
April 18	O. J. B. Prov.)..		13.0	8.85	$2 \cdot 38$	0. 70	21.10
May 6.	D. O'B. G.	1048	$14 \cdot 0$	16.7	4.00	1.30	66.70
May 26	J. K. B. (Prov.).		$15 \cdot 2$	27.7	$5 \cdot 04$	1.95	139. 10
June 17	J. A. E	1909	$24 \cdot 0$	$45 \cdot 0$	6.53	2.80	$294 \cdot 00^{1}$
July 27	O. J. B. (Prov.)		$13 \cdot 0$	16.05	$3 \cdot 71$	$1 \cdot 25$	59. $\mathbf{5 1}$
Aus. 24	1. K. B. (Prov.)		13.7	13.21	2.63	1.60	34.80
Seat. 29.	O. J. 13. (Prov.) .		13.0	13.32	$3 \cdot 32$	1.15	44.30

[^93]6. GEORGE V, A. 1916

Dally Gauge Height and Discharge of North Vermilion creek, near Edgewater, for 1914.

Day.	April.		May.		June.		July .		August.		September.	
	Gauge Height	Discharge	Gauge Height	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge	Gauge Height.	Discharge.	Gauge Height.	Discharge.
	Feet.	Sec.-tt.	Feet.	Sec.-It.	Feet.	Sec.-ft.	Feet.	See.-it.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1		$5 \cdot 0$		$44 \cdot 2$	$2 \cdot 3$	$195 \cdot 0$	$2 \cdot 3$	195.0		49-9	0.9	$30 \cdot 4$
2		$6 \cdot 0$	$1 \cdot 2$	52.4		$252 \cdot 0$		$232 \cdot 0$	$1 \cdot 15$	$48 \cdot 3$		$30 \cdot 4$
3		$6 \cdot 0$	$1 \cdot 6$	$93 \cdot 4$	$2 \cdot 9$	$315 \cdot 0$	$2 \cdot 7$	-273.0		$48 \cdot 3$	0.9	$30 \cdot 4$
4		$6 \cdot 0$		$82 \cdot 2$		$284 \cdot 0$		$304 \cdot 0$	1.15	$48 \cdot 3$		$30 \cdot 4$
5.		$7 \cdot 0$	$1 \cdot 3$	$62 \cdot 0$	$2 \cdot 6$	$252 \cdot 0$	$3 \cdot 0$	$337 \cdot 0$		49.9	0.9	$30 \cdot 4$
6		7.0	$1 \cdot 30$	$62 \cdot 0$		222.0		348.0	$1 \cdot 2$	$52 \cdot 4$		30.4
7		$7 \cdot 0$	$1 \cdot 25$	57.2	$2 \cdot 3$	195.0	$3 \cdot 1$	$360 \cdot 0$		$48 \cdot 3$	0.9	$30 \cdot 4$
8		8.0		$67 \cdot 0$		$178 \cdot 0$		$326 \cdot 0$	$1 \cdot 1$	$44 \cdot 2$		$30 \cdot 4$
9.		8.0	1.4	$72 \cdot 0$	$2 \cdot 1$	$162 \cdot 0$	$2 \cdot 8$	- $294 \cdot 0$		$44 \cdot 2$	0.9	$30 \cdot 4$
10.		8.0	$1 \cdot 5$	£22		$170 \cdot 0$		$273 \cdot 0$	$1 \cdot 1$	$44 \cdot 2$		$30 \cdot 4$
11.		$9 \cdot 0$		84.4	$2 \cdot 2$	$178 \cdot 0$	$2 \cdot 6$	$252 \cdot 0$		$44 \cdot 2$	$0 \cdot 85$	27.8
12		$9 \cdot 0$	1.55	87.8		186.0		$186 \cdot 0$	$1 \cdot 1$	$44 \cdot 2$		28.8
13.		$9 \cdot 0$		93.4	$2 \cdot 3$	$195 \cdot 0$	1.9	1320		40.6	0.90	$30 \cdot 4$
14	$0 \cdot 3$	$9 \cdot 0$	$1 \cdot 65$	$99 \cdot 2$		$232 \cdot 0$		118.0	$1 \cdot 0$	$37 \cdot 0$		$30 \cdot 4$
15.		11.0		$112 \cdot 0$	$2 \cdot 7$	$273 \cdot 0$	1.7	$105 \cdot 0$		$37 \cdot 0$	0.90	$30 \cdot 4$
16.		13.6	$1 \cdot 9$	$132 \cdot 0$		298.0		$105 \cdot 0$	$1 \cdot 0$	37.0		31.7
17		16.8	$2 \cdot 2$	178.0	2.95	$326 \cdot 0$	1.7	$105 \cdot 0$		37.0	0.95	33.7
18.		$20 \cdot 6$		$162 \cdot 0$		326.0		$99 \cdot 2$	$1 \cdot 0$	37.0		33.7
19.		$25 \cdot 2$		$146 \cdot 0$	2.95	$326 \cdot 0$	$1 \cdot 6$	93.4		37.0 37.0	0.95 1.00	$33 \cdot 7$ $37 \cdot 0$
20	0.9	$30 \cdot 4$	1.9	$132 \cdot 0$		337.0		$77 \cdot 1$	$1 \cdot 0$	$37 \cdot 0$	$1 \cdot 00$	37.0
21.	$0 \cdot 9$	$30 \cdot 4$		$139 \cdot 0$	3.05	348.0	$1 \cdot 3$	$62 \cdot 0$		37.0		$35 \cdot 0$
22		27.8	$2 \cdot 0$	$146 \cdot 0$		$326 \cdot 0$		$62 \cdot 0$	1.0	$37 \cdot 0$	0.95	$33 \cdot 7$
23	$0 \cdot 8$	$25 \cdot 2$		$170 \cdot 0$	$2 \cdot 85$	$304 \cdot 0$	$1 \cdot 3$	$62 \cdot 0$		$37 \cdot 0$		31.7
24		$30 \cdot 4$	$2 \cdot 3$	$195 \cdot 0$		$246 \cdot 0$		$62 \cdot 0$	$1 \cdot 0$	$37 \cdot 0$	0.9	$30 \cdot 4$
25	$1 \cdot 0$	$37 \cdot 0$		$170 \cdot 0$	$2 \cdot 3$	$195 \cdot 0$	$1 \cdot 3$	$62 \cdot 0$		$37 \cdot 0$		$30 \cdot 4$
26.		37.0	1.95	$139 \cdot 0$		$170 \cdot 0$		57.2	1.0	$37 \cdot 0$	0.9	$30 \cdot 4$
27		37.0		$122 \cdot 0$	$2 \cdot 0$	$146 \cdot 0$	$1 \cdot 2$	$52 \cdot 4$		$35 \cdot 0$	$1 \cdot 1$	$44 \cdot 2$
28.	$1 \cdot 0$	37.0	$1 \cdot 7$	$105 \cdot 0$		$154 \cdot 0$		$48 \cdot 3$	0.95	$33 \cdot 7$		$40 \cdot 0$
29		37.0		$105 \cdot 0$	$2 \cdot 1$	$162 \cdot 0$	$1 \cdot 1$	$44 \cdot 2$		31.7		$40 \cdot 0$ $30 \cdot 0$
30.	1.0	$37 \cdot 0$	1.7	$105 \cdot 0$		$178 \cdot 0$		$48 \cdot 3$	0.90	$30 \cdot 4$		$30 \cdot 0$
31.			1.75	$112 \cdot 0$			$1 \cdot 2$	52.4		$30 \cdot 4$		

Monthly Discharge of North Vermilion Creek near Edgewater, for 1914.
(Drainage area, 20 square miles.)

Month.	Discharge in Second-Feet.				RUN-Off.		Accuracy.
	Maximum.	Minimum.	Mean.	$\begin{gathered} \text { Per } \\ \text { square } \\ \text { mile. } \end{gathered}$	Depth in inches on Drainage area.	Total in acre-feet.	
April..	$37 \cdot 0$		$18 \cdot 6$	0.93	1.04	1,110	
May..	195.6	$44 \cdot 2$	$110 \cdot 0$	$5 \cdot 50$	$6 \cdot 34$	6,760	D
June...	348.0	146.0	238.0	11.9	$13 \cdot 3$	14,200	D
July...	360.0	$44 \cdot 2$	$156 \cdot 0$	$7 \cdot 80$	8.99	9,590	D
August.	$52 \cdot 4$	30.4	$40 \cdot 3$	$2 \cdot 02$	$2 \cdot 33$	2,480	C
September	$44 \cdot 2$	$27 \cdot 8$	$32 \cdot 2$	$1 \cdot 61$	1.80	1,920	C

South Vermilion Creek, near Edgewater (3033).
Location.-The station on South Vermilion creek is about 40 feet above the highway bridge of the Golden-Windermere road, and about one-half mike above the mouth. Revelstoke district.

Records Available.-April to September, 1914.

SESSIONAL PAPER No. 25e
Climatic Conditions.-Summer is hot, with cold nights. Precipitation is about the same as that of Golden. Winter is of about four and one-half months duration. Minimum temperature about $-40^{\circ} \mathrm{F}$.

Gauge.-Vertical staff gauge, read in 1914 by Mr. A. Braisher, driver of Rocky Mountain mail stage.

Channel.-Gravelly, and does not seem subject to shifts.
Discharge Measurements.-Eight measurements were made in 1914, by wading.

Co-operation.-This station was maintained in 1914 by co-operation with the Provincial Water Rights Branch.

Accuracy.-Data should be within 20 per cent.
General.-South Vermillion creek rises on the westerly slope of the Rocky mountains and flows westward into the Columbia river. It drains an area of about 10 square miles. The use of the creek is confined to irrigation.

Discharge Measurements of South Vermilion Creek, near Edgewater, for 1914.

| Date. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

6. GEORGE V, A. 1916

Daily Gauge Height and Discharge of South Vermilion Creek, near Edgewater, for 1914.

Day.	April.		May.		June.		July .		August.		September.	
	Gauge Height.	Discharge	Gauge Height	Discharge	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height	Discharge.
	Feet.	Sec,--2t.	Feet	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec. -ft .	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1		$6 \cdot 0$	0.75	43.8		75.0	$1 \cdot 2$	105.0	$0 \cdot 7$	38.2	$0 \cdot 55$	$23 \cdot 6$
2.		$6 \cdot 0$	0.7	38.2	$1 \cdot 10$	$89 \cdot 6$		$105 \cdot 0$		38.2		$23 \cdot 6$
3.		$6 \cdot 0$		36.2		116.0	1.2	$105 \cdot 0$	$0 \cdot 7$	$38 \cdot 2$	0.55	$23 \cdot 6$
4		6.0		$34 \cdot 2$	1.45	$145 \cdot 0$		$100 \cdot 4$		$35 \cdot 2$		$21 \cdot 0$
5.		$6 \cdot 0$	$0 \cdot 65$	$33 \cdot 1$		$126 \cdot 0$	$1 \cdot 15$	$97 \cdot 3$	$0 \cdot 65$	$33 \cdot 1$	$0 \cdot 50$	19.2
6		$6 \cdot 0$		31.1	1.20	$105 \cdot 0$		$92 \cdot 7$		$33 \cdot 1$	$0 \cdot 50$	$19 \cdot 2$
7		$6 \cdot 0$	$0 \cdot 6$	28.1	$1 \cdot 10$	89.6	$1 \cdot 1$	$89 \cdot 6$		$33 \cdot 1$		$19 \cdot 2$
8		$7 \cdot 0$		$30 \cdot 1$		$85 \cdot 2$		89.6	$0 \cdot 65$	$33 \cdot 1$	0-50	$19 \cdot 2$
9		$7 \cdot 0$	0.65	33.1	1.05	$82 \cdot 3$		$75 \cdot 0$		$30 \cdot 1$		$19 \cdot 2$
10		$7 \cdot 0$	0.75	43.8		88.1	$1 \cdot 0$	$75 \cdot 0$	$0 \cdot 6$	28.1	$0 \cdot 50$	$19 \cdot 2$
11		$8 \cdot 0$		$41 \cdot 5$	$1 \cdot 12$	92.7	0.95	68.3		28.1		20.1
12.		$8 \cdot 0$	0.72	$40 \cdot 4$		98.8	0.95	$68 \cdot 3$	0.6	28.1	$0 \cdot 52$	21.0
13		$8 \cdot 5$		$44 \cdot 9$	$1 \cdot 2$	$105 \cdot 0$		$82 \cdot 3$	$0 \cdot 65$	$33 \cdot 1$	$0 \cdot 50$	$19 \cdot 2$
14	$0 \cdot 35$	8. 55	0.8	$49 \cdot 2$	$1 \cdot 35$	$129 \cdot 0$	$1 \cdot 15$	97.3	$0 \cdot 6$	28.1		$19 \cdot 2$
15		9.73		$64 \cdot 3$		$137 \cdot 0$		83.8	0.6	28.1	$0 \cdot 50$	$19 \cdot 2$
16	$0 \cdot 4$	11.5	1.05	$82 \cdot 3$	1.45	145.0	0.97	71.0		$28 \cdot 1$	0.52	21.0
17.		11.5	$1 \cdot 0$	$75 \cdot 0$		145.0		68.3	$0 \cdot 6$	28.1		21.9
18.	$0 \cdot 4$	11.5		$72 \cdot 3$	1.45	145.0		$65 \cdot 6$		25.4	0.55	$23 \cdot 6$
19	$0 \cdot 45$	15.3	0.95	68.3		137.0	0.90	$61 \cdot 6$	$0 \cdot 55$	23.6	0	26.3
20.		$17 \cdot 7$		$64 \cdot 3$	$1 \cdot 35$	$129 \cdot 0$		$61 \cdot 6$		$23 \cdot 6$	0.60	28.1
21	$0 \cdot 50$	$19 \cdot 2$	0.9	$61 \cdot 6$	$1 \cdot 20$	$105 \cdot 0$	0.90	61.6	$0 \cdot 55$	$23 \cdot 6$		28.1
22.		$16 \cdot 9$		61.6		$97 \cdot 3$		57.9	$0 \cdot 55$	$23 \cdot 6$	0.59	$27 \cdot 2$
23.	$0 \cdot 45$	$15 \cdot 3$	0.9	$61 \cdot 6$	$1 \cdot 10$	$89 \cdot 6$	$0 \cdot 85$	55.4		$23 \cdot 6$		$26 \cdot 3$
24		$15 \cdot 3$ $15 \cdot 3$	0.95	68.3 68.3		$94 \cdot 2$		61.6 68.3	0.55	$23 \cdot 6$ 23.6	0.58	26.3
25.	$0 \cdot 45$	$15 \cdot 3$		68.3	1-15	$97 \cdot 3$	0.95	$68 \cdot 3$		$23 \cdot 6$		$25 \cdot 4$
26	$0 \cdot 5$	$19 \cdot 2$	0.95	$68 \cdot 3$		$97 \cdot 3$	0.8	$49 \cdot 3$	$0 \cdot 55$	$23 \cdot 6$	$0 \cdot 57$	$25 \cdot 4$
27.		$19 \cdot 2$		$64 \cdot 3$	1.15	$97 \cdot 3$		$49 \cdot 3$		$23 \cdot 6$		$25 \cdot 0$
28.	0.5	$19 \cdot 2$	0-88	$59 \cdot 1$	$1 \cdot 10$	89.6	0.8	49.3		$23 \cdot 6$		$23 \cdot 0$
29.		21.0		$54 \cdot 2$ 49.3		91.1		47.1 43.8		23.6		$21 \cdot 0$
30	0.55	$23 \cdot 6$	0.8	$49 \cdot 3$	$1 \cdot 12$	$92 \cdot 7$	0.75	$43 \cdot 8$	$0 \cdot 55$	$23 \cdot 6$		$20 \cdot 0$
31			0.9	$61 \cdot 6$				$40 \cdot 4$		$23 \cdot 6$		

Monthly Discharge of South Vermilion, near Edgewater, for 1914.

	Month.	Discharge in Second-Feet.				Ren-Off.	
		Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches or Drainage area.	Total in acre-feet.
March.				11.9		1.33	708
April...		$82 \cdot 3$	28.1	$52 \cdot 6$	$5 \cdot 26$	$6 \cdot 06$	3,230
May	$145 \cdot 0$	82.3	$107 \cdot 0$	$10 \cdot 7$	11.9	6,370
June ..	\|rivi	$105 \cdot 0$	$40 \cdot 4$	$72 \cdot 4$	$7 \cdot 24$	8.35	4,450
July		$38 \cdot 2$	$23 \cdot 6$	$28 \cdot 2$	$2 \cdot 82$	$3 \cdot 25$	1,730
August		$28 \cdot 1$	$19 \cdot 2$	22.5	$2 \cdot 25$	$2 \cdot 51$	1,340

Accuracy "D".

Windermere (reek, near Windermere (3055).

Location. - The station is about 5 miles from the mouth, and above Tegart's diversion. It is about 7 miles from the town of Windermere. Revelstoke district.

Records Available.-April 1 to September 30, 1914.

SESSIONAL PAPER No. 25e
Climatic Conditions.-Same as Invermere. (See Toby creek.)
Gauge.-Vertical staff gauge at station. Read tri-weekly by Mr. Lloyd Tegart.

Channel.-Broken gravelley, and subject to shifts.
Discharge Measurements.-Four in 1913; six in 1914, by wading.
Co-operation.-Station maintained in 1914 by cooperation with the Provincial Water Rights Branch.

Accuracy.-Results on Windermere creek are not guaranteed.
General.-Windermere creek flows from the westerly slope of the Rockies, rising in Tegart's pass and flowing to Windermere lake, draining an area of 15 square miles. It is practically all used for irrigation and domestic purposes.

Discharge Measurements of Windermere Creek, near Windermere, B.C., for 1913-14.

Date	Hydrographer.	Meter No.	Width.	Area of Section.	$\begin{gathered} \text { Mean } \\ \text { Velocity. } \end{gathered}$	Gauge Height.	Discharge.
	O.J. B. (Prov.)...		Feet	Sq. ft .	Ft. per see.	Feet.	See -ft.
Sept 26		6,018		6. 50	3. 14	$0 \cdot 60$	$20 \cdot 4$
Nov. 7		6,018		5. 42	$3 \cdot 23$	$0 \cdot 50$	$17 \cdot 5$
July 22		6,018		8.30	3.08	$0 \cdot 60$	$25 \cdot 6$
1914.							
April 14	O. J. B. (Prov.).	6,018	$10 \cdot 0$	4.74	$2 \cdot 60$	0.43	
May 12.		6,018 1.969	10.0 13.0	$5 \cdot 06$ 13.7	$3 \cdot 30$ $4 \cdot 46$	0.48 1.15	16.7 61.1
June 20...	(). J. B. (Prov.).	1,969 6,018	13.0 13.5	13.7 9.4	$4 \cdot 46$ $3 \cdot 35$	1.15 0.77	61.1 31.8
Aug. 26.	J. K. Bell (Prov).	6,018	14.4	9-3	$3 \cdot 60$	$0 \cdot 70$	31.8 33.4
Sept 30		6,018	$12 \cdot 3$	7.5	$3 \cdot 30$	$0 \cdot 70$	24.9

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Windermere Creek, near Windermere, for 1914.

Day.	April.		May.		June.		July.		August.		September.	
	Gauge Height	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge	Gauge Height	Discharge.	Gauge Height	Discharge	Gauge Height.	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec.-It.	Feet.	Sec.-ft.	Feet.	Sec.-it.	Feet.	Sec -ft.	Feet.	Sec.-ft.
1		12.0 12.0		$15 \cdot 3$ $15 \cdot 2$	$1 \cdot 1$	57.2 69.1		54.4 54.9		$38 \cdot 8$ 38.8		29.8 $30 \cdot 1$
3		$12 \cdot 0$ $13 \cdot 0$		$15 \cdot 2$ $15 \cdot 1$	1.4	$69 \cdot 1$ 81.0	$1 \cdot 07$	$54 \cdot 9$ $54 \cdot 9$	$0 \cdot 85$	$38 \cdot 8$ 38.8	0.72	$30 \cdot 1$ 31.0
4		$13 \cdot 0$	$0 \cdot 45$	$15 \cdot 0$		77.8		$54 \cdot 9$	0.85	38.8	0.75	$32 \cdot 0$
5.	0.42	$13 \cdot 5$		$15 \cdot 3$	1-32	$74 \cdot 6$	1.07	$54 \cdot 9$		$37 \cdot 6$	0.80	$35 \cdot 3$
6.		$13 \cdot 5$		$15 \cdot 6$		$71 \cdot 8$		51.8		$36 \cdot 5$.		$35 \cdot 3$
		13.5	0.47	15.9	$1 \cdot 25$	69.0		48.8	0.80	$35 \cdot 3$	0.80	$35 \cdot 3$
8	0.42	$13 \cdot 5$		$16 \cdot 3$		69.1	0.95	$45 \cdot 8$		$35 \cdot 3$		37.0
9		13.5		16.7	1.1	$57 \cdot 2$		$46 \cdot 2$	0.80	$35 \cdot 3$	0.85	38.8
10.		$13 \cdot 5$		$17 \cdot 0$		$63 \cdot 1$		$46 \cdot 6$		$35 \cdot 3$		38.8
11.		$13 \cdot 5$	0.50	$17 \cdot 4$	$1 \cdot 25$	69.0		$47 \cdot 0$	$0 \cdot 80$	$35 \cdot 3$		38.8
12	0.42	13.5		18.0		69.0	0.97	$47 \cdot 3$		$35 \cdot 3$	$0 \cdot 85$	38.8
13		14.0		18.5	$1 \cdot 25$	69.0		47.3		$35 \cdot 3$		38.8
14.		$14 \cdot 0$	0.53	$19 \cdot 0$	$1 \cdot 3$	$73 \cdot 0$		47.3	0.80	$35 \cdot 3$	0.85	$38 \cdot 8$
15	$0 \cdot 44$	14.5		21.8		$71 \cdot 6$	0.97	$47 \cdot 3$		$32 \cdot 0$		39.1
16.		14.7	$0 \cdot 63$	$24 \cdot 6$		$70 \cdot 3$		$46 \cdot 1$	0.70	28.8		
17.		14.9	0.75	$32 \cdot 0$	$1 \cdot 25$	69.0		$44 \cdot 8$		28.8	0.87	$40 \cdot 1$
18		$15 \cdot 1$		30.4		67.0		$43 \cdot 5$	0.70	28.8		$41 \cdot 2$
19	$0 \cdot 46$	15.4	$0 \cdot 70$	28.8	1.2	$65 \cdot 0$	0.90	$42 \cdot 2$	0.70	$28 \cdot 8$	0.90	$42 \cdot 2$
20.		$15 \cdot 6$		28.8	$1 \cdot 1$	$57 \cdot 2$	$0 \cdot 90$	$42 \cdot 2$		28.8		$40 \cdot 5$
21		$15 \cdot 8$	0.70	28.8		$52 \cdot 2$		39.5		$28 \cdot 8$		38.8
22	0.47	15.9		$30 \cdot 4$		47.2	0.82	36.7	0.70	28.8		$37 \cdot 2$ 35.6
23.		15.8	0.75	$32 \cdot 0$	0.9	$42 \cdot 2$		$38 \cdot 5$		28.8		$35 \cdot 6$
24		$15 \cdot 6$		33.7		$44 \cdot 6$		$40 \cdot 3$		28.8	0.88	$34 \cdot 0$
25.		$15 \cdot 5$	$0 \cdot 80$	$35 \cdot 5$		$47 \cdot 0$	0.90	$42 \cdot 2$	0.70	28.8		$34 \cdot 0$
26	0.46	$15 \cdot 4$		$34 \cdot 7$	$1 \cdot 0$	$49 \cdot 5$		$42 \cdot 2$		28.8		$34 \cdot 0$
27.		15-4		$34 \cdot 0$		$50 \cdot 8$	0.90	$42 \cdot 2$	0.70	28.8	0.88	$34 \cdot 0$
28.		$15 \cdot 4$	0.77	33.4		$52 \cdot 1$		41.4		28.8		$33 \cdot 6$
29	0.46	15.4		$32 \cdot 7$	$1 \cdot 05$	53.4		$40 \cdot 5$	$0 \cdot 70$	28.8		$33 \cdot 2$
30.		$15 \cdot 4$	0.75	$32 \cdot 0$		53.9		$39 \cdot 6$		$29 \cdot 1$	0.66	$32 \cdot 7$
31.				$44 \cdot 6$			0.85	$38 \cdot 8$		29.5		

Monthly Discharge of Windermere Creek, near Windermere, for 1914.

Month.	Discharge.in Second-Feet.				Ren-Off.	
	Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on Drainage area.	Total in acre-feet.
March.	15.9		14-4	0.96	1.07	857
April.	35.3 61.0	15.0	24.8 61.9	1.65	1.90 4.61	1,520 3,680
Maye.	61.0 58.9	${ }_{36 \cdot 7}^{42 \cdot 2}$	61.9 45.5	4.13 3.03	$4 \cdot 61$ $3 \cdot 49$	3,680 2,800
July.	38.8	28.8	$32 \cdot 4$	$2 \cdot 16$	$2 \cdot 49$	1,990
August..	42.2	29.8	36.3	$2 \cdot 42$	2.70	2,160

Bull River, near Mouti (3039).
Location.-At mouth, near Bull River settlement, 6 miles from Wardner, in south-east Kootenay, Cranbrook district.

Records Available.-May to November, 1914.
Climatic Conditions.-The summers are hot and dry. The winters are very severe, with a light snowfall in the lower altitudes. Ice conditions exist generally

SESSIONAL PAPER No. 25e
from some time in November till about the first of April. During this period extreme low flow may be anticipated, and frazil ice is to be expected.

Gauge.-A vertical staff gauge, situated about 100 yards below Bull River Lumber Company's (C.P.R.) dam, one-quarter mile from Bull river and 1 mile from the mouth.

Channel.-Channel is straight for 100 yards above and below the gauge.
Discharge Measurements.-Nine well-distributed measurements were made from the railway bridge in 1914.

Accuracy.-The channel at the measuring section shifted considerably during June and possibly the first week in July. The daily gauge readings are reliable. The results during May, June, and July, are considered to be within 20 per cent, and after July, 10 per cent.

General.-Bull river is a stream about 30 miles long. It rises in the Rockies, amongst peaks from 8,000 to 10,000 feet above sea-level, and flows generally in a southwesterly direction through various canyons and over shifting gravel beds into the Kootenay, near the settlement of Bull river, 6 miles from Wardner, B.C. The stream generally is from 30 to 150 feet wide, but about 6 miles from the mouth it is confined in a deep rock canyon, in places not over 15 feet in width at the top. This canyon extends for about 400 feet, and in this distance the river drops 175 feet, about half of this being a perpendicular fall 100 feet from the head of the canyon. A little over 1 mile from the mouth the river is controlled by the Bull River Lumber Company's dam, built to form a pond for logs.

A company owns timber limits towards the source of the stream, and every year this company has been driving logs down the river to their mill near the mouth, where the logs are sawn into ties.

Some seven or eight years ago a company commenced the installation of a hydro-electric development at the above mentioned canyon, about 6 miles from the mouth. A cedar flume, 16 feet by 8 feet, and some 10,000 feet in length was constructed. By means of this flume a head of about 250 feet was obtained. The installation has not been completed to date, in fact practically nothing has been done since the flume was constructed.

('ranbrosk Distrivt (V) Bull river lowhomg up (rom metering seethon.

Discharge Measurements of Bull River, at Mouth, for 1914.

${ }^{1}$ Soundings incorrect.
${ }^{2}$ Ice conctitions

Daily Gauge Height and Discharge of Bull River, at Mouth, for 1914.

SESSIONAL PAPER No. 25e
Dally Gauge Height and Discharge of Bull River, at Mouth, for 1914.

Day.	July		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge	Gauge Height.	Discharge	Gauge Height.	Discharge	Gauge Height	Discharge	Gauge Height.	Discharge	Gauge Height	Dlscharge
	Feet.	Sec-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec. -ft .
1.	$3 \cdot 2$	3,660	$1 \cdot 3$	1,290	0. 50	475	$0 \cdot 7$	665	1.9	1.970	$0 \cdot 6$	570
2.	$3 \cdot 4$	3,950	1-3	1,296	0.50	475	$0 \cdot 9$	860	$2 \cdot 1$	2. 220	$0 \cdot 6$	570
4.	$3 \cdot 4$	3,950	1-3	1,290	$0 \cdot 40$	390	$0 \cdot 9$	860	1.7	1.74C	$0 \cdot 6$	570
5.	$3 \cdot 5$ $3 \cdot 4$	4.090 3,950	$1 \cdot 2$ $1 \cdot 1$	1.180 1,070	0.40 0.40	390 390	0.9 0.8	850 760	1.7 1.9	1.740 1.970	0.5 0.5	475 475
6.	$3 \cdot 3$	3,810	1.0	963	$0 \cdot 46$	390	0.8	760	1.7	1.740	$0 \cdot 6$	
7.		3,6\%	1.0	960	0.40	390	0.7	665	1.7	1.740	$0 \cdot 4$	390
8		3,400	1.0	960	$0 \cdot 50$	475	0.7	663	1.5	1.510	$0 \cdot 4$	
9.		3,200	$0 \cdot 9$	860	$0 \cdot 50$	475	0.7	663	$1 \cdot 3$	1. 290	Frozen.	
10.		3,000	$0 \cdot 9$	860	$0 \cdot 50$	475	0.7	665	$1 \cdot 3$	1,293		
11.	$2 \cdot 6$	2,860	0.8	760	$0 \cdot 50$	475	$0 \cdot 7$	665	$1 \cdot 3$	1.290		
12.	$2 \cdot 5$	2,730	0.8	760	$0 \cdot 50$	475	0.7	665	1.2	1,150		
13.	$2 \cdot 7$	2,990	$0 \cdot 8$	760	0.50	475	0.7	665	1.2	1,180		
14.	$2 \cdot 5$	2,730	0.8	760	$0 \cdot 50$	475	0.8	760	1.0	960		
15.	$2 \cdot 5$	2,730	$0 \cdot 8$	760	$0 \cdot 50$	475	$1 \cdot 0$	960	c. 7	665		
16.	$2 \cdot 4$	2,600	0.8	760	$0 \cdot 50$	475	$1 \cdot 1$	1.070	0.6	570		
17.	$2 \cdot 1$	2,220)	0. 5	760	C. 60	570	$1 \cdot 1$	1.07 C	$0 \cdot 6$	570		
18.	$2 \cdot 1$	2,220	$0 \cdot 9$	860	$0 \cdot 70$	665	$1 \cdot 1$	1.070	$0 \cdot 6$	570		
19.	$2 \cdot 0$	2,100	$0 \cdot 7$	665	1.60	1,620	$1 \cdot 5$	1,510	$0 \cdot 6$	570		
20.	$2 \cdot 0$	2,100	$0 \cdot 7$	665	1.20	1,180	1.4	1.400	0.8	760		
21.	1.9	1,970	0.7	665	1.03	960	$1 \cdot 2$	1.180	$0 \cdot 8$	760		
22	1.7	1,740	0.7	665	0.90	860	1.0	1.96C	0.7	665		
23.	1.5	1,510	$0 \cdot 7$	665	1.00	969	$0 \cdot 9$	860	0.7	665		
24.	$1 \cdot 5$	1,510 1,510	0.7	665	1.00	960	0.9	860	0.6	570		
25.	$1 \cdot 5$	1,510	0.6	570	1.00	960	0.9	860	$0 \cdot 6$	570		
26.	1.5	1,510	$0 \cdot 6$	570	$1 \cdot 00$	960	$0 \cdot 9$	860	0.9	860		
27.	1.5	1,510	$0 \cdot 6$	570	$1 \cdot 20$	1,180	$0 \cdot 8$	760	$0 \cdot 7$	6 i5		
29.	1.5 1.4	1,510 1,490	$0 \cdot 6$ C. 6	570	$1 \cdot 00$	1. 960	0.5	760	$0 \cdot 7$	685		
$30 .$.	1.4 1.3	1,490	C. 6	570	0.90	860	$0 \cdot 8$	760	$0 \cdot 6$	570		
30.	$1 \cdot 3$	1,290	$0 \cdot 6$	570	0.80	760	0.8	760	0.6	570		
31....	$1 \cdot 3$	1,290	$0 \cdot 5$	475			$1 \cdot 0$	960				

Monthly Discharge of Bull River, at Mouth, for 1914.
(1)rainage Area, 420 square miles.)

Month.	Dimmarge in second-Feet.				$18 \mathrm{CN-Ory}$.		
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per square } \\ & \text { mile. } \end{aligned}$	Depth in inclies on 1)rninuge area.	Total in nore-fest	Secuntes
Mity	5,230	2. 1480	3.920	9.33		241.0461	1)
June ${ }^{\text {dur }}$ -	7,064	2,600	1. 1911	9.428	119	249, 4140	1)
July.. man a	1,046	1.120	2.4111	$5 \cdot 74$	6.69	148, 1891	1)
Auguat.	1, 240	475	M111)	1 ! 11	2-14	+9, 1941	13
Neptemiber	1, 1290	390 645	(iNK	1.64	1 s 3	+11. 1961	11
Wetuber ${ }^{\text {Wovember }}$	1,510	1605 570	$\text { A } 66$	2.06	2.37		
	2,220	570	1.0711		2 ar	$63,6,11$	1

('merty ('rebk, NEAK Wasa (303s).
Location.- Mbont I mile above the month, mear Wasa, in south-asat kootemay. (ranbrook district.

Records Amilable. May fo Novomber, 1913; May to soptember, 1911
250 $-3: 3 \frac{1}{2}$

Climatic Conditions.-Summers hot and dry, winters severe (as low as $-50^{\circ} \mathrm{F}$.). with a light snowfall. Generally similar to Cranbrook (see St. Marys river).

Gauge.-Vertical staff gauge, marked in feet and inches, located on highway bridge about 1 mile from mouth.

Channel.-Channel is regular and affords a good measuring section. Slight shifts are possible.

Discharge Measurements.-Discharges from May to June 30, 1913, were plotted from a curve based on measurements made by Mr. H. B. Hicks, District Engineer, Provincial Water Rights Branch. The 1914 curve was plotted from five discharge measurements made in 1914 after June 30. Measurements made in 1913 after June 30 fit on the 1914 curve, so 1913 discharges after June 30 were plotted from the 1914 curve.

Accuracy.-1913, 20 per cent; 1914, 10 per cent and 15 per cent.
Co-operation.-During 1914 this station was maintained by co-operation with the Provincial Water Rights Branch.

General.-Cherry creek is a small tributary of the Kootenay, flowing in from the right near Wasa in southeast Kootenay. The drainage area, as taken from the only available maps, appears in the neighbourhood of 80 square miles. The stream is used for irrigation.

Discharge Measurements of Cherry Creek, near Wasa, for 1914.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Date. \& Hydrographer. \& $$
\begin{aligned}
& \text { Meter } \\
& \text { No. }
\end{aligned}
$$ \& Width. \& Area of Section. \& Mean Velocity. \& Gauge Height. \& Discharge.

\hline \& \& \& Feet. \& Sq. ft. \& Ft. per sec. \& Feet. \& Sec.ft.

\hline May 28. \& D. O. B. G., R. H. H. \& 1530 \& 16.5 \& 32.8 \& ${ }_{3}^{4.61}$ \& 1.133 \& 152

\hline July 15 \& R. H. H. (Prov.) \& 1929 \& 16.5 \& 30.2
24.2 \& 3.05
2.34 \& 0.958
0.604 \& ${ }_{56.7}^{92.2}$

\hline July
Aug,

31 \& D. O. B. G.....)
H. B. H. (Prov.) \& 1929 \& 16.5
16.5 \& ${ }_{13}^{24.7}$ \& $2 \cdot 18$
1.18 \& ${ }_{0}^{0 \cdot 604}$ \& 56.7
16.2

\hline Sept. 25. \& H. В. ${ }^{\text {M. }}$ \& \& 16.5 \& $16 \cdot 3$ \& $1 \cdot 37$ \& 0.229 \& $22 \cdot 3$

\hline
\end{tabular}

SESSIONAL PAPER No. 25 e

Daily Gauge Height and Discharge of Cherry Creek, near Wasa, for 1913.

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Cherry Creek, near Wasa, for 1913.

		July .		August.		September.		October.		November.	
	D.x.	Gauge Height	Discharge	Gauge Height.	Discharge.						
		Feet	See.ft.	Feet	See.ft.	Feet.	See. -ft .	Feet.	Sec.-ft.	Feet.	Sec.-ft .
1		$13 \cdot 7$	119.0	$4 \cdot 75$	$34 \cdot 0$	$3 \cdot 75$	28.5	$3 \cdot 0$	$24 \cdot 0$	1.5	18.0
2.		14.5	$131 \cdot 0$	$4 \cdot 75$	$34 \cdot 0$	$4 \cdot 0$	$30 \cdot 0$	$3 \cdot 0$	24.0	1.5	18.0
3		13.75	$120 \cdot 0$	$4 \cdot 75$	34.0	$3 \cdot 5$	27.0	$3 \cdot 0$	24.0	1.5	$18 \cdot 0$
4		$13 \cdot 5$	$116 \cdot 0$	$4 \cdot 5$	$32 \cdot 5$	$3 \cdot 25$	$25 \cdot 5$	$3 \cdot 0$	$24 \cdot 0$	$1 \cdot 5$	$18 \cdot 0$
5		$13 \cdot 75$	$120 \cdot 0$	$4 \cdot 0$	$30 \cdot 0$	$3 \cdot 0$	$24 \cdot 0$	$3 \cdot 0$	$24 \cdot 0$	$1 \cdot 5$	$18 \cdot 0$
6		$13 \cdot 0$	$110 \cdot 0$	$4 \cdot 0$	$30 \cdot 0$	$3 \cdot 0$	$24 \cdot 0$	$3 \cdot 0$	$24 \cdot 0$	$1 \cdot 5$	$18 \cdot 0$
7		12.5	102.0	$4 \cdot 0$	$30 \cdot 0$	$3 \cdot 0$	$24 \cdot 0$	$3 \cdot 0$	$24 \cdot 0$	1.5	$18 \cdot 0$
8		$12 \cdot 0$	97.0	$4 \cdot 0$	$30 \cdot 0$	$3 \cdot 5$	27.0	$3 \cdot 0$	$24 \cdot 0$	1.5	18.0
9.		$12 \cdot 0$	$97 \cdot 0$	$4 \cdot 0$	$30 \cdot 0$	$3 \cdot 0$	$24 \cdot 0$	$3 \cdot 0$	24.0	1.5	18.0
10.		$11 \cdot 0$	$85 \cdot 0$	$4 \cdot 0$	$30 \cdot 0$	$3 \cdot 0$	$24 \cdot 0$	$3 \cdot 0$	$24 \cdot 0$	$1 \cdot 5$	$18 \cdot 0$
11.		$11 \cdot 0$	$85 \cdot 0$	$4 \cdot 0$	$30 \cdot 0$	$3 \cdot 0$	$24 \cdot 0$	$3 \cdot 0$	24.0	$2 \cdot 0$	$20 \cdot 0$
12.		$10 \cdot 0$	$75 \cdot 0$	$4 \cdot 0$	30.0	$3 \cdot 0$	$24 \cdot 0$	$3 \cdot 0$	$24 \cdot 0$	$2 \cdot 0$	$20 \cdot 0$
13		$10 \cdot 0$	75.0	$4 \cdot 0$	$30 \cdot 0$	$3 \cdot 0$	$24 \cdot 0$	$3 \cdot 0$	24.0	$2 \cdot 0$	$20 \cdot 0$
14.		$10 \cdot 0$	$75 \cdot 0$	$4 \cdot 0$	$30 \cdot 0$	$3 \cdot 0$	$24 \cdot 0$	$3 \cdot 5$	$27 \cdot 0$	$2 \cdot 0$	$20 \cdot 0$
15.		$9 \cdot 25$	67.5	$4 \cdot 0$	$30 \cdot 0$	$3 \cdot 0$	$24 \cdot 0$	$3 \cdot 5$	$27 \cdot 0$	$2 \cdot 0$	$20 \cdot 0$
16.		$9 \cdot 0$	$65 \cdot 0$	$4 \cdot 0$	32.0	$3 \cdot 0$	$24 \cdot 0$	$3 \cdot 5$	27.0	$2 \cdot 0$	$20 \cdot 0$
17.		$8 \cdot 0$	56-0	$4 \cdot 0$	$30 \cdot 0$	$3 \cdot 0$	$24 \cdot 0$	$3 \cdot 5$	27.0	$2 \cdot 0$	$20 \cdot 0$
18		$7 \cdot 5$	$52 \cdot 5$	$4 \cdot 0$	$30 \cdot 0$	$3 \cdot 0$	24.0	$3 \cdot 5$	27.0	$2+0$	$20 \cdot 0$
19		$7 \cdot 0$	$49 \cdot 0$	$4 \cdot 0$	$30 \cdot 0$	$3 \cdot 0$	$24 \cdot 0$	$3 \cdot 5$	$27 \cdot 0$	$2 \cdot 0$	$20 \cdot 0$
20.	10	$7 \cdot 0$	$49 \cdot 0$	$4 \cdot 0$	$30 \cdot 0$	$3 \cdot 0$	$24 \cdot 0$	$3 \cdot 0$	$24 \cdot 0$	$1 \cdot 0$	16.0
21.		$7 \cdot 0$	$49 \cdot 0$	$4 \cdot 5$	$32 \cdot 5$	$3 \cdot 0$	$24 \cdot 0$	$3 \cdot 0$	$24 \cdot 0$		$16 \cdot 0$
22		$7 \cdot 0$	$49 \cdot 0$	$4 \cdot 0$	$30 \cdot 0$	$3 \cdot 0$	$24 \cdot 0$	$3 \cdot 0$	$24 \cdot 0$		$16 \cdot 0$
23		$6 \cdot 0$	$42 \cdot 0$	$4 \cdot 0$	$30 \cdot 0$	$3 \cdot 5$	27.0	$2 \cdot 0$	$20 \cdot 0$		$16 \cdot 0$
24		$6 \cdot 0$	$42 \cdot 0$	$4+0$	$30 \cdot 0$	$3 \cdot 5$	27.0	$2 \cdot 0$	$20 \cdot 0$		$16 \cdot 0$
25		6.0	$42 \cdot 0$	$4 \cdot 0$	$30 \cdot 0$	$3 \cdot 5$	27.0	$2 \cdot 5$	$22 \cdot 0$		16.0
26.		$6 \cdot 0$	$42 \cdot 0$	$4 \cdot 0$	$30 \cdot 0$	$3 \cdot 5$	27.0	$2 \cdot 5$	22.0		16.0
27		$5 \cdot 5$	38.5	$4 \cdot 0$	$30 \cdot 0$	$3 \cdot 5$	27.0	$2 \cdot 5$	22.0		$16 \cdot 0$
28.		$5 \cdot 0$	$35 \cdot 0$	$4 \cdot 0$	30.0	$3 \cdot 0$	$24 \cdot 0$	$2 \cdot 5$	22.0		$16 \cdot 0$
29.		$5 \cdot 0$	$35 \cdot 0$	$4 \cdot 0$	$30 \cdot 0$	$3 \cdot 0$	$24 \cdot 0$	1.5	$18 \cdot 0$		$16 \cdot 0$
		$5 \cdot 0$	$35 \cdot 0$	$4 \cdot 0$	$30 \cdot 0$	$3 \cdot 0$	$24 \cdot 0$	1.5	$18 \cdot 0$		$16 \cdot 0$
31.		$5 \cdot 0$	$35 \cdot 0$	$4 \cdot 0$	$30 \cdot 0$			1.5	$18 \cdot 0$		

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Cherry Creek, near Wasa, for 1914.

Daily Gayge Height and Discharge of Cherry Creek, near Wasa, for 1914.

Monthly Discharge of Cherry Creek, near Wasa, for 1913.
(Drainage area, 80 square miles).

	Moxth.	Discharge in Second-Feet.				Run-Ofr.	
		Maximum.	Minimum.	Mean.	$\begin{gathered} \text { Pquare } \\ \text { square } \\ \text { mile. } \end{gathered}$	Depth in inches on Drainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$
May.		300		145.0	1.81	$2 \cdot 09$	8,920
June		370	109	230.0	2.87	$3 \cdot 20$	13,700
		131		70.6	0.88	1.02	4,340
August.		34 30 30	$\begin{array}{r}30 \\ 24 \\ \hline\end{array}$	$30 \cdot 5$ 25.1	0.38 0.31	$0 \cdot 44$ $0 \cdot 35$	1,870 1,490
Oeptember		${ }_{27}^{30}$		23.5	$0 \cdot 29$	0.33	1,440
November		20		17.9	$0 \cdot 22$	$0 \cdot 24$	1,060

Accuracy "D."

SESSIONAL PAPER No. 25e
Monthly Discharge of Cherry Creek, near Wasa, B.C., for 1914.
(Drainage area, 80 square miles.)

Month.		Discharge in Second-Feet.				Res-Ofy.-		Accuracy.
	,	Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on Drainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$	
May.		183	100	143	1.79	$2 \cdot 06$	8,790	
June		312	97	176	$2 \cdot 2$	$2 \cdot 46$	10,500	C
July...		124	35	68.7	0.86	0.99	4,220	B
August.		24	16	20.9	0.26	$0 \cdot 30$	1,290	B
September.		$33 \cdot 8$	14	21.5	0.27	$0 \cdot 30$	1,280	B

Elk River, near Elko (3048).
Location. - At the cable station 50 yards above the traffic bridge one-quarter mile from Elko in south east Kootenay. Cranbrook district.

Crablrook Dintriet (1)-Ihotogroph showing Vilk river outslo atation above ('anyon.

Records Available.-April to November, 1914.
Climatic Conditions.-At Elko, the precipitation from December 1, 1913, to November 30, 1914, was 18.7 inches. The summers are hot and dry. The winters are very severe, as low as $-50^{\circ} \mathrm{F}$. some seasons, with generally only a light snowfall; 1913-14, approximately 3 feet. Frazil ice may be expected.

Gauge.-A chain gauge was established at the highway bridge, near Elko in November, 1913, and has been read since then by Mr. Wm. Leacey and Mr. Jas. Mckee. When the cable station was established in May a new gauge was put in at the section (50 yards above highway bridge). Mr. Mckee also read this gauge.

Channel.-The channel below the highway bridge is confined in a canyon, and there is no possibility of shift, though \log jams might occasionally affect the gauge readings. The channel above and below the cable station is straight for approximately 40 yards. There is a distinct riffle 30 yards below the section at low water, but at high water it is drowned by the water backing up in its endeavour to get through the narrow canyon below. The low-water control below the cable station may shift somewhat in high water.

Discharge Measurements.-Measurements are made from the cable station. The section is ideal at all stages, except extreme high water, when it is impossible to obtain accurate soundings. In 1914 eight measurements were made, one of which was made on December 18, under ice conditions. Discharge, 630 c.f.s.

Accuracy. -The measurements should be very reliable. Daily gauge readings were obtained, but before July the chain gauge caused trouble. The gauge-height discharge curve appears to be very good. The results after July should be within 5 per cent, and before July 15 per cent.

General.-Elk river is about 150 miles long. It rises near Kananaskis pass, N. latitude $50^{\circ} 35^{\prime}$, W. longitude $115^{\circ} 05^{\prime}$, and flows practically due south for about 100 miles, passing through Fernie, and veering slightly to the west passes through Elko and discharges into Kootenay river about 15 miles above the international boundary line. The Elk drains a very mountainous country. The precipitation is not very heavy, being considerably less in this district than in the vicinity of either Field or Glacier.

Elk river is used for lumbering only at present. There is an excellent power site near Elko. Immediately below the highway bridge, Elko, the river enters a canyon about three-quarters of a mile long. In this canyon there is a fall of about 175 feet. A low flow of 400 or 500 c.f.s. may be expected any year, and this is not necessarily a minimum flow. It is anticipated that this power will, at some future date, be harnessed. In order to obtain reliable data a cable station was established a little over 100 yards above this canyon. Very satisfactory open-flow data were obtained in 1914, and in the coming winter one or two low-water measurements will be made.

SESSIONAL PAPER No. 25e
Discharge Measurements of Elk River, near Traffic bridge, Elko, 1914.

Ice conditions.

Daily Gauge Height and Discharge of Elk River, near Elko, B.C., for 1914.

Daily Gauge Height and Discharge of Elk River, near Elko, B.C., for 1914.

Day.	July:		August.		September.		October.		November.		December.	
	Gauge Height.	Dis charge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge	Gauge Height.	Discharge.
	Feet.	Sec.-ft.										
1	$5 \cdot 6$	3,690	$4 \cdot 05$	1,720	$3 \cdot 3$ $3 \cdot 2$	1,220	$3 \cdot 5$ $3 \cdot 5$	1,330	$4 \cdot 0$	1,680	$3 \cdot 3$	1,220
3	$5 \cdot 7$	3,850	$4 \cdot 05$	1,720	$3 \cdot 2$	1,170	$3 \cdot 5$	1,330	$4 \cdot 7$	2,410	$3 \cdot 25$	1,200
4	$6 \cdot 0$	4,380	$3 \cdot 95$	1,640	$3 \cdot 2$	1,170	3.55 3.6	1,360 1,390	$4 \cdot 6$ $4 \cdot 4$	$\stackrel{2,290}{2,060}$.	$3 \cdot 3$ $3 \cdot 25$ 3	1,220
5.	$6 \cdot 1$	4,560	$3 \cdot 95$	1,640	$3 \cdot 2$	1,170	$3 \cdot 65$	1,420	$4 \cdot 9$	2,660	$3 \cdot 05$	1,200 1,100
6.	$6 \cdot 05$	4,470	$3 \cdot 92$	1,610	$3 \cdot 2$	1,170	3.6	1,390	$4 \cdot 9$	2,660	$3 \cdot 1$	1,120
7	$5 \cdot 95$	4,290	3.87	1,570	$3 \cdot 2$	1,170	$3 \cdot 55$	1,360	$4 \cdot 55$	2,230	$2 \cdot 9$	1,020
8.	$5 \cdot 9$	4,200	$3 \cdot 9$	1,600	$3 \cdot 2$	1,170	$3 \cdot 55$	1,360	$4 \cdot 3$	1,960	$2 \cdot 8$	${ }^{1} 975$
9.	$5 \cdot 8$	4,020	$3 \cdot 9$	1,600	$3 \cdot 25$	1,200	$3 \cdot 55$	1,360	$4 \cdot 15$	1,810	$2 \cdot 7$	930
10.	$5 \cdot 7$	3,850	$3 \cdot 9$	1,600	$3 \cdot 1$	1,120	$3 \cdot 55$	1,360	$4 \cdot 05$	1,720	$2 \cdot 55$	872
11.	$5 \cdot 6$	3,690	3.8	1,520	$3 \cdot 15$	1,140	$3 \cdot 6$	1,390	$4 \cdot 2$	1,860		840
12.	$5 \cdot 5$	3,540	$3 \cdot 8$	1,520	$3 \cdot 1$	1,120	$3 \cdot 6$	1,390	$4 \cdot 1$	1,760		810
13.	$5 \cdot 4$	3,380	$3 \cdot 7$	1,450	3-1	1,120	$3 \cdot 55$	1,360	$4 \cdot 0$	1,680		780
14	$5 \cdot 45$	3,460	$3 \cdot 7$	1,450	$3 \cdot 1$	1,120	$3 \cdot 6$	1,390	$3 \cdot 9$	1,600		750
15.	$5 \cdot 4$	3,380	$3 \cdot 6$	1,390	$3 \cdot 15$	1,140	$3 \cdot 8$	1,520	$3 \cdot 6$	1,390		720
16.	$5 \cdot 3$	3,240	$3 \cdot 6$	1,390	$3 \cdot 15$	1,140	$4 \cdot 0$	1,680	$3 \cdot 4$	1,270		690
17.	$5 \cdot 2$	3,080	3.75	1,480	$3 \cdot 25$	1,200	$4 \cdot 1$	1,760	$3 \cdot 45$	1,300		660
18.	$5 \cdot 0$	2,790	3.85	1,560	$3 \cdot 35$	1,240	$4 \cdot 15$	1,810	$3 \cdot 5$	1,330		630
19.	4-8	2,530	3.75	1,480	$3 \cdot 8$	1,520	$4 \cdot 35$	2,010	$3 \cdot 5$	1,330		630
20.	$4 \cdot 75$	2,470	$3 \cdot 75$	1,480	$3 \cdot 9$	1,600	$4 \cdot 4$	2,060	$3 \cdot 5$	1,330		630
21.	$4 \cdot 7$	2,410	3-65	1,420	$3 \cdot 8$	1,520	$4 \cdot 15$	1,810	$3 \cdot 5$	1,330		630
22.	$4 \cdot 65$	2,350	$3 \cdot 55$	1,360	$3 \cdot 7$	1,450	$4 \cdot 0$	1,680	$3 \cdot 45$	1,300		630
23.	$4 \cdot 5$	2,170	$3 \cdot 55$	1,360	$3 \cdot 6$	1,390	$3 \cdot 9$	1,600	$3 \cdot 4$	1,270		630
24.	$4 \cdot 3$	1,960	$3 \cdot 55$	1,360	$3 \cdot 55$	1,360	$3 \cdot 8$	1,520	$3 \cdot 4$	1,270		640
25.	$4 \cdot 25$	1,910	$3 \cdot 55$	1,360	$3 \cdot 55$	1,360	$3 \cdot 75$	1,480	$3 \cdot 4$	1,270		650
26.	$4 \cdot 2$	1,860	$3 \cdot 52$	1,340	3-55	1,360	$3 \cdot 7$	1,450	$3 \cdot 7$	1,450		660
27.	$4 \cdot 15$	1,810	$3 \cdot 45$	1,300	3.55	1,360	$3 \cdot 7$	1,450	$3 \cdot 6$	1,390		670
28.	$4 \cdot 15$	1,810	$3 \cdot 45$	1,300	$3 \cdot 55$	1,360	$3 \cdot 6$	1,390	$3 \cdot 6$	1,390		680
29.	$4 \cdot 15$	1,810	$3 \cdot 35$	1,240	$3 \cdot 55$	1,360	$3 \cdot 6$	1,390	$3 \cdot 55$	1,360		690
30.	$4 \cdot 12$	1,780	$3 \cdot 35$	1,240	$3 \cdot 5$	1,330	$3 \cdot 6$	1,390	$3 \cdot 45$	1,300		700
31.	$4 \cdot 05$	1,720	$3 \cdot 3$	1,220			$3 \cdot 7$	1,450				710

Monthly Discharge of Elk River, near Elko, B.C. for 1914.
(Drainage area, 1,600 square miles.)

Month.	Discharge in Second-Feet.				Run-Off.		Accuracy.
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	Total in acre-feet.	
April.	3,240	930	1,950	1.22	$1 \cdot 36$	116,000	C
May.	8,290	3,380	5, 820	$3 \cdot 63$	$4 \cdot 18$	358,000	C
June.	11,300	3,460	6,230	$3 \cdot 89$	4-34	371,000	C
July	4,560	1,720	3,050	1.91	$2 \cdot 20$	188,000	B
August	1,720	1,220	1,470	0.92	1.06	90,400	A
September.	1,600	1,120	1,260	C. 79	0.88	75,000	A
Oetober...	2,060	1,330	1,500	0.94	1.08	92,200	A
November.	2,660	1,270	1,660	1.04	1.16	98,800	A
December.	1,220		847	$0 \cdot 53$	$0 \cdot 61$	52,100	

Gold Creek, near Newgate (3047).
Location.-At highway bridge, half-a-mile from mouth, opposite Flagstone, and 7 miles from international boundary line at Newgate, south-east Kootenay. Cranbrook district.

Records Available.-May to August, 1914.

Climatic Conditions.-Winters, severe, with light snowfall. Summers, hot and dry.

Gauge.-Wooden staff, 4 feet long, located on downstream side of bridge. Gauge is read three times a week by Mr. F. Neuendorp.

Channel.-Fairly smooth, unbroken, gravel bar below.
Discharge Measurements.-Five-well distributed measurements were made from the bridge in 1914.

Accuracy.-The measurements are very reliable. Three gauge readings a week are obtained. The gauge-height-discharges curve is very good. Accuracy during high water, 15 per cent, during low water, 10 per cent.

Co-operation.-This section was maintained in 1914 by co-operation with the Water Rights Branch (Provincial).

General.-Gold creek rises in the hills south of Cranbrook and flows in a south-easterly direction for about 35 miles, discharging into Kootenay river opposite Flagstone, and about 7 miles above the international boundary line. The drainage area is about 230 square miles. The precipitation throughout the drainage is very light, probably not exceeding 20 inches. Gold creek may be termed an irrigation stream.

Discharge Measurements of Gold Creek, near Flagstone, for 1914.

	Date.	Hydrographer.	Meter No.	Width.	Area of Section.	$\begin{gathered} \text { Mean } \\ \text { Velocity. } \end{gathered}$	Gauge Height	Discharge.
				Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
May		D. O. B. G., R. H. H	1048	63.5	192	5.97	2.35	1,150
June	11.	D. O. B. G., H. B. H	1048	60	112	3.02 1.65 1	$1 \cdot 35$ 0.75	339 123
July	${ }_{28} 1$.	D. O'B. G., R. H. H	1929	62	48.45	1.11	${ }^{0.73}$	123 53.
Sept.	11.	H. B. H. (Prov.) .			$30 \cdot 0$	0.69	0.05	20.6

6. GEORGE V, A. 1916

Daily Gauge Height and Discharge of Gold Creek, near Gateway, for 1914

Monthly Discharge of Gold Creek, near Gateway, for 1914.
(Drainage area, 230 square miles.)

	Montia	Discharge in Second-Feet.				Run-Off		Aecuraey
		Maximum.	Minimum	Mean.	$\begin{gathered} \text { Per } \\ \text { square } \\ \text { Mile. } \end{gathered}$	Depth in inehes on Drainage	$\begin{aligned} & \text { Total } \\ & \text { in } \\ & \text { Aere-feet. } \end{aligned}$	
May	\%	1,210	595	868	3.78	$4 \cdot 36$	53, 400	C.
June	\ldots	- 710	175	392	1.70	1.90	23,300	C.
July		210	49	107	0.46	0. 53	6,580	B.
August.		60	26	37-6	$0 \cdot 16$	$0 \cdot 18$	2,310	B.

Kootenay River. near Wardner (3041).
Location.-At the highway bridge near Wardner, above the mouth of Elk river, below the mouths of Bull and st. Mary's rivers and about 35 miles from the international boundary line. Cranbrook district.

Records Available.-April to December, 1914.
Climatic Conditions.-The precipitation at Wardner in 1914 was about 17 inches. The summers are hot and dry and the winters are severe. Cold

SESSIONAL PAPER No. 25 e

spells, a week or two in duration, occur, when the temperature will go down to $-30^{\circ} \mathrm{F}$. (and in some cases the thermometer has gone down to $-50^{\circ} \mathrm{F}$.) The river is generally affected by ice from December to March. Frazil ice is prevalent.

Gauge.-A vertical staff gauge, 12 feet long, is read daily by Mrs. C. Barnes, of Wardner.

Channel.- The channel is straight and uniform, but piles have been driven down the centre of the river for logging purposes.

Discharge Measurements.-One measurement in 1913, and nine in 1914, were made from the traffic bridge.

Accuracy.-Daily gauge readings are obtained, reliable measurements were made, and the gauge height discharge curve is very good. The results should be within 5 per cent.

General.-Kootenay river rises in the Beaverfoot range of the Rockies, in township 24 , range 16 , west 5 th meridian, and flows in a south by southeasterly direction through Wardner, a distance of about 100 miles. The valley of the Kootenay is broad and fertile, and is gradually being opened for agricultural developments. The fall of the river is very gradual, and will not be used for power between Canal Flats and Wardner. The river is most suitable for logging, and each year drives come down from valuable limits at the headwaters.

Discharge Measurements of Kootenay River, near Wardner, for 1913-14.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Date. \& Hydrographer. \& \[
\begin{gathered}
\text { Meter } \\
\text { No. }
\end{gathered}
\] \& Width. \& Ares of Necticn \& \begin{tabular}{l}
Mean \\
Velocity.
\end{tabular} \& \begin{tabular}{l}
Gauge \\
Height
\end{tabular} \& Discharge \\
\hline 1913 \& \& \& Feet. \& Sq. ft. \& Ft, per sec. \& Feet. \& See.-ft. \\
\hline Nov. 23 \& C. E. II., C. E. R. \& 1,048 \& 460 \& 2.100 \& 1.64 \& 2 (\%) \& 3.460 \\
\hline 1914 \& \& \& \& \& \& \& \\
\hline May 19 \& D. O. B. G., R. 11.11 \& 1.048 \& 482 \& 4. 860 \& 4.93 \& 8.06) \& 23.500 \\
\hline June
H

15 \& \& 1.045 \& 4×3 \& 5.450 \& 5.55 \& $9 \cdot 30$ \& -33.510

\hline 20 \& " \& 1,048 \& 188 \& 6,070 \& $6+1$ \& 10. 65 \& 35.9hn)

\hline July 25 \& ". \quad " \& 1.929 \& 467 \& 3.3511 \& 3.35 \& $5 \cdot(1)$ \& 11.3(3)

\hline (1) 31 \& ". ${ }_{\text {" }}$ \& 1.929 \& 467 \& 3. 210 \& 3.33 \& 4.0 \& 10.74)

\hline Oct. ${ }^{7}$ \& ". ${ }^{\text {.. }}$ \& 1.929 \& | 464 |
| :--- |
| 465 |
| 185 | \& $\stackrel{2.490}{ }$ \& $\bigcirc{ }_{2}^{18}$ \& $\stackrel{2}{2} \cdot 9$ \& 5,210

\hline | \square |
| :--- |
| Dee $\quad 13$ | \& \& 1.929

1.919 \& 465
134 \& 2.464 \& $\stackrel{2}{2} \cdot 11$ \& 1\% \& 5.120

\hline \& Ј..... \& \& \& \& \& \& 11.0

\hline
\end{tabular}

[^94]6 GEORGE V, A. 1916

Daily Gauge Height and Discharge of Kootenay River, near Wardner, for 1914.

Day.	January.		February.		March.		April.		May.		June.	
	Gauge Height	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge
	Feet.	Sec.-ft.										
1.	$1 \cdot 1$	1,000	$1 \cdot 2$	1,200	1.0	800	1.05	900	$4 \cdot 1$	8,700	6.95	18,400
2.	$1 \cdot 1$	1,000	$1 \cdot 2$	1,200	$1 \cdot 0$	800	$1 \cdot 05$	900	4.85	11,000	8.30	24,800
3	$1 \cdot 1$	1,000	$1 \cdot 3$	1,400	1.0	800	1.05	900	6.25	15,800	$9 \cdot 65$	32,400
4	$1 \cdot 2$	1,200	1.4	1,700	$1 \cdot 0$	800	1.00	800	$6 \cdot 85$	18,000	10.75	39,500
5.		1,200	$1 \cdot 4$	1,700	$1 \cdot 0$	800	$1 \cdot 0$	800	$6 \cdot 3$	15,900	$11 \cdot 25$	43,000
6		1,200		1,700	$1 \cdot 0$	800	1.1	1.000	5.75 5.40	14,000	9.25	30,000
7.		1,200		1,700	0.9	600	$1 \cdot 3$	1,400	$5 \cdot 40$	12.600	8.20	-4,300
8		1,200		1,700	$1 \cdot 0$	800	1.75	2, 600	$5 \cdot 07$	11,600	8.40 7.35	25,300
9		1,200		1,700	$1 \cdot 0$	800	1.8	2,70	$5 \cdot 47$	12,900	$7 \cdot 35$	$2 \mathrm{~J}, 200$
10.		1,200		1,700	1.0	800	1.9	2,900	$6 \cdot 10$	15.200	$6 \cdot 50$	16, 800
11.		1,200		1,700	1.0	800	$2 \cdot 0$	3,200	$6 \cdot 3$	15,900	$6 \cdot 35$	16,000
12		1,200		1,700	$1 \cdot 0$	800	$2 \cdot 15$	3,600	$6 \cdot 3$	15,900	6.80	17,800
13		1,200		1,700	0.95	700	$2 \cdot 5$	4,400	$6 \cdot 3$ 6.65	15,900	7.45	20,600
14		1,200		1,700	0.95	700	2.85	5,300	$6 \cdot 65$	17,200	$8 \cdot 4$	25,300
15.		1,200		1,700	$1 \cdot 00$	800	$2 \cdot 97$	5,610	$7 \cdot 52$	21,000	$9 \cdot 35$	30,600
16		1,200		1,700	$1 \cdot 10$	1,000	$3 \cdot 25$	6,400	8.9	24,300	9.9	33, 800
17		1,200		1,700	$1 \cdot 10$	1,000	$3 \cdot 32$	6,540	8.32	24,900	$10 \cdot 42$	37, 200
18		1,200		1,700	$1 \cdot 10$	1,000	$3 \cdot 2$	6,300	8.4	25,300	10.77	39,600 41,300
19.	1.2	1,200	1.3	1,400	1.10 1.05	1,000 900	3.15 3.72	6,150 7,560	$8 \cdot 07$ $7 \cdot 65$	23,600 21,600	$11 \cdot 02$ $10 \cdot 65$	41,300 38,800
20.	$1 \cdot 2$	1.200	$1 \cdot 2$	1,200	1.05	900	$3 \cdot 72$	7.560	7.65	21,600	$10 \cdot 65$	38,800
21	$1 \cdot 2$	1,200	$1 \cdot 3$	1,400	1.05	900	$4 \cdot 0$	8,400	$7 \cdot 3$	20,000	9.58	32,000
22	$1 \cdot 1$	1,000	$1 \cdot 3$	1,400	1.05	900	$3 \cdot 82$	7,860	$7 \cdot 15$	19,400	$8 \cdot 4$	25,300
23.	$1 \cdot 1$	1,000	$1 \cdot 1$	1,000	1.05	900	3.7	7,500	$7 \cdot 37$	20,300	$7 \cdot 45$	20,600
24	$1 \cdot 0$	- 800	$1 \cdot 0$	800	1.05	900	$3 \cdot 7$	7,500	$7 \cdot 55$	21,200	$6 \cdot 87$	18. 100
25.	0.9	600	1.0	800	1.05	900	$3 \cdot 8$	7,800	$7 \cdot 5$	22,300	6.7	17,400
26.	$1 \cdot 0$	800	$1 \cdot 0$	800	1.05	900	3.85 3.80	7,950	7.85	22,600 20	7.42 7.42	
27.	$1 \cdot 1$	1,000	1.0	800	1.05	900 900	3.80 3.80 3.80	7,800 7,800	7.3 6.85	20,000 18,000	7.42 7.27	20,500
28	$1 \cdot 1$	1,000	$1 \cdot 0$	800	1.05	900	3.80 3.70	7,800	$6 \cdot 85$ 6.3	18,000	7.27 7.32	19,900
29.	1.1	1,000			1.05	900 900	3.70 3.70	7,500 7,500	6.3 5.97	15,900 14,700	$7 \cdot 32$ $7 \cdot 60$	20,100 21,400
30.	$1 \cdot 1$	1,000			1.05	900	3.70	7,500	$5 \cdot 97$	14,700	$7 \cdot 60$	21,400
31.	$1 \cdot 2$	1,200			$1 \cdot 05$	900			$6 \cdot 10$	15,200		\cdots

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Kootenay River, near Wardner, for 1914.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge.										
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec. -ft .	Feet.	Sec.-1t.
1.	$7 \cdot 9$	22.700	4.70	10,500	2.98	5,640	$3 \cdot 22$	6.340	2.92	5,460	$2 \cdot 05$	3,350
2	$8 \cdot 4$	25.300	4.85	11,000	$2 \cdot 88$	5, 360	3.17	6,210	$3 \cdot 4$	6,700	1.92	$\frac{2}{3}, 960$
3	8.8	27,400	$4 \cdot 82$	10,900	2.82	5,240	3.22	6,340	$3 \cdot 37$	6,640	1.95	3,050
4	9.07	29,000	4.72	10,600	$2 \cdot 85$	5,300	$3 \cdot 22$	6.340	$3 \cdot 27$	6,440	$1 \cdot 97$	3,110
5.	9.27	30,200	$4 \cdot 67$	10,400	2.85	5,300	$3 \cdot 12$	6,060	$3 \cdot 23$	6,360	1.90	2,900
6	$9 \cdot 15$	29,500	$4 \cdot 45$	9,75C	$2 \cdot 85$	5,300	3.02	5,760	$3 \cdot 39$	6,680	1.85	2,800
7	8.88	27,900	$4 \cdot 35$	9,450	2.72	5,040	$2 \cdot 95$	5,550	$3 \cdot 25$	6, 400	1. 50	2.700
8	8.42	25,400	4.45	9,750	$2 \cdot 70$	5,000	2.92	5,460	3.02	5,760	1.75	2,600
9.	8.07	23,600	$4 \cdot 25$	9,150	$2 \cdot 75$	5,100	2-88	5,360	2.92	5,460	1.75	2,600
10.	$7 \cdot 8$	22,300	3.97	8,310	2-70	5,000	$2 \cdot 92$	5,460	$2 \cdot 8$	5,200	$1 \cdot 67$	2,440
11.	$7 \cdot 55$	21,200	$3 \cdot 80$	7,800	2.62	4,760	2.95	5,550	2.77	5,140	1.45	1,850
12.	7.40	20,400	$3 \cdot 80$	7,800	$2 \cdot 35$	4,550	2.95	5,550	2.8	5,200	$1 \cdot 50$	2,000
13	7.52	21,000	3.75	7,650	$2 \cdot 65$	4,850	$2 \cdot 87$	5,340	$2 \cdot 77$	5,140	$1 \cdot 07$	940
14.	8.00	23,300	3.72	7,560	$2 \cdot 58$	4,640	$2 \cdot 82$	5,240	$2 \cdot 7$	5,000	1.02	840
15	7.97	23,000	$3 \cdot 72$	7,560	$2 \cdot 50$	4,400	$2 \cdot 82$	5,240	$2 \cdot 5$	4,400		1,000
16	$7 \cdot 67$	21,800	$3 \cdot 7$	7,500	$2 \cdot 55$	4,550	$2 \cdot 90$	5,400	$2 \cdot 3$	3,900		1,160
17.	6.87	18, 100	$3 \cdot 7$	7,500	2. 53	4,490	$2 \cdot 90$	5,400	$2 \cdot 15$	3,600		1,320
18	$6 \cdot 35$	16,000	$3 \cdot 67$	7,410	$2 \cdot 65$	4,850	2.95	5,550	$2 \cdot 12$	3,540		1,450
19.	$6 \cdot 32$	16,000	3. 53	7,060	3.00	5,700	$3 \cdot 12$	6,060	$2 \cdot 35$	4,000		1,640
20.	$6 \cdot 27$	15,800	$3 \cdot 4$	6,700	$3 \cdot 60$	7,200	$3 \cdot 25$	6,400	$2 \cdot 2$	3,700		1,600
21	$6 \cdot 32$	16,000	$3 \cdot 4$	6,700	3.55	7,100	$3 \cdot 15$	6,150	$2 \cdot 2$	3,700		1,600
22.	$5 \cdot 9$	14,400	$3 \cdot 37$	6,640	$3 \cdot 32$	6,540	3.00	5,700	$2 \cdot 3$	3,900		1,600
23.	$5 \cdot 35$	12,400	3-40	6,700	$3 \cdot 17$	6,210	2.90	5,400	$2 \cdot 3$	3,900		1,600
24	5.05	11,600	$3 \cdot 3$	6,500	$3 \cdot 02$	5,760	2.77	5,140	$2 \cdot 3$	3,900		1,600
25.	5.00	11,400	$3 \cdot 22$	6,340	$3 \cdot 12$	6,060	2.72	5,040	$2 \cdot 25$	3,500		1,6010
26	$5 \cdot 05$	11,600	$3 \cdot 1$	6,000	$3 \cdot 25$	6,400	$2 \cdot 73$	5,060	$2 \cdot 2$	3,700		1,600
27.	4.92	11,200	$3 \cdot 07$	5,910	$3 \cdot 42$	6,760	$2 \cdot 65$	4,850	$2 \cdot 22$	3,740		1,600
28	4.87	11,000	3.05	5,850	$3 \cdot 67$	7,410	$2 \cdot 60$	4,700	$2 \cdot 2$	3,700		1,6010
29	$4 \cdot 85$	11,000	$3 \cdot 00$	5,700	$3 \cdot 65$	7,350	$2 \cdot 60$	4,700	$2 \cdot 2$	3,700		1,600
30.	4.77	10,700	2.98	5,640	$3 \cdot 42$	6,760	$2 \cdot 60$	4,700	$2 \cdot 17$	3,640		1,600
31.	$4 \cdot 70$	10,500	3.08	5,940			$2 \cdot 62$	4,760				1,600

Monthly Discharge of Kootenay River, near Wardner, for 1914.
(Drainage area, 5,200 square miles.)

Month.	Discharge in Second-Feer.				Rus-Off.		Aecursey
	Maximum.	Minimum.	Mean.	Per Square Milo.	Depth in inches on Drainage Area.	Total in Acre-leet	
January minn	1.200	660	1,100	0.21	0.24	67, 600	
Kebruary max..	1. 760	hen)	1, +20	0.27	0.25	7s. 940	
March	1, (460)	640	8.58	0.16	$0 \cdot 18$	53, $4(4)$	H
April.	8.4 (4)	8180	4.920	0.95	1.48	2033, (4x)	H
Muy.	25, 3(6)	8,700	18, 106)	$3 \cdot 48$	4.01	1, $110.0 \mathrm{ma\mid}$	1
	13, 1 KK)	17, 4 (k)	28, 464	5.08	$5 \cdot 67$	1.55\%, (44)	1
July	30, 2(x)	10, 5151	10, 1(6)	3.67	4.23	$1170)$, (6)	1
Auguat ... - ${ }_{\text {d }}$	11, 1960	5,640	7, $\times 20$	180	1.73	(sis) (ax)	1
Sieptember.	7,410	4.460	5,620	${ }^{\text {1-68 }}$	1.21	3.14 (\times (n)	1
Oetobers.	6, 410	4.700	5,510	116	1.22	359.1841	1
November . ${ }^{\text {N }}$,	6,710	3.540	4, 730	0.91	1-192	$3 \mathrm{Cl},(\pm 4)$	1
Decombor	3,350	811	1,040	0.37	U.43	1iy, (xx)	

Linklater Creek, near Newgate (3045).

Location.-At Smith's ranch, 6 miles north of international boundary line; at Newgate, 4 miles from mouth of Gold creek. Cranbrook district.

Records Available.-May to September, 1913.
Climatic Conditions.-The precipitation is light, generally not in excess of 20 inches. The summers are hot and dry. Winters are severe, during some cold spells the thermometer going down to $-40^{\circ} \mathrm{F}$.

Gauge.-Three-foot vertical staff gauge, nailed to bridge. Mr. Jas. Bean reads gauge daily.

Channel.-Moderately swift, fairly smooth, and unbroken.
Discharge Measurements.-Five well-distributed measurements were made in 1914.

Co-operation.-This station was maintained by co-operation between the Provincial Water Rights Branch and the British Columbia Hydrographic Survey.

Accuracy.-Daily gauge readings are obtained, the measurements should be accurate. The results are within 15 per cent.

General.-Linklater creek is a small irrigation stream, about 15 miles long, flowing from the northwest into Kootenay river near Newgate. The drainage area is about 40 square miles (as obtained from the only available maps.)

Discharge Measurements of Linklater Creek, near Smith's ranch, Gateway, for 1914.

	Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of section.	Mean Velocity.	Gauge Height.	Discharge.
	1914.		Feet.	Sq. ft .	Ft . per sec.	Feet.	Sec.-ft.	
May	17.	D. O.B. G., R.H.H	1.045	$20 \cdot 0$	$30 \cdot 0$	$3 \cdot 30$	$1 \cdot 30$	99.0
June	18.	P H H.D.H.	1.048	$20 \cdot 0$	21.5	2.66	$0 \cdot 85$	57.1
July	11.	R. H. H. (Prov,		$20 \cdot 0$	13.0	1.66	$0 \cdot 50$	21.7
July	28	D.O.B.G., R. H. H	1,909	$20 \cdot 0$	$10 \cdot 6$ 8.70	1.35 1.41	0.40 0.30	14.3 12.3

SESSIONAL PAPER No. 25e

Daily Gauge Height and Discharge of Linklater Creek, near Gateway, for 1914.

Monthly Discharge of Linklater Creek, near Newgate, for 1914.
Drainage arca 42 square miles. 1

Month		1)tincharge in *ecosid-Feet				181 N-01FY	
		Maximum.	Minimum.	Mean.	Per square mile	I epth in inclies on Drainage uriva	Total in acre-feet
May		96	34	165-5	136	1-21	4.1330
June	$=$	1 M .	30	54.1	1 : 41	1.45	3.240
July	0	327	12.8	19.11	10.45	11. 5?	1170
August	0	20-6	11.2	12 s	(1) 30	0.35	2:
Septembur			111.11	$12 \cdot 11$	0.20	0.32	714

Areuracy "
Mark (MEEK, NEAK Martsthate (30:37).
Location.- At the month of the rerek near Maryssille, ahomt It mikes from (rambrook. (rambrook district.

Records Arailable. May to Deermber, 1911.
$25 \mathrm{e}=3.3 \frac{1}{2}$

Climatic Conditions.-At Marysville the precipitation each year is a little greater than at Cranbrook, which in 1914 was 16 inches. The summers are hot and dry. The winters are severe. Cold spells lasting for a week or so often occur, when the thermometer may reach $-40^{\circ} \mathrm{F}$. and $-50^{\circ} \mathrm{F}$. The creek freezes over in November or December and remains frozen till March. Frazil ice is present.

Gauge.-An enamel gauge, 6 feet long, is read daily by Mr. Wr. M. Burdette, of Marysville.

Channel.-Straight, rocky, and water is generally broken. The section may fill but the control appears permanent.

Discharge Measurements.-Eight well-distributed measurements were made in 1914.

Co-operation.-This station was maintained by co-operation between the British Columbia Hydrographic Survey and the Water Rights Branch of the province.

Accuracy.-The measurements are fair, daily readings are obtained, and the gauge heights discharge curve seems very good. The results should be within 10 per cent.

General.-Mark creek is a stream about 15 or 20 miles long, flowing from the northwest into St. Mary's river near Marysville. The drainage area is about 90 square miles (as estimated from the only available maps). Near Kimberley is the Sullivan mine, where large quantities of silver-lead ore is mined and shipped to Trail smelter. This company has a water-power development on Mark creek. At present about 350 horse-power is developed during the summer months. The head it is anticipated, will soon be increased.

There are other valuable mining claims in Mark creek drainage which, when developed, may tend to increase the importance of this little stream.

Discharge Measurements of Mark Creek, near Marysville, for 1914.

Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
1914.			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
May 1.	H, B; H. \& C. E. R.	1,048	20	41.4	$2 \cdot 66$	1.68	110
May ${ }^{\text {July }} 8$.	D. B. ${ }^{\text {B }}$ H. (Prov.	1,530	${ }_{24}^{25}$	57.9 55.4	4.08 4.02	${ }_{2 \cdot 1}$	${ }_{223}^{236}$
July 24.	D. O.'B. G., H. B. H.	1,929	16	$34 \cdot 1$	1.92	$1 \cdot 4$	56.4
${ }^{\text {Sept. }}$ Sept. 29.	H. B. Hic (Prov.)			$22 \cdot 2$. 77	1.00	$17 \cdot 2$
Oct. 10	D. O. B. G	1,929	19.5	28.4	0.86	1.125	$24 \cdot 2$
Oct. 16.		1.929	19.5	29.4	0.99	1.22	29.1

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of Mark Creek, at Marysville, B.C., for 1914.

Daily Gauge Height and Discharge of Mark Creek, at Marysville, B.C.' for 1914-Concluded.

Day.	July:		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height	Discharge.	Gauge Height	Discharge.
	Feet.	Sec.-ft.										
1.	$\bigcirc \cdot 02$	189	1.27	38.1	1.07	17.9 17.9	1.12 1.14	21.8 23.6	1.20 1.27	29.0 38.1	1.22 1.17	$31 \cdot 6$ 26.3
2	$2 \cdot 08$	206	1.2	29.0 29.0	1.07 1.07	17.9 17.9	$1 \cdot 14$ $1 \cdot 18$	$23 \cdot 6$ $27 \cdot 2$	1.27 1.20	38.1 29.0	1.17 1.20	$26 \cdot 3$ $29 \cdot 0$
3	${ }_{2}^{2 \cdot 12}$	215 213	1.2 1.18 1.18	29.0 27.2	1.07 1.07	17.9 17.9	1.18 1.19	$27 \cdot 2$ $28 \cdot 1$	1.20 1.23	29.0 $32 \cdot 9$	1.20 1.26	$29 \cdot 0$ $36 \cdot 8$
4.	$2 \cdot 11$ $2 \cdot 14$	213	1.18 1.18	$27 \cdot 2$ $27 \cdot 2$	$1 \cdot 07$ $1 \cdot 04$	17.9 15.8	1.19 1.19	$28 \cdot 1$ 28.1	1.23 1.26	$32 \cdot 9$ 36.8	1.26 1.23	$36 \cdot 8$ $32 \cdot 9$
6	$2 \cdot 02$	189	$1 \cdot 18$	$27 \cdot 2$	1.04	$15 \cdot 8$	$1 \cdot 19$	28.1	1.25	$35 \cdot 5$	1.19	$28 \cdot 1$
7	1.9	158	1.16	$25 \cdot 4$	1.08	18.6	$1 \cdot 19$	28.1	1.21	$30 \cdot 3$	1-12	21.8
8.	1.82	139	1.18	$27 \cdot 2$	1.10	$20 \cdot 0$	1.16	25.4	1.21	$30 \cdot 3$	1.56	21.0
9.	1.77	128	$1 \cdot 12$	21.8	1.08	18.6	1.16	25.4	1.23	$32 \cdot 9$	$2 \cdot 10$	20.0
10.	1.72	116	$1 \cdot 17$	$26 \cdot 3$	$1 \cdot 08$	$18 \cdot 6$	$1 \cdot 18$	$27 \cdot 2$	$1 \cdot 18$	$27 \cdot 2$	$2 \cdot 25$	$20 \cdot 0$
11.	$1 \cdot 69$	110	$1 \cdot 17$	$26 \cdot 3$	1.08	$18 \cdot 6$	1.18	27.2	1.19	28.1	$2 \cdot 45$	19-0
12.	$1 \cdot 65$	102	$1 \cdot 17$	$26 \cdot 3$	1.08	18.6.	$1 \cdot 20$	29.0	$1 \cdot 17$	$26 \cdot 3$	$2 \cdot 50$	18.0
13.	1.77	127	$1 \cdot 16$	$25 \cdot 4$	1.06	17.2	$1 \cdot 17$	$26 \cdot 3$	$1 \cdot 16$	$25 \cdot 4$	$2 \cdot 55$	17.0
14	1.84	144	$1 \cdot 12$	21.8	1.06	$17 \cdot 2$	$1 \cdot 17$	$26 \cdot 3$	$1 \cdot 15$	$24 \cdot 5$	$2 \cdot 60$	$16 \cdot 0$
15.	$1 \cdot 67$	106	$1 \cdot 13$	$22 \cdot 7$	$1 \cdot 09$	$19 \cdot 3$	$1 \cdot 20$	$29 \cdot 0$	$1 \cdot 15$	24.5	Frozen	$15 \cdot 3$
16	1.6C	$92 \cdot 0$	$1 \cdot 13$	$22 \cdot 7$	$1 \cdot 12$	21.8	$1 \cdot 20$	$29 \cdot 0$	$1 \cdot 15$	$24 \cdot 5$		$15 \cdot 0$
17.	1.53	78.7	$1 \cdot 16$	25.4	1.06	$17 \cdot 6$	1.15	24.5	$1 \cdot 17$	$26 \cdot 3$		$15 \cdot 0$
18.	1.50	73.0	$1 \cdot 17$	$26 \cdot 3$	$1 \cdot 10$	$20 \cdot 0$	1.18	$27 \cdot 2$	1.17	$26 \cdot 3$		$15 \cdot 0$
19.	$1+42$.	59.4	$1 \cdot 12$	21.8	1.19	28.1	1.23	32.9	1.18	$27 \cdot 2$		$15 \cdot 0$
20.	1.45	$64 \cdot 5$	$1 \cdot 13$	22.7	$1 \cdot 18$	$27 \cdot 2$	$1 \cdot 24$	$34 \cdot 2$	$1 \cdot 20$	$29 \cdot 0$		16.0
21	1.41	57-7	$1 \cdot 11$	20.9	$1 \cdot 15$	24.5	$1 \cdot 22$	31.6	1.20	$29 \cdot 0$		16.0
22	1.40	$56 \cdot 0$	1.10	$20 \cdot 0$	$1 \cdot 1 \mathrm{C}$	20.0	1.18	27.2	$1 \cdot 17$	$26 \cdot 3$		$17 \cdot 0$
23.	$1 \cdot 40$	56.0	1.08	$18 \cdot 6$	$1 \cdot 11$	$20 \cdot 9$	$1 \cdot 16$	25.4	1.29	29.0		17.0
24.	$1 \cdot 37$	51.8	1.08	$18 \cdot 6$	$1 \cdot 11$	$20 \cdot 9$	$1 \cdot 16$	25.4	1.20	$29 \cdot 0$		$18 \cdot 0$
25.	1-32	$44 \cdot 8$	1.08	$18 \cdot 6$	$1 \cdot 14$	$23 \cdot 6$	$1 \cdot 11$	$2 \cdot .9$	1-21	$30 \cdot 3$		$18 \cdot 0$
26.	$1 \cdot 35$	$49 \cdot 0$	1.08	$18 \cdot 6$	$1 \cdot 19$	28.1	$1 \cdot 16$	25.4	$1 \cdot 20$	$29 \cdot 0$		18.0
27.	$1 \cdot 34$	$47 \cdot 6$	1.08	$18 \cdot 6$	$1 \cdot 19$	$28 \cdot 1$	$1 \cdot 20$	29.0	$1 \cdot 18$	$27 \cdot 2$		$18 \cdot 0$
28.	$1 \cdot 31$	$43 \cdot 4$	1.07	17.9	1.19	28.1	$1 \cdot 20$	29.0	$1 \cdot 17$	$26 \cdot 3$		$18 \cdot 0$
29.	$1 \cdot 30$	$42 \cdot 0$	1.07	17.9	1.16	25.4	$1 \cdot 20$	29.0	$1 \cdot 16$	$25 \cdot 4$		$18 \cdot 6$
30.	1-29	$40 \cdot 7$	1.07	17.9	$1 \cdot 15$	$25 \cdot 4$	1.20	29.0	$1 \cdot 21$	$30 \cdot 3$		18.0
31.	$1 \cdot 26$	36.8	$1 \cdot 07$	$17 \cdot 9$			$1 \cdot 20$	$29 \cdot 0$				$18 \cdot 0$

Monthly Discharge of Mark Creek, at Marysville, B.C., for 1914.
Drainage area 90 square mile3.

Montr.	Dischirge in Second-Feet.				Ren-Off.		Accuracy:
	Maximum.	Minimum.	Mean.	Per square mile.	$\begin{gathered} \text { Depth } \\ \text { in inches } \\ \text { on } \\ \text { Drainaze. } \\ \text { area. } \end{gathered}$	Total in acre-feet.	
May.	368	112	238	$2 \cdot 64$	$3 \cdot 04$	14,600	B
June	527	132	270	$3 \cdot 0$	$3 \cdot 55$	10, 100	
July	221	$36 \cdot 8$	105	$1 \cdot 17$	$1 \cdot 35$	6,469	
August...... ... \|i. , ind	38.1	$17 \cdot 9$	$23 \cdot 4$	$0 \cdot 26$	$0 \cdot 30$	1.440	"
September. ..	$20 \cdot 1$	$15 \cdot 8$	21.0	$0 \cdot 23$	0.26	1,250	"
October....	$34 \cdot 2$ $38 \cdot 1$	21.8 24.5	27.4 23.9	0.30 C .32	0.35 0.36	1.650 1.720	"
November. December	$38 \cdot 1$ 36.8	$24 \cdot 5$	28.9 20.1	6.32 0.22	0.36 0.25	1.720 1,249	

Mud Creek, near Elko (3044).
Location.-Two and one-half miles above Rock creek mill, near Elko. Cranbrook district.

Records Available.-June to September, 1914.
Climatic Conditions.-Similar to Elko. (See Elk river.)

SESSIONAL PAPER No. 25e

Gauge.-Three-foot enamel gauge, nailed to an old bridge, about one-half mile above Rock Creek mill. Read four or five times a week by Mr. H. B. Stiven, of Elko.

Channel.-Sluggish. Not very uniform.
Discharge Measurements.-Four measurements were made in 1914.
Co-operation.-Provincial Water Rights Branch and British Columbia Hydrographic Survey co-operated in 1914.

Accuracy.-Not guaranteed.
General.-Mud creek is a small irrigation stream, tributary to Rock creek, near Elko. The discharge of Mud creek, plus that of Rock creek, gives the discharge of Rock creek at the Rock Creek Lumber Company's dam.

Discharge Measurements of Mud Creek, near Baynes, for 1914.

Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section.	Mean Velocity:	Gauce Height.	Discharge.
1914.			Feet.	Sq. It.	Ft. per sec.	Feet.	Sec.-it.
May 18	D. O'B. G. R. H. H...	1,048	8.5	10.0	$2 \cdot 27$	2.05	22.7
July	R. H. H. (Prov.) D. ${ }^{\text {B B. G. R. H. H... }}$ (8.1 8.1	8.9 7.9	1.94 1.50	1.70 1.40	17.3 11.9
Sept. 14.	H. B. H. (Prov.) -			$7 \cdot 13$	1.22	1.20	8.65

Daily Gauge Height and Discharge of Mud Creek, near Elko, for 1914.

	Day.	May.		June.		July:		August.		September.	
		Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height	Discharge	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge } \end{aligned}$	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height	- Discharge
		Fcet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1 2				$2 \cdot 1$	22.8 23.7	1.8	18.4 17.6	1.4	11.8	1. 20	8.7
3				$2 \cdot 1$	23.7	1.7	16.7	1-35	11.0	1.15	8.0
4.				$2 \cdot 1$	23.7	1.8	18.4		11.0	$1 \cdot 15$	8.0
5					24.2		18.4	$1 \cdot 35$	11.0	$1 \cdot 15$	8.0
6				2. 15	24.6	1.8	18.4		$10 \cdot 6$	1.15	8. 0
8					24.6		17.6	1.3	16.2		8.0
8.				2.15	24.6	1.7	16.7 17.6	1.3	10.2	$1 \cdot 15$	\%.0
10.				$2 \cdot 1$	23.7	1.8	18.4	1.3	10.2	115	S. 0
11				$2 \cdot 1$	23.7	1.6	15.0		9.s		8.11
12				2.0	$21 \cdot 1$	1.65	15.8	$1 \cdot 25$	$9 \cdot 4$	115	$3 \cdot 11$
13				1.95	21.0		15.4		y.t	1.13	- 0
14				1.95	21.0	1.6	15.0	1.25	$9 \cdot 4$		$\bigcirc 1$
15.					21.0		14.6	1.25	P-4	1.20	S. 7
16				1.95	21.0	1.53	14.2	1-23	0.4		87
17				1.45	21.0		14.6		$y+$	1.20	
18 19		2.05	22.8		21.4	1.6	15.10	$1 \cdot 25$	y. 4		0.0
19 20		3.1	2.1 .7 23.7	2.0	21.9		14.6		$9+$	$1 \cdot 25$	${ }_{0}^{*}$
20		2.1	$23 \cdot 7$	2.11	21.9	1.55	14.2	1.25	$0 \cdot 4$	120	$4+$
21			23.2		15.6		13.8		0.11	123	11.
22		2.15	29.R	1.25	19.7	1.3	13.4	12	8.7		8.
$2{ }_{24}^{2.3}$		$2 \cdot 05$	22.8	1.2			13.4 13.4	$1-2$	8. 7	125	y. $y .1$ i
25			22.8		8.4	1.35	14.2	1.	¢ -	123	y. 1
211		2.15	22. 2	$1 \cdot 15$	8. 0	15	13.4	12	8 ?	130	12
27			23.7	1.3	10.2		13.11		*	1-30	111)
$2 \times$		$2 \cdot 15$	21.11	1.1	20.1	143	12.6	12	s:	130	(11)
29			-3.1	$\because 0$	219		12.2	12	:		III ?
310		2.1	23.7	18	18.4	14	118		\cdots	130	11.2
31.		$2 \cdot 1$	21.19			14	118		- ;		\%

Monthly Discharge of Mud Creek, near Elko, for 1914.
(Drainage area, 7 square miles.)

Month.	Discharge in Second-Feet.				Run-Off.	
	Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on Drainage area.	Total in acre-feet.
June	$24 \cdot 6$	$8 \cdot 0$	19.5	2.78	$3 \cdot 10$	1,160
July	18.4	11.8	15.1	$2 \cdot 15$	$2 \cdot 48$	928
August.....	11.8	8.7	$9 \cdot 62$	$1 \cdot 37$	1.58	590
September...	$10 \cdot 2$	8.0	8.84	1.26	1.41	526

Phillips Creek, near Roosville (3046).
Location.-Fifteen hundred feet above road, near Roo's ranch, Roosville. Cranbrook district.

Records Available.-May to November, 1914.
Climatic Conditions.-Summers, hot and dry. Winters severe, as low as -40° F. during cold spells some seasons. Similar to Elko (see Elk river).

Gauge.-Wooden staff gauge, read by Mr. Fred Roo, of Roosville.
Channel.-Fairly uniform and smooth. Good control.
Discharge Measurements.-Five measurements were made in 1914.
Co-operation.-Provincial Water Rights Branch and British Columbia Hydrographic Survey co-operated during 1914.

Accuracy.-Daily gauge readings and fairly good measurements. Results should be within 15 per cent.

General.-Phillips creek is a small stream about 10 to 15 miles long, flowing from the east into Montana, about 4 miles from the mouth, and thence into Kootenay river. It is used for irrigation, and there is a fall on the creek above Roo's ranch, where a small industrial development might be installed.

Discharge Measurements of Phillips Creek, near Roosville, B.C., for 1914.

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
May 16.	D. O'B. G., R. H. H.	1,048	16.5	$23 \cdot 3$	$3 \cdot 36$	1.80	78.4
June 17..	D. O'B. G., H. B. H..	1,048	14.0	$23 \cdot 65$	$4 \cdot 06$	1.85	$96 \cdot 1$
July 10...	R. H, H. (Prov.)		$13 \cdot 0$	$14 \cdot 6$	$2 \cdot 21$	1.40	$32 \cdot 2$
- $27 \ldots$	D. O'B. G., R. H. H.	1,929	$11 \cdot 0$	$13 \cdot 3$	1.35	$1 \cdot 20$	18.0
Sept. 10.	H. B. H. (Prov.) .			$11 \cdot 6$	1.00	1+10	$12 \cdot 7$

SESSIONAL PAPER No． 25 e
Daily Gatge Height and Discfarge of Phillipe Creek near Roustile， for 1914.

Daily Galge Height and Discharge of Philhps Creek, near Roosville, for 1914.

Monthly Discharge of Phillips Creek, near Roosville, for 1914.
(Drainage area, 23 s juare miles.)

Month.	Discharge in Second-Feet.				Run-Off.	
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	Total in acre-feet.
May	106	33	$69 \cdot 6$	$3 \cdot 02$	$3 \cdot 48$	4. 280
June	134	53.	$76 \cdot 2$	3.31	$3 \cdot 69$	4.530
July	53	21.5	33.9	1.47	1.70	2,080
August	33	12.0	17.0	0.74	0.85	1.050
September	18	12.0	14.9	$0 \cdot 61$	0.68	${ }_{1} 833$
October	25	$15 \cdot 0$	19.9	0.83	0.96	$1,170$
November						
Accuracy "C.						

Rock Creek. Near Elko (3049).
Location.-One-half mile above Rock mill, near Elko. Cranbrook district. Records Available.-May to September, 1914.
Climatic Conditions.-Similar to Elko (see Elk river).
Gauge. - Two-foot wooden staff gauge, read four or five times a week by Mr. H. B. Stiven, of Elko.

Channel.-Smooth, with swift water. Good control.
Discharge Measurements.-Five measurements were made in 1914.
Co-operation.-Provincial Water Rights Branch and British Columbia Hydrographic Survey co-operated in 1914.

Accuracy.-Results should be within 15 per cent.
General.-Rock creek is a small stream, about 15 miles long. flowing from the east into Kootenay river, about 10 miles south of Jaffray. The total drainage is about 40 square miles. The station is located above the mouth of Mud creek, and the total discharge of Rock and Mud creeks gives the discharge at Rock C'reek Lumber Company's dam. The water is used for irrigation.

Discharge Measurements of Rock Creek, near Baynes, for $19!4$.

	Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No } \end{aligned}$	Width.	Area of Section.	$\begin{gathered} \text { Mean } \\ \text { Velocity. } \end{gathered}$	Gauge Height	Discharze.
	1914.			Feet.	Sq. ft .	Ft. per see.	Feet.	See. -ft.
May	18	D. O'B. G. R. H. H	1048	18.5	40.6	2.06	1-30	82.8
June	19	D. O'B.G. H. B. H	1048	18.5	37.6	2.28	1.35	$\bigcirc 6.0$
July	12	R. H, H. (Prov.)		18.5	29.3	1.78	0.85	52.1
July	14.	D. OB. ${ }^{\text {D }}$ (${ }^{\text {d }}$ (Prow)	1929	18.5	23.6 20.6	${ }^{1} \cdot 35$	0.53 0.33	31.9 15.1
Sept.		H. B. 1t. (Prov.)				0.87	$0 \cdot 33$	18.1

Daily Gauge Height and Discharge of Rock Creek, near Baynes, for 1914.

Day.	May.		June.		July.		August.		September.	
	Gauge. Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge. } \end{aligned}$	Gauge Height.	Discharge	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec.ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec. ft .
1		31.9		76.1	$1 \cdot 15$	73.7	$0 \cdot 5$	28.5	$0 \cdot 35$	19.2
${ }_{3}^{2}$	0. 55	31.9 43.8	1.3	82.9 89.7		69.8 65.9	$0 \cdot 5$	28.5		19.2
4.	$0 \cdot 9$	43.8 55.7	1.45	${ }_{93.1}$	${ }_{1.0}^{1.0}$	${ }_{6}^{63.5}$		27.4 26.4	0.35 0.35	$19 \cdot 2$ 19.2
5	1.0	62.5		91.4		64.2	$0 \cdot 45$	$25 \cdot 2$	$0 \cdot 35$	19.2
6	1.0	62.5	$1 \cdot 4$	89.7	1.05	65.9		23.6	0.35	$19 \cdot 2$
7.		62.5		84.6		60.8	$0 \cdot 4$	22.0		$19 \cdot 2$
8.	1.0	62.5 6.3	$1 \cdot 25$	79.5	0.90	55.7	$0 \cdot 45$	25.2	$0 \cdot 35$	19.2
10.		$64 \cdot 1$	1.25	79.5	0.90	$55 \cdot 7$	$0 \cdot 45$	$25 \cdot 2$	$0 \cdot 35$	19.2
11.		64.9	$1 \cdot 35$	79.5	0.85	$52 \cdot 3$		25.2		19.2
12.	$1 \cdot 05$	$65 \cdot 9$	$1 \cdot 2$	76.1	0.85	$52 \cdot 3$	$0 \cdot 45$	$25 \cdot 2$	$0 \cdot 35$	19.2
13.	$1 \cdot 15$	73.7	1.15	73.7		48.9		23.6	0.30	16.4
14.	$1 \cdot 15$	73.7	$1 \cdot 15$	$73 \cdot 7$	$0 \cdot 75$	45.5	$0 \cdot 4$	22.0		17.8
15.	1.25	$79 \cdot 5$		$76 \cdot 6$		$45 \cdot 5$	$0 \cdot 4$	22.0	$0 \cdot 35$	19-2
16.	$1 \cdot 25$	79.5	1.25	79.5	0.75	45.5	$0 \cdot 4$	$22 \cdot 0$		19.2
17.	1.3	82.9	$1 \cdot 3$	82.9		43.8		22.0	0.35	19.2
18.	$1 \cdot 3$ 1.3	82.9 82.9	$1 \cdot 4$	86.3 89.7	0.70	$42 \cdot 1$ 40.4	$0 \cdot 4$	${ }_{22.0}^{22.0}$	$0 \cdot 35$	$19 \cdot 2$ 19.2
20.	$1 \cdot 35$	86.3	1-35	$86 \cdot 3$	c. 65	38.7	0.4	22.0	$0 \cdot 35$	19.2
21.		84.6		108.6		38.7		$20 \cdot 6$	$0 \cdot 35$	
22.	$1 \cdot 3$	82.9	2.0	131.0	$0 \cdot 65$	38.7	$0 \cdot 35$	19.2		$20 \cdot 6$
23.		82.9		129.0		37.0		19.2	$0 \cdot 40$	$22 \cdot 0$
24.	$1 \cdot 3$	$82 \cdot 9$	1.95	128.0	$0 \cdot 6$	35.3	$0 \cdot 35$	19.2		$22 \cdot 0$
25.		82.9		128.0	$0 \cdot 6$	35.3		19.2	$0 \cdot 40$	22.0
26.	$1 \cdot 3$	82.9	1.95	128.0	$0 \cdot 6$	35.3	$0 \cdot 35$	$19 \cdot 2$	$0 \cdot 40$	22.0
27.		81.2	1.9	124.0		$33 \cdot 6$		19.2	$0 \cdot 45$	25.2
28.	1-25	79.5	$1 \cdot 25$	79.5	0.55	31.9	$0 \cdot 35$	$19 \cdot 2$	$0 \cdot 45$	25.2
29.	$1 \cdot 3$	$81 \cdot 2$ 82	$1 \cdot 15$	$76 \cdot 6$ 73	0.55	31.9 31.9	$0 \cdot 35$	$19 \cdot 2$	$0 \cdot 45$	${ }_{25 \cdot 2}^{25 \cdot 2}$
31.	$1 \cdot 1$	$69 \cdot 3$			$0 \cdot 5$	28.5		19.2		

Monthly Discharge of Rock Creek, near Baynes, for 1914.
(Drainage area, 15 square miles.)

Month.	Discharge in Second-Feet.				Run-Off.		Accuracy.
	Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on Drainage area.	Total in acre-feet.	
May.	$86 \cdot 3$	$31 \cdot 9$	71.2	$4 \cdot 75$	$5 \cdot 40$	4,380	C
June.	131.0	$73 \cdot 7$	91.9	6.12	$6 \cdot 83$	5,470	D
July	$73 \cdot 7$	28.5	$47 \cdot 2$	$3 \cdot 15$	$3 \cdot 63$	2,900	C
August.	28.5	19-2	$22 \cdot 5$	$1 \cdot 50$	1.73	1,380	B
September..	$25 \cdot 2$	$16 \cdot 4$	$20 \cdot 3$	$1 \cdot 35$	1.51	1,210	B

Location.-About 300 yards below highway and C.P.R. bridges, 2 miles from Galloway, near Jaffray. Cranbrook district.

Records Available.-May to September, 1914.
Climatic Conditions.-Summers, hot and dry. Winters severe, as low as $-40^{\circ} \mathrm{F}$. some seasons, with light snowfall. For further information see Elk river. The conditions at Elko are very similar.

Gauge.-Five-foot wooden staff gauge, read daily by Mr. N. Craigie.
Channel.-Uniform and smooth, with swift water. Good control.
Discharge Measurements.-Five well-distributed measurements were made in 1914.

Co-operation.-This station was established by Mr. H. B. Hicks, Provincial Water Rights Branch, and maintained co-operatively by him and the British Columbia Hydrographic Survey.

Accuracy.-Mr. Hicks made a splendid section, late in 1913. The measurements are reliable, daily gauge readings were taken, and the gauge-height-discharge curve is good. The results should be within 5 per cent.

General.-Big Sand creek is an irrigation stream, about 20 miles long, flowing from the northeast into Kootenay river, south of Jaffray. The gauging station is about 8 miles from the mouth, and above the station the drainage area is about 40 square miles. As before stated, the water is used for irrigation.

Discharge Measurements of Big Band Creek, near Jaffray, for 1914.

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity:	Gauge Height.	Discharge.
1914.			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
May. 19.	D. O'B. G., R. H. H	1048	38	$93 \cdot \mathrm{~S}$	$5 \cdot 44$	$\frac{2}{2} 3$	511
June 19..	1). O'B. G. H. B. H	1045	38	81.5	$4 \cdot 53$	$2 \cdot 0$	369
July 9.	12. H. H. (Prov.) .		36 35	51.2 28.4	2.64	1.20 0.65	135
July Sept.	II. B. II. (Prov.)....	1929	35	$28 \cdot 7$ $19 \cdot 9$	- $\begin{aligned} & \text { 1.65 } \\ & 1+10\end{aligned}$	0.65 0.35	t. 21.1 1

Daily Gauge Height and Discharge of Big Sand Creek, near Hanbury, for 1914.

Day.	May:		June.		July:		August.		September.	
	Gauge Height.	Discharge	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height	Discharge.
	Feet.	Sec. -ft	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	See.-ft.
1.		615	$2 \cdot 1$	415	$1 \cdot 5$	205	0.58	$40 \cdot 2$	0.18	$9 \cdot 0$
2		615	$2 \cdot 35$	535	$1 \cdot 6$	233	$0 \cdot 55$	37.5	$0 \cdot 19$	$9 \cdot 5$
3.	$2 \cdot 5$	615	$2 \cdot 5$	615	1.55	219	0.52	34.8	$0 \cdot 16$	$8 \cdot 0$
4	$2 \cdot 35$	535	2.45	588	1.45	191	0.50	33.0	$0 \cdot 18$	$9 \cdot 0$
5.	$1 \cdot 95$	355	$2 \cdot 3$	510	$1 \cdot 4$	177	$0 \cdot 47$	$30 \cdot 6$	0.18	$9 \cdot 0$
6	1.75	282	$2 \cdot 15$	438	$1 \cdot 4$	177	$0 \cdot 47$	$30 \cdot 6$	$0 \cdot 16$	8.0
7.	1.95	355	1.85	316	$1 \cdot 35$	166	$0 \cdot 45$	$29 \cdot 0$	$0 \cdot 18$	$9 \cdot 0$
8	$2 \cdot 2$	460	1.75	282	$1 \cdot 3$	155	$0 \cdot 45$	$29 \cdot 0$	$0 \cdot 22$	11.4
9.	$2 \cdot 35$	535	1.65	249	$1 \cdot 2$	133	e. 42	$26 \cdot 6$	0.28	$15 \cdot 6$
10	$2 \cdot 4$	560	$1 \cdot 5$	205	$1 \cdot 1$	113	$0 \cdot 42$	$26 \cdot 6$	0.25	$13 \cdot 5$
11.	$2 \cdot 35$	535	$1 \cdot 65$	249	$1 \cdot 0$	95	$0 \cdot 4$	$25 \cdot 0$	0.28	$15 \cdot 6$
12.	$2 \cdot 25$	485	$1 \cdot 65$	249	$1 \cdot 0$	95	$0 \cdot 4$	$25 \cdot 0$	$0 \cdot 25$	$13 \cdot 5$
13.	$2 \cdot 15$	438	1.85	316	0.95	87.5	$0 \cdot 37$	$22 \cdot 6$	$0 \cdot 25$	$13 \cdot 5$
14	$2 \cdot 35$	535	$2 \cdot 15$	438	$1 \cdot 05$	103	$0 \cdot 37$	$22 \cdot 6$	$0 \cdot 20$	$10 \cdot 0$
15.	$2 \cdot 55$	642	$2 \cdot 15$	438	1.05	103	$0 \cdot 35$	21.0	0.22	$11 \cdot 4$
16.	$2 \cdot 7$	730	$2 \cdot 15$	438	$1 \cdot 0$	95	$0 \cdot 35$	21.0	0.30	17.0
17.	$2 \cdot 6$	670	$2 \cdot 15$	438	0.9	80	$0 \cdot 32$	18.6	$0 \cdot 41$	$25 \cdot 8$
18.	$2 \cdot 55$	642	$2 \cdot 2$	460	0.9	80	$0 \cdot 37$	$22 \cdot 6$	$0 \cdot 61$	$43 \cdot 3$
19.	$2 \cdot 5$	615	$2 \cdot 1$	415	0.96	89	$0 \cdot 37$	22.6	0.88	77.4
20.	$2 \cdot 4$	560	$2 \cdot 05$	395	0.91	81.5	0.37	$22 \cdot 6$	1.02	$98 \cdot 6$
21.	$2 \cdot 4$	560	1.85	316	0.83	$70 \cdot 9$	$0 \cdot 35$	$21 \cdot 0$	0.90	$80 \cdot 0$
22.	$2 \cdot 5$	615	1.75	282	$0 \cdot 8$	67.0	$0 \cdot 35$	21.0	0.88	77.4
23.	$2 \cdot 4$	560	$1 \cdot 65$	249	0.78	$64 \cdot 6$	$0 \cdot 35$	21.0	$0 \cdot 80$	67.0
24	$2 \cdot 35$	535	1.4	177	0.75	$61 \cdot 0$	$0 \cdot 30$	$17 \cdot 0$	$0 \cdot 80$	67.0
25.	$2 \cdot 15$	438	$1 \cdot 5$	205	0.72	57.4	$0 \cdot 28$	$15 \cdot 6$	0.76	$62 \cdot 2$
26.	$2 \cdot 2$	460	$1 \cdot 65$	249	$0 \cdot 76$	55.0	$0 \cdot 25$	13.5	$0 \cdot 70$	$55 \cdot 0$
27.	$2 \cdot 15$	438	$1 \cdot 65$	249	$0 \cdot 67$	$51+1$	$0 \cdot 24$	$12 \cdot 8$	0.70	$55 \cdot 0$
28.	$2 \cdot 0$	375	$1 \cdot 6$	233	$0 \cdot 65$	48.5	0.25	$13 \cdot 5$	$0 \cdot 65$	48.5
29.	1.75	282	1.65	$\begin{array}{r}249 \\ \hline\end{array}$	C.62	44.6	0.22	11.4	C. 60 0.60	42.0
30.	1.75	282	1.65	249	0.61	$43 \cdot 3$	$0 \cdot 25$	$13 \cdot 5$	$0 \cdot 60$	12.0
31	$2 \cdot 0$	375			$0 \cdot 6$	$42 \cdot 0$	0.19	$9 \cdot 5$		

Monthly Discharge of Big Sand Creek, near Hanbury, for 1914.
(Drainage area 40 square mile3.)

Month.	Discharge in second-feet.				Rev-orf	
	Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on Drainage area.	Total in acre-feet.
May..	730	282	506	$12 \cdot 7$	$14 \cdot 6$	31, 100
June	615	177	348	$8 \cdot 7$	9.71	20, 700
July .	233	42.	106	$2 \cdot 65$	3.06	6,520
August...	40.2	9.5 8.0	$22 \cdot 9$ 34.1	$0 \cdot 57$	0.66	1,410
September..	98.5	8.0			0.95	2,030

Accuracy A.
Little S'and ('reek, near Jaffray (3043).
Location.-At small bridge, above Rosen's ranch, near Jaffray. Cranbrook district.

Records Available.-May to September, 1914.
('limatic Conditions.-See Big Siand creek.

SESSIONAL PAPER No. 25e
Gauge.-Wooden staff gauge, nailed to the bridge, read daily by Andrew Rosen of Jaffray.

Channel.-Uniform. Water unbroken and swift. Control doubtful.
Discharge Measurements.-Five were made in 1914.
Co-operation.-Provincial Water Rights Branch and British Columbia Hydrographic Survey co-operated in 1914.

Accuracy.-Results should be within 15 per cent.
General.-Little Sand creek, a tributary of Big Sand creek, is a small stream used extensively for irrigation.

Discharge Measurements of Little Sand Creek, near Jaffray, for 1914.

Date.	Hydrographer	$\begin{gathered} \text { Meter } \\ \text { No. } \end{gathered}$	Width.	Area of Section	$\begin{aligned} & \text { Mean } \\ & \text { Veolcity. } \end{aligned}$	Gauge Height	Discharge
			Feet.	Sq. It	Ft. per sec.	Feet.	Sec.-ft.
May 15.	D. O. B. G., R. H. H.	1048	24.0	31.7	3.51	1.333	
June 19	D. O. B. G., H. B. H	1048	$\stackrel{24.0}{24.0}$	26.7 26.9	3.01 3.05	1.000 0.875	80.3
July July 29,	D. O. B. G., R. H. H	1929	$\stackrel{24}{2 \pm .0}$	14.7	2.04	0. 158	30.0
Sept 14	H. B. H. (Prov.).			17.2	2.11	0.862	$36 \cdot 3$

Daily Gauge Height and Discharge of Little Sand Creek, near Jaffray, for 1914 .

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of Little Sand Creek, near Jaffray, for 1914-Concluded.

Monthly Discharge of Little Sand Creek, near Jaffray, for 1914.
(Drainage area 33 square miles.)

Month.	Discharge in Second-Feet.				Run-Ofr.	
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area,	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$
May June. July. August September.	147 141 63.7 $46 \cdot 1$ $61 \cdot 5$	$68 \cdot 2$ 59.2 26.3 19.7 18.3	108 $91 \cdot 3$ 39.1 $29 \cdot 1$ 31.5	3.28 2.77 1.18 0.88 0.95	3.78 3.09 1.36 1.01 1.06	6,640 5.430 2.400 1.790 1,870

tecuracy "C."
St. Mary's River, near Wycliffe (3050).
Location.-At traffic bridge near Wyeliffe, 12 miles from the mouth and 7 miles from Cranbrook. Cranbrook district.

Records Available.-April to December, 1914.
Climatic Conditions.-Climatic conditions near Wyeliffe are very similar to those at Cranbrook. At Cranbrook, from December 1, 1913, to November

SESSIONAL PAPER No. 25 e
30,1914 , the precipitation was 16 inches. The summers are hot, windy , and dusty, almost semi-arid. The winters are severe, with occasional cold spells a week or so duration, when the temperature may go as 10 as $-40^{\circ} \mathrm{F}$ or $-50^{\circ} \mathrm{F}$. In December, 1914, engineers of the British Columbia Hydrographic Survey were doing field work around Cranbrook when the temperature was as low as $-20^{\circ} \mathrm{F}$. St. Mary's river freezes up in November or December and remains frozen till March. Frazil ice is prevalent.

Gauge.-Vertical staff gauge, read daily by the Otis Staples Lumber Company at Wycliffe.

Channel.-Straight, uniform, with smooth, swift water. Good control.
Discharge Measurements.-Mr. Hicks, District Engineer, Provincial Water Rights Branch, made several measurements in 1913, and in 1914 four measurements were made.

Accuracy.-Combining Mr. Hick's measurements and the 1914 measurements a very good gauge-height discharge curve has been obtained. The results should be within 10 per cent.

General.-The St. Mary's is a large river rising in the divide between Kootenay lake and Kootenay river in East Kootenay: It flows in an easterly direction, discharging into Kootenay river near Fort Steele, 50 miles above the international boundary line. It is about 50 miles long and drains in the neighbourhood of 1,100 square miles.

The St. Mary's river is at present used for logging pirposes. The Otis Staples Lumber Company has a large mill at Wycliffe, and logs are driven from the timber limits near the source of the river to Wyeliffe. Ore, particularly silver-lead and zinc, is found in large quantities in various parts of the drainage. The Sullivan mine, at Kimberley, had an output in 1914 of 36,000 tons, from which was obtained 550,000 ounces of silver and $25,000,000$ pounds of lead. Power is obtained from Mark creek, a tributary of the st. Mary's.

On St. Mary's river there is a power site immediately above the gauging station near Wycliffe. A head of from 30 to 40 feet may be obtained, and a development of about 2,000 horse power may be installed at a fairly reasonable figure.

Discharge Measurements of St. Mary's River at Wyclifte, for 1914.

Date.	Hydrograplier.	$\begin{aligned} & \text { Meter } \\ & \text { No } \end{aligned}$	Width.	Aros of S…tin	$\begin{aligned} & \text { Mown } \\ & \text { Viluety } \end{aligned}$	G.й Heaght.	1)ivinarge
1914.			Fiete	Sis ft	F't pe	tert	Sere ft.
June 30...	1). O. 13, fi il is if		41	1.110	(i) ${ }^{\text {a }}$	i wix	7.58i
July 23...	"	1,989	162	, is	I	\%1	245
Oct. $10 .$.	"		145	13 4	$\begin{array}{lll}1 & 8 \\ 1 & 1 & 1\end{array}$	10 10	S\%

6 GEORGE V, A. 1916
Daily Gauge Height and Discharge of St. Mary's River near Wyeliffe, for 1914.

SESSIONAL PAPER No. 25e
Daily Gauge Height and Discharge of St. Mary's River near Wycliffe, for 1914.

DAY	July.		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge.	Gauge Height	Discharge	Gauge Height.	Discharge	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height	Dizcharge
	Feet.	Sec.-ft.										
1.	5.82	7,300	2.8	1,599	1.8	767	1.5	590	2.0	910	2.0	910
2	$6 \cdot 22$	8.610	$2 \cdot 8$	1.590	$1 \cdot 8$	767	$1 \cdot 5$	590	$2 \cdot 0$	910	$2 \cdot 0$	910
3	6.65	10,200 11,600	$2 \cdot 7$ $2 \cdot 6$	1. 500	1.8 1.8 1.8	767	1.5	597	2.00	910	$2 \cdot 0$	
5.	$7 \cdot 0$ 7.0	11,600 11,690	$2 \cdot 6$ $2 \cdot 6$	1.400 1.400	1.8	767	1.5	590 590	2.0 2.0	910 910	$2 \cdot 0$ $2 \cdot 1$	
6	6.7	10.400	$2 \cdot 5$	1,310	1.5	767	1.5	590	2.0	910	$2 \cdot 10$	
7.	$6 \cdot 3$	8.894	25	1,310	1.8	767	$1 \cdot 5$	590	$2 \cdot 0$	910	2.2	
8	$5 \cdot 9$	7,550	$2 \cdot 4$	1.230	1.8	767	1.5	590	2.0	910	$2 \cdot 2$	
9	$5 \cdot 6$	6.646	$2 \cdot 4$	1.230	1.8	767	$1 \cdot 5$	590	2.0	910	$2 \cdot 2$	
10.	$5 \cdot 5$	6,356	$2 \cdot 3$	1.150	1.8	767	$1 \cdot 6$	644	$2 \cdot 0$	910	$2 \cdot 2$	
11.	$5 \cdot 35$	5,940	$2 \cdot 2$	1.070	1.8	767	1.6	644	$2 \cdot 0$	910	$2 \cdot 2$	
12.	$5 \cdot 1$	6,070	$2 \cdot 2$	1.070	1.8	767	1.6	644	$2 \cdot 0$	910	$2 \cdot 2$	
13	$5 \cdot 5$	6.350	$2 \cdot 1$	990	1.8	767	1.6	6.4	$2 \cdot 0$	910	$2 \cdot 2$	
14.	$5 \cdot 5$	6,350	$2 \cdot 1$	990	1.8	787	1.7	703	$2 \cdot 0$	910	$2 \cdot 2$	
15.	$5 \cdot 4$	6.075	$2 \cdot 1$	9911	1.8	767	$1 \cdot 7$	703	$2 \cdot 0$	910	$2 \cdot 2$	
16.	$5 \cdot 0$	5.030	$2 \cdot 1$	990	1.8	767	1.7	703	$2 \cdot 0$	910	$2 \cdot 2$	
17.	$4 \cdot 7$	4.340	$2 \cdot 1$	990	1.8	767	1.8	767	2.0	910	$2 \cdot 2$	
18	$4 \cdot 5$	3,910	$2 \cdot 0$	910	1.8	767	1.8	767	$2 \cdot 0$	910	2.2	
19.	4.25	3,430	$2 \cdot 0$	910	1.8	767	1.8	767	2.0	910	$2 \cdot 2$	
20.	3.95	2,940	$2 \cdot 0$	910	1.8	767	1-8	767	$2 \cdot 0$	910	2.2	
21	3.75	2,666	$2 \cdot 0$	910	1-8	767	1.8	767	$2 \cdot 0$	910	$2 \cdot 2$	
22	$3 \cdot 5.5$	2.410	$2 \cdot 0$	910	1.8	767	1.8	767	$2 \cdot 0$	910	2.2	
23.	$3 \cdot 4$	2,220	1.9	836	1.8	767	1.8	767	2.0	910	$2 \cdot 2$	
24.	$3 \cdot 25$	2,060	1.9	836	1.8	767	1.9	836	$2 \cdot 9$	910	$2 \cdot 2$	
25.	$3 \cdot 2$	2,000	1.9	836	$1 \cdot 8$	767	1.9	836	2.0	910	$2 \cdot 2$	
26	$3 \cdot 1$	1,890	1.9	836	1.8	767	1.9	836	$2 \cdot 0$	910	$2 \cdot 2$	
27.	$3 \cdot 1$	1,890	$1 \cdot 8$	767	1.8	767	1.9	83.35	$2 \cdot 0$	910	$2 \cdot 2$	
28	$3 \cdot 10$	1,780	1.8	767	1.8	767	1.9	¢ 36	$2 \cdot 0$	910	$2 \cdot 2$	
29.	$3 \cdot 0$	1.78C	1.8	767	1.8	767	1.9	836	$2 \cdot 0$	910	2.2	
30.	2.9	1.680	1.8	767	1.8	767	1.9	836	$2 \cdot 0$	910	$2 \cdot 2$	XI
31.	$2 \cdot 8$	1,590	1.8	767	$1 \cdot 0$		1.9	836			$2 \cdot 2$	

Monthly Discharge of St. Marys River near Wyeliffe for 1914.
()rainage area, 1,100 square miles.)

Month.	Discharge in Second-Feet.				Re $\mathrm{N-OHy}$.		
	Muximum.	Minimum.	Mex.	$\begin{aligned} & \text { Per } \\ & \text { Rquare } \\ & \text { inile. } \end{aligned}$	Dept la in inches on Drainage arezt.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { were-feet. } \end{gathered}$	
April..	2,160	395	1,470	$1 \cdot 31$	1.50)	A7, 5cm	
Miry....	31.240	2, 220	5,5311	$5 \cdot 05$	5. $3:$	3+10) (mal	H
June..	17, 1611	7,3+1)	0, 5.50	8 - 16 S	3-488	56is, (641	If
July..	11. (81)	1.5919	5, +20	+. 113	$5 \cdot 1$ - is	353, 1441	11
August	1.5901	707	1, 05010	(1). 4.5	1-11)	(H) (tier	18
Suptemiser	747	7077	767	10.711	10 Is	45. 16×1	1)
Oetober.	र3:16	591	711	11-415	(1) 75	$4,1,7(4)$	1)
Noveminer	$011)$	1110	111	v. 3.3	11.98	Si, 1001	

MISCELLANEOUS METERING STATIONS.

Date.	Stream.	Tributary to-	Locality.	Gauge Height.	Discharge.
				Feet.	See.-ft.
Nov. 27.	Dunean River. Fry Creek	Howser.	Howser. Kaslo	1.80	1,250
" 29.	Fry Creek... Glaeier Creek		Kaslo... Howser.	$2 \cdot 1$ $4 \cdot 3$	278 142
" 10.	Kootenay River.		Taghum.		27.300
Dee. 8	Kooter ${ }^{\text {a }}$		-4.		23,400
Nov. 28	Lardeau River.		Howser.		1,130
April 18	Wilson Creek..		Roseberry.	$1 \cdot 85$	- 822
May 14			"	$3 \cdot 48$	2,290
June 15.	*		"	3.80 4.00	3,320
July 8	"		"	4.00 2.50 0.80	2,340
Aug. 17.	"		"	0.85	642
Nov. 3..	"		" \cdot. ${ }^{\text {a }}$.	0.90	759

Date.		Stream.	Loeality.	Gauge Height.	Diseharge.
1914.				Feet.	Soe.-ft.
May 7		Columbia River	Neur Athalmer	1-6.5	235
${ }^{4} 17$.				$1 \cdot 43$	233
June 15........	cos	Horse Creek	Near Field.		2.92
July $28 \ldots$	- -	Hospital Creek.	"	$3 \cdot 82$	62.8 17.4
June 12...		- ${ }^{\text {a }}$	"	$5 \cdot 20$	$66 \cdot 1$
July $27 \ldots$	$1=1$	Salm	"	$4 \cdot 75$	6. 69
Nov. 20..		Salmon River.	Beaton	1.8	57.0

INDEX.

\qquad
Accuracy and Reliability of Data, Hydrographic data 13
Adams River, Hydrographic data 27
Anderson River 275
Asheroft and Nicola Districts. 431
Akolkolex River, near Wigwam, Hydrographic data. $\begin{array}{r}431 \\ 55 \\ \hline\end{array}$
Belknap Creek at Belknap Lake, Hydrographic data
58
58
Belknap Creek below Ann Lake, Hydrographic data
Belknap Creek below Ann Lake, Hydrographic data 115 115
Big Qualicum River, Hydrograph
Black Creek, Hydrographic data. 204
Boulder Creek, Hydrographic data. 61
Brandt Creek, at mouth, Hydrographic dats 64
66
Bridge River, Hydrographic data 165
Barnes Creek, Hydrographic data 325
Boulder Creek, Hydrographic data 61
Bolean Creek, Hydrographic data
Bolean Creek, Hydrographic data 207 207
Bonaparte River, Hydrographic data 330
Boundary Creek, Hydrographic data 275
Barriere River.
434
434 437
Bugaboo Creek, Hydrographic data 440
Beaver River, near Six-mile Creek, Hydrographic data
Beaver River, near Six-mile Creek, Hydrographic data
Bull River, near Mouth, Hydrographic data. 494
Big Sand Creek near Joffray 523
Co-operation and Acknowledgements.
12
3
Convenient Equivalents
Convenient Equivalents
Chief Engineer's Report-Coast Division
Chief Engineer's Report-Coast Division 17
TerritoryUses ol Water17
Present Water-Power Developments 17
Possible Water-Power Developments 17
Municipal supply 17
Irrigation
Location of Stations 18
Precipitation and Temperature. is
Comparison of Stream Measurements 18
Districts:
4. 5,19
4. 5,19
Southern
Southern 19
Lillonet
4. $5,21,24$
Regular Mctering Stations5
4
Miscellaneous Metering Stations 120
Campbell River, Hydrographic data120
Capilano Creok, II ydrographic data
Cayuse Creek, II ydrographic data
Cheakamus River, Hydrographic data
Chehalis River, Hydrographic dats
Chilliwack River, Hydrographic data17
: 7
Chemainus River, Hydrographic data. 123
Cowichan River, Hydrographic data 126
Coquithm River, Hydrographic data 210
Campboll Creok, Hydrographic data. (50: H
Canyon Creck, Hydrographic data 24.
Celeste Croek, 11 ydrogruphie dat2i:Little Cloarwater River, Hydrographic dataCherry Croek, Hydrographie dataCriss Creek, Ifydrographic data.Coldwater liver, Ilydrograplic dataCrazy Creek, Hydrographic data
Canyon Creuk, Il yorographic dut:Canyon Creek, Hydrographic dutas
Cariboo Creok, near thurton ('ity, Ity drogerapluc duta
Carpenter Croek, near New Donver, 11 ydruseriphice thataCarpenter Creek, south fork near Samlion, II
Chorry Croek nour Wuan, II yilrouraphe thata
Columbia River, nomr Ciustomar, IHyrographe
Columbin River, at Goldon, Hydrogrimhicilath
Columbia River, neur Trail, Hydrograplate data
Clearwator Kiver, Mydrographic dataua...
Districts-Continued. Page.
Definition of Terms 12
Developed Water powers-Coast Division. 24
Deadman River, Hydrographic data 339
Districts and Staff-Kamloops Division.. 35 $\begin{array}{r}38 \\ 530 \\ \hline\end{array}$
Developed Water powers-Kamloops Division.
Developed Water powers-Kamloops Division.
Duncan River, Hydrographic data.
44
44
Dutch Creek, near Fairmont Springs, Hydrographic data 1
Explanation of Tables 129
Englishman River, Hydrographic data
Englishman River, Hydrographic data 2×7
Eagle River, at Malakwa, Hydrog
Essell Creek, Hy drographic data. 226
Elk River, near Elko, Hydrographic data 503
Fountain Creek, Hydrographic data 177 177
Fraser River, Hydrographic data 8
Fishtrap Creek, Hydrographic data 363
Fraser River, at Lytton, Hydrographic data 342
Fortune or Davis Creek, Hydrographic data.
39
530
39
530
Fry Creek, Hydrographic data
450
450
Field Springs, Nos. 1, 2 and 3, Hydrographic data
454
454
Four-mile Creek, below Hewitt Mill, Hy drographic data 380
Four-mile Creek, above Hewitt intake, Hydrographic data 383
Frazil Ice 51
Green River, at Nairn Falls, Hydrographic data 175
Green River, at Green Lake, Hydrographic data 18
Gilley Creek, Hydrographic data. 2.
Goldstream River, Hydrographic data
20
20
Granite Creek, Hydrographic data
299
46
Guichon Creek, Hydrographic data
Glacier Creek, Hydrographic data.
Goat River, rear Erickson, Hy drographic data 386
Gold Creek, near Newgate, Hydrographic data. 506 506
General Remarks-Nelson Division 4.5
Hixon Creek, above Belknap Creek, Hy drographic data 86
Hixon Creek, near mouth, Hydrcgraphic data 81 344
Hat Creek, Hydrographic data.
Hat Creek, Hydrographic data.
He ffley Creek (upper) Hy drographic data 232
(lower) Hydrographic data 457
Horsethief Creek, near Wilmer, Hydrographic data
45
45
Hospital Creek (Weir) Hydrographic data 45
Hydrographic Districts-Nelson Division
13
13
Irrigation Streams-Coast Division 25
Ingram Creek, Hydrographic data. 238
Illecillewaet River, near Revelstoke, Hydrographic data th2
Glacier, Hydrographic data
Glacier, Hydrographic data 46 46
Incomappleux River, near Beaton, Hydrographic data 466 466
Irrigation-Kamloops Division
36
36
Inspections-Kamloops Division 36
Jones Creek, Hydrographic data
29
29
Jordan River 241
Jamieson Creek, Hydrographic data
Jamieson Creek, Hydrographic data
3
3
Chief Engineer's Report.
33
33
Territory
33
33
Uses of Water 33
Water Power Development 3
Water Power Development 33
Municipal Supply 34
Topography 34
Precipitation and Climatc 34District and Staff.
Kamloops District 35
The Asheroft and Nicola District 36The Okanagan District
Kamloops Office. an
inspections 36
Developed Water Powers 38
Barriere River 38
Boundary Creek 39
Crazy Creek 39
Fortunc, or Davis Creek
39
39
Kettle IRiver at Cascade.
39
39
Kcttle River (North Fork). 40
Murray Creek 40
40
Nakalliston Creck
Precipitation, Total MonthlyDifference from average.Temperature, Mean Monthly.
m average.
Koksilah river, Hydrographic Data 134
Fiettle River at Carson, Iivdrographic data 301
North Fork), Hydrographic data 292
295 298
West Fork), Hydrographic data
West Fork), Hydrographic data
at Cascade, Hydrographic data 301
Kiaslo creek. 389
Kicking Horse River, near Golden 468
" " \quad " \quad " Field 472
474

SESSIONAL PAPER No. 250

Kamloops Division--Coneluded. Page
Kooskanax Creek, near Nakusp 311
Kootenay River, at [pper Bonnington Fulle 395
" " " " Glade, Hydrographic data 411
" " " Nelson, Hydrographic data 417
" Wardner, Hvdrographic data. 412
Laluwissin Creek, Hydrographic data 155
Lillooet River, Hydrographie data.
187
187
Little Qualicum River, Hydrographic data 137 137
Lynn Creek, Hydrographie data 91
Little Blaek water River, Hydrographie data.
Little Blaek water River, Hydrographie data. 194
18
Loeation of Stations, Coast Division 18
Louis Creek, Hydrographie data
530
530
Lardeau Creek, Hydrographie data
Lardeau Creek, Hydrographie data
512
512
Linklater Creek, Hydrographie data
Linklater Creek, Hydrographie data
524
524
Little Sand Creek, near Jaffray
Little Sand Creek, near Jaffray
220
220
Mesliloet River, Hydrographie data 94
Tributaries, Hydrographic data. 194
MeGillivray Creek, Hydrographie data. 17
Munieipal Water Supply, Coast Division..
Munieipal Water Supply, Coast Division.. 34
Murray Creek, Mydrographie data 40
Metering Stations, list of Regular, Coast Division 4
4
5
" " " Regular, Kamloops Division " " " Miscellaneous, Kamloops Division. 6
" " " Regular, Jelson Division 8
9
Methords of Measuring Siream Flow 11
Monte Creek (Diversion to Summit Lake), Hydrographie data 24
below Diversion to summit Iake), Hydrographic data.
" (above Bostocks Diversion), Hydrographie data 53
Myrtle River, Hydrographie data 256
Miscellaneous Measurements in Thompson River Drainage, Hydrographie data. 363
Moyie Creek, Hydrographie data 530
Mark Cresk, near Maryville, Hydrographic data 513 513
Mud Creck, near Elko, Hydrouraphic data 516 516
Nelson Division-Chief Engineer's ReportGeneral RemarksGeneral Remarks.('limate Conditions
snowfall data.45
45
4745Snowfall Table.
Temperature..48
Co-operation.4
Hydrographie Distriets 48
Problem of Transportation 49
Winter Mcasurement 50
Personal Equation. 50 50
Frazillee 51
51
51
Tatal Monthly Procipitation.
Mean Monthly Teruperature
Difference froun Average Precipitation.51
Temperature.Regular Meterine stations, fist of
Miseellancous Metering Sitations, List of 11. 53
Nanaimo River, Hydrographic datit 181
Niskontith C'reek341
Nicolum River. Itydrokraphic data 4
Norton C'resk, II yirographic data
Norton C'resk, II yirographic data 49 49
North Lillonet River, Itydrouraphic data.
Nathathatell River (1 purr), Iyalrographic data. 34
Nabatlatelı River (Lawer), Ilydrographic data 350
Nicola River at Masrith, Hydragraplicic data $35{ }^{2}$
Nicula Kiver at Month, Hydrographic data 355
Nakalliston Creek, II viletigraphic data
41
41
 3 (in
North. Thumsum River ulove Jumioan Groek, II yelrum 163
North Vermilion ('rock, near Cidgwater, Ilsdrographiw date
No. 2 Creok, uar Iorsterm I Anding. Hyslrugraphe data.... i.s
Uyster River, IIs Irugruphice dnta.
Oknnakan River, II vilromruphie data. 14.
()kamman 1)istrict, Kiambops Diviaion i
Organization, Organization,:Ba
Persanal lichation 5.
P Total Montlily. Nohoon Lhemon. 81
 41
 and ('limate Kamhopm (hivezon 34
Posmible Water Power Thendophenta, (the: Ihtiman. i4
Prosernt11.

Poul Crook, 11 varog mithes thata1
Power Rever, fivinumphede date. 2

[^0]: () T'TA II
 NACRLAKNV M WNETY

 1915

[^1]: Nore.-Stations marked with an asterisk (*) have been only recently established, and sufficient measurements of discharge have not been taken to deduce a curve and daily discharges. Gauge readings are being systematically recorded, and run-off data will be returned in the report for 1915.

[^2]: Ncte.-Stations marked with an asterisk (*) have been only recently established, and sufficient measurements of discharge have not been taken to deduce a curve and daily discharges. Gauge readings are being systematically recorded, and run-off data will be returned in the report for 1915.
 **Owing to certain discrepancies between the results found on the two North Thompson river stations, the data for 1014 on both these stations is withheld until the difficulties can be adjusted in the open season.

[^3]: Notk.-Stations marked with an asterisk (${ }^{\circ}$, have been only recently established, and sufficient mensuremeats of discharge have not been taken to deduce a curve and daily discharges. Gauge readings are being systematically recorded. and run-off data for 1914 will be returned in the report for 1915

[^4]: N.B.-All quantities are plus unless otherwise designated.

[^5]: * Different section.

[^6]: ${ }^{1}$ First staff gauge washed out January 6, 1914. Replaced the same month.
 ${ }^{2}$ Second gauge washed out October 19, 1914. Replaced November 14, 1914, by chain gauge

[^7]: ${ }^{1}$ Ice conditions.

[^8]: ${ }^{1}$ Section at gauge. ${ }^{2}$ Measured at Yale. ${ }^{3}$ Section above gauge. ${ }^{4}$ Float measurement.

[^9]: ${ }^{1}$ Station established.

[^10]: ${ }^{1}$ Ice conditions.

[^11]: ${ }^{1}$ Station established.
 ${ }^{2}$ Backwater from small dam.

[^12]: ${ }^{1}$ Probably affected by ice.

[^13]: ${ }^{1}$ Station established.

[^14]: ${ }^{2}$ Probably affected by ice.

[^15]: *Station established

[^16]: ${ }^{1}$ Station established.
 ${ }^{2}$ Low-water section.

[^17]: tecuracy " A ."

[^18]: ${ }^{1}$ Stastion enteblifinhed.

[^19]: Note.-Discharge measurements supplied by Meswrs. Ritchie, Aknew (.o., of Vietorim, B ('

[^20]: ${ }^{1}$ Station established. ${ }^{2}$ Low-water section.

[^21]: Accuracy "B".

[^22]: ${ }^{1}$ Station established.

[^23]: Accuracy " B ".

[^24]: INtation ontablimhed, kauge mot roforamed. ${ }^{2}$ surface mevasurement, lormer gauge gone; now gatge put in and referenced ${ }^{3}$ Channol oluaged by Ireshot and loge wowlget under bridgo.

[^25]: Accuracy "C".

[^26]: 'See meterings 1911 and 1912, Water Resources Paper No. 1.
 For further hydrographic data nee Water Resources Papers Nos, 1 and N .

[^27]: Meterings not all made at same sections.
 ${ }^{1}$ Dam at Campbell Lake closed.
 ${ }^{2}$ The only ranchers diverting water above station on this date were Messrs Pratt \& Blackwell. The former using about $0.7 \mathrm{sec}-\mathrm{tt}$. and the latter about 1.2 sec. -ft .

 For further hydrographic data see Water Resources Papers Nos. 1 and S .

[^28]: Note.-No water coming down the creck at the station after August 22.
 Precipitation is low (probably 12 inches per annum), and evaporation from lake surfaces near headwaters large.

[^29]: ${ }^{1}$ Water standing in pools.

[^30]: Norr. - Station was established on June 7. ('reek stoppeal runurg on August 10. No prectpitataon recordsavmbable

[^31]: ${ }^{1}$ Station was established on June 17; results for June are therefore only approximate.
 No precipitation records available.

[^32]: For further measurements see Water Resources Papers Nos. 1 and 8.

[^33]: For further meterings made at other points on Guichon creek during 1914, see list of miscellaneous measurements For other hydrographic data see Water Resources Papers Nos, 1 and 8.

[^34]: Note.-Ice conditions after December 8 .
 April flow compiled from flow at Heffley Creek (upper station) plus the flow in Anderson's and Crawshaw's diversions of Heflley creek.

 Regular station established at outlet of Heffly lake on April 27 to replace the three former stations mentioned above. 2 The flow at this station is artificially controlled to some extent by a dam on Heffley Lake.

[^35]:

[^36]: Note.-Creek beeame frozen up on November 12, when water ceased running
 No preeipitation reeords available.

[^37]: ${ }^{1}$ Measurements made at highway bridge and added to flow of div.
 For further hydrographic data see Water Resources P'apers Nos. 1 and 8

[^38]: Note.-No precipitation data available, but it is probable that it has an annual variation from 15 to 20 inches. Ice conditions existed subsequent to December 11.

[^39]: ${ }^{1}$ New gauge installed on this date. Old gauge reading $0 \cdot 65$.
 ${ }^{2}$ Estimated.
 For further hydrographic data see Water Resources Papers Nos. 1 and 8 .

[^40]: For further hydrographic data see Water Resources Paper Nos. 1 and 8.

[^41]: Nore. - The run-off is not a function of the drainage area since a large diversion is made above this station which carries water to Summit lake. During April to November, 1914, 3, 886 aere-feet were so diverted.

 Rainfall probably varies to a maximum of 20 inches annually.

[^42]: For further hydrographic data see Water Resources Paper Nos. 1 and s

[^43]: For further hydrographic data sce Water Resources, Paper Nos. 1 and 8.

[^44]: An effort will be made to completely rate this station during 1915.

[^45]: Note. Precipitation varics from 20 inches at mouth to 50 inches at source (estimated),
 Drainage area possibly in error.
 Station established, June, 1914.

[^46]: Meterings taken to check weir measuren ents

[^47]: Note.-The annual precipitation of the North Thompson river above Kamloops varies from 7 to 12 inches at Kamloop to about 40 inches at the Albreda summit, while on the South Thompson, Shuswap lakes, and tributary streams it variea to a maximum of 40 inches annually.

 It is to be noted that the flow recorded at the station "Thompson river at Kamloops" comprises that of both the North and South Thompson, the station being established below their confluence.

[^48]: For furthor moturinges and hydrogrpahic data wev Water 1 kow surcove Paper Now 1 an Is

[^49]: Looking north from the south end of Adams lake, which forms a splendid natural reservoir site for a possible power development on Adams river. Adams lake empties into Adams river, falling 190 feet in its six-mile course to Shuswap lake.

[^50]: See measurements of Eagle river in Water Resources Paper Nos, 1 and 8

[^51]: Note:-Tho average annual precipitation over tha dranage aren is probably 20 inchew at the strvains mouth, to 40 inehes at its mourco.

 The station was not entablisfoest until the freshact flow for 1914 was ahmest over.
 Lee conlitions exinted during Deromber and part of Xovember

[^52]: ${ }^{1}$ Low-water section.

[^53]: Notz.-Preeipitation reeords are not available, but it probably varies from 20 to 30 inehes per annum in average years. This station gives the flow of the Kettle river above Midway before it joins Boundary ereek.
 Winter conditions existed subsequent to December 11.

[^54]: Nome. These data wero eompiled fron gatuge rendingen taken under the direction of Mr. Clifford Vare as. Provincoal Witer Itighta Fingineer, at Grund Forks, to whon due ueknswhelemont is made.

 For remarky relating to procipitation, ote, now liette Itiver for 1914

[^55]: Noze. - Precipitation varke from 20 to 30 mehem per annum in normal yewra
 of Fobruary
 'himention given the dincharge of the liottle river un it flown north, werome the international boundary before gumit o the North Fork of the Kettle river ut tirnnel Fiorkn

[^56]: Nork.- Precipatation varren (rom 10 to 20) abelas.
 I han on Ninkonlitls lake controln the metrewtris regionen

[^57]: Note.-This station was estalbished in April, 1914, having for the period a maximum flow of 1,500 sec.-feet in Junc and a minimum of 485 sec-fect in December.

 The flow is regulated by Gkanagan and Dog lakes, from which there is a large cvaporation loss.
 The precipitation is low, varying from 10 to 30 inches annually.

[^58]: altitucher.
 n Devember.

[^59]: ${ }^{1}$ Measurement made at Princeton before regular station was established.
 ${ }^{2}$ Not at regular section.

[^60]: Notk. Mown ammal provipitation at the st resm's confluence with the South Simithameen river is probably: 13 inchev:
 it in probuhly 24 to 30 inehew per mannum.
 lee remelitions existed during part of November and Iterember.

[^61]: For further hydrographic data see Water Resources Paper Nos. 1 and 8.

[^62]: Nore.- Winter conditions provail aftor Dowember 8 .

[^63]: ${ }^{1}$ Actual gauge height $3 \cdot 30$, gauge sunk 0.07 foot during the winter, thus making actual readings 0.07 too high.
 ${ }^{2}$ Actual gauge height $2 \cdot 05$.
 For further hydrographic data see Water Resources Papers Nos. 1 and 8.

[^64]:
 Actual gase levight 0-4.
 Sew measureatenth 1013, Wister Renourees Paper No. 8 .

[^65]:

[^66]: Measuremeats from bridge, high-water section
 See measurements. 1913, Water Resources Paper No. 8

[^67]: For further meter measurcments see Water Resources Papers Nos. 1 and 8

[^68]: Note.-Ice conditions prevailed early in December, when Hat creek was discharging practically no weter
 No precipitation records are available for the Hat Creek drainage basin. Tle n ean arnual precipitation at Asheroft is very low-about 5 inches per annum. The precipitation over the Ipper Hat Crrek valley is, however, considerably in excess of this amount.

[^69]:

[^70]:
 wators of the liftooet river from 80 to fil inches unumilly

[^71]: For further hydrographic data, see Water Resources Papers Nos. 1 and 8.

[^72]: Nota.-Precipitation on the Coldwater varies from 10 to 50 inches, while on the Nicola river proper it averazes only about 10 inches, and this is subject to large cvaporation losses.

 The flow at this station includes the flow of Coldwater river.

[^73]: For further hydrographic data, see Water Resources Papeers Nos. 1 and 8

[^74]: Note - Mean annual preeipitation at the mouth of Spius creek is about 10 inehes, while in the higher altitudes it is probably about 30 inches.

 Winter conditions existed subsequent to December 24.

[^75]: Note.-Precipitation varies from 5 inches at the confluence of the Thompson and Fraser rivers to 40 inches at theAlbreda summit and 40 inches at the source of several streams tributary to Shuswap lake.

 For meterings and further hydrographic data, see Water Resources Papers Nos. 1 and 8.

[^76]: ${ }^{1}$ Affruted by buchwutor

[^77]: Note.-In this case the mean discharge represents the difference between the mean discharges of the Columbia near Trail and the Kootenay near Glade.

[^78]: ${ }^{1}$ Meter out of order.

[^79]: ${ }^{1}$ Different section.

[^80]: ${ }^{1}$ Ice conditions.

[^81]: Acourucy "(. '

[^82]: (All areas recomputed from soundings of January and February, 1915.)

[^83]: ${ }^{1}$ Iee conditions.

[^84]: Accuracy "D.'

[^85]: ${ }^{1}$ Flow in older channel affects gauge. Old gauge $0 \cdot 5$. Reading is no use.

[^86]: ${ }^{1}$ New gauge. (See notes).

[^87]: ${ }^{1}$ At rogular measuring section.
 ${ }^{2}$ At gaugo section

[^88]: ${ }^{1}$ Not very reliable. Frazil ice.

[^89]: Aceurney " 13 "

[^90]: From C. P. R. bridge.

[^91]: ${ }^{1}$ New section

[^92]: ${ }^{1}$ Marked shift in channel between April and July

[^93]: ${ }^{1}$ Different section.

[^94]: ${ }^{1}$ Lee conditions.

